1
|
Bouvet P, Bevilacqua C, Ambekar Y, Antonacci G, Au J, Caponi S, Chagnon-Lessard S, Czarske J, Dehoux T, Fioretto D, Fu Y, Guck J, Hamann T, Heinemann D, Jähnke T, Jean-Ruel H, Kabakova I, Koski K, Koukourakis N, Krause D, La Cavera S, Landes T, Li J, Margueritat J, Mattarelli M, Monaghan M, Overby DR, Perez-Cota F, Pontecorvo E, Prevedel R, Ruocco G, Sandercock J, Scarcelli G, Scarponi F, Testi C, Török P, Vovard L, Weninger W, Yakovlev V, Yun SH, Zhang J, Palombo F, Bilenca A, Elsayad K. Consensus Statement on Brillouin Light Scattering Microscopy of Biological Materials. ARXIV 2024:arXiv:2411.11712v1. [PMID: 39606723 PMCID: PMC11601801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions. The aim of this consensus statement is to improve the comparability of BLS studies by providing reporting recommendations for the measured parameters and detailing common artifacts. Given that most BLS studies of biological matter are still at proof-of-concept stages and use different--often self-built--spectrometers, a consensus statement is particularly timely to assure unified advancement.
Collapse
Affiliation(s)
- Pierre Bouvet
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Carlo Bevilacqua
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Germany
| | | | | | - Joshua Au
- Fischell Department of Bioengineering, University of Maryland, USA
| | - Silvia Caponi
- CNR - Istituto Officina dei Materiali (IOM), Unità di Perugia, Italy
| | | | - Juergen Czarske
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
- Competence Center for Biomedical Computational Laser Systems, TU Dresden, Germany
| | - Thomas Dehoux
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, France
| | | | - Yujian Fu
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dag Heinemann
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Germany
| | | | | | - Irina Kabakova
- School of Mathematical and Physical Sciences, University of Technology Sydney, Australia
| | - Kristie Koski
- Department of Chemistry, University of California Davis, USA
| | - Nektarios Koukourakis
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| | - David Krause
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| | - Salvatore La Cavera
- Optics & Photonics Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | - Timm Landes
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Germany
| | - Jinhao Li
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Germany
| | - Jeremie Margueritat
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, France
| | | | - Michael Monaghan
- Discipline of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Ireland
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, United Kingdom
| | - Fernando Perez-Cota
- Optics & Photonics Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | | | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | | | | | | | - Claudia Testi
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Peter Török
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine, Singapore Centre of Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
- Institute for Digital Molecular Analytics & Sciences, Nanyang Technological University, Singapore
| | - Lucie Vovard
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, France
| | - Wolfgang Weninger
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Vladislav Yakovlev
- Department of Biomedical Engineering, Texas A&M University, USA
- Department of Electrical and Computer Engineering, Texas A&M University, USA
- Department of Physics and Astronomy, Texas A&M University, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Massachusetts General Hospital, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, USA
| | - Francesca Palombo
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Israel
| | - Kareem Elsayad
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| |
Collapse
|
2
|
Rioboó RJJ, Gontán N, Sanderson D, Desco M, Gómez-Gaviro MV. Brillouin Spectroscopy: From Biomedical Research to New Generation Pathology Diagnosis. Int J Mol Sci 2021; 22:8055. [PMID: 34360822 PMCID: PMC8347166 DOI: 10.3390/ijms22158055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
Brillouin spectroscopy has recently gained considerable interest within the biomedical field as an innovative tool to study mechanical properties in biology. The Brillouin effect is based on the inelastic scattering of photons caused by their interaction with thermodynamically driven acoustic modes or phonons and it is highly dependent on the material's elasticity. Therefore, Brillouin is a contactless, label-free optic approach to elastic and viscoelastic analysis that has enabled unprecedented analysis of ex vivo and in vivo mechanical behavior of several tissues with a micrometric resolution, paving the way to a promising future in clinical diagnosis. Here, we comprehensively review the different studies of this fast-moving field that have been performed up to date to provide a quick guide of the current literature. In addition, we offer a general view of Brillouin's biomedical potential to encourage its further development to reach its implementation as a feasible, cost-effective pathology diagnostic tool.
Collapse
Affiliation(s)
- Rafael J. Jiménez Rioboó
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain;
| | - Nuria Gontán
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| |
Collapse
|
3
|
Xiang Y, Seow KLC, Paterson C, Török P. Multivariate analysis of Brillouin imaging data by supervised and unsupervised learning. JOURNAL OF BIOPHOTONICS 2021; 14:e202000508. [PMID: 33675294 DOI: 10.1002/jbio.202000508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Brillouin imaging relies on the reliable extraction of subtle spectral information from hyperspectral datasets. To date, the mainstream practice has been to use line fitting of spectral features to retrieve the average peak shift and linewidth parameters. Good results, however, depend heavily on sufficient signal-to-noise ratio and may not be applicable in complex samples that consist of spectral mixtures. In this work, we thus propose the use of various multivariate algorithms that can be used to perform supervised or unsupervised analysis of the hyperspectral data, with which we explore advanced image analysis applications, namely unmixing, classification and segmentation in a phantom and live cells. The resulting images are shown to provide more contrast and detail, and obtained on a timescale ∼102 faster than fitting. The estimated spectral parameters are consistent with those calculated from pure fitting.
Collapse
Affiliation(s)
- YuChen Xiang
- Blackett Laboratory, Department of Physics, Imperial College London, London, UK
| | - Kai Ling C Seow
- Blackett Laboratory, Department of Physics, Imperial College London, London, UK
| | - Carl Paterson
- Blackett Laboratory, Department of Physics, Imperial College London, London, UK
| | - Peter Török
- Division of Physics and Applied Physics, Nanyang Technological University, Nanyang, Singapore
| |
Collapse
|
4
|
Fiore A, Scarcelli G. Multipass etalon cascade for high-resolution parallel spectroscopy. OPTICS LETTERS 2021; 46:781-784. [PMID: 33577513 PMCID: PMC8607433 DOI: 10.1364/ol.418090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Spectral contrast, the ability to measure frequency components of vastly different intensity, is critical in optical spectroscopy. For high spectral contrast at high spectral resolution, scanning etalons are generally used, as they allow cascading multiple dispersive elements. However, scanning instruments are inherently limited in terms of acquisition speed. Here we report a single-shot cascaded spectrometer design, in which light is dispersed along a single dispersion direction at every stage and thus can be recirculated in the same etalon multiple times. Using this design principle, we demonstrate single-shot spectral measurements at sub-gigahertz resolution and unprecedented spectral contrast (∼80dB).
Collapse
Affiliation(s)
- Antonio Fiore
- Fischell Department of Bioengineering, University of Maryland —8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland —8278 Paint Branch Drive, College Park, MD 20742, USA
| |
Collapse
|
5
|
Elsayad K, Palombo F, Dehoux T, Fioretto D. Brillouin Light Scattering Microspectroscopy for Biomedical Research and Applications: introduction to feature issue. BIOMEDICAL OPTICS EXPRESS 2019; 10:2670-2673. [PMID: 31143507 PMCID: PMC6524607 DOI: 10.1364/boe.10.002670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 06/09/2023]
Abstract
There has been a marked revival of interest in brillouin light scattering spectroscopy/microscopy over the last decade in regards to applications related to all optically studying the mechanical problems associated with systems of biological and medical interest. This revival has been driven by advancements in spectrometer design, together with mounting evidence of the critical role that mechanical properties can play in biological processes as well as the onset of diverse diseases. This feature issue contains a series of papers spanning some of the latest developments in the field of Brillouin light scattering spectroscopy and microscopy as applied to systems of biomedical interest.
Collapse
Affiliation(s)
- Kareem Elsayad
- VBCF-Advanced Microscopy, Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna, A-1030, Austria
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - Thomas Dehoux
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Daniele Fioretto
- Istituto Officina dei Materiali del CNR (CNR-IOM) - Unita` di Perugia, c/o Dipartimento di Fisica e Geologia, Perugia I-06100, Italy
| |
Collapse
|