1
|
Hong MT, Lee G, Chang YT. A Non-Invasive, Label-Free Method for Examining Tardigrade Anatomy Using Holotomography. Tomography 2025; 11:34. [PMID: 40137574 PMCID: PMC11946113 DOI: 10.3390/tomography11030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Holotomography is an advanced imaging technique that enables high-resolution, three-dimensional visualization of microscopic specimens without the need for fixation or staining. Here we aim to apply holotomography technology to image live Hypsibius exemplaris in their native state, avoiding invasive sample preparation procedures and phototoxic effects associated with other imaging modalities. METHODS We use a low concentration of 7% ethanol for tardigrade sedation and sample preparation. Holotomographic images were obtained and reconstructed using the Tomocube HT-X1 system, enabling high-resolution visualization of tardigrade anatomical structures. RESULTS We captured detailed, label-free holotomography images of both external and internal structures of tardigrade, including the digestive tract, brain, ovary, claws, salivary glands, and musculature. CONCLUSIONS Our findings highlight holotomography as a complementary high-resolution imaging modality that effectively addresses the challenges faced with traditional imaging techniques in tardigrade research.
Collapse
Affiliation(s)
- Minh-Triet Hong
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
- Molecular Imaging Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| | - Giyoung Lee
- Molecular Imaging Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
- Molecular Imaging Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| |
Collapse
|
2
|
Yolalmaz A, de Wit J, Kalkman J. Combined Structural and Functional 3D Plant Imaging Using Structure from Motion. SENSORS (BASEL, SWITZERLAND) 2025; 25:1572. [PMID: 40096429 PMCID: PMC11902599 DOI: 10.3390/s25051572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
We show non-invasive 3D plant disease imaging using automated monocular vision-based structure from motion. We optimize the number of key points in an image pair by using a small angular step size and detection in the extra green channel. Furthermore, we upsample the images to increase the number of key points. With the same setup, we obtain functional fluorescence information that we map onto the 3D structural plant image, in this way obtaining a combined functional and 3D structural plant image using a single setup.
Collapse
Affiliation(s)
| | | | - Jeroen Kalkman
- Department of Imaging Physics, TU Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands (J.d.W.)
| |
Collapse
|
3
|
Verrier N, Debailleul M, Haeberlé O. Recent Advances and Current Trends in Transmission Tomographic Diffraction Microscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:1594. [PMID: 38475130 PMCID: PMC10934239 DOI: 10.3390/s24051594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Optical microscopy techniques are among the most used methods in biomedical sample characterization. In their more advanced realization, optical microscopes demonstrate resolution down to the nanometric scale. These methods rely on the use of fluorescent sample labeling in order to break the diffraction limit. However, fluorescent molecules' phototoxicity or photobleaching is not always compatible with the investigated samples. To overcome this limitation, quantitative phase imaging techniques have been proposed. Among these, holographic imaging has demonstrated its ability to image living microscopic samples without staining. However, for a 3D assessment of samples, tomographic acquisitions are needed. Tomographic Diffraction Microscopy (TDM) combines holographic acquisitions with tomographic reconstructions. Relying on a 3D synthetic aperture process, TDM allows for 3D quantitative measurements of the complex refractive index of the investigated sample. Since its initial proposition by Emil Wolf in 1969, the concept of TDM has found a lot of applications and has become one of the hot topics in biomedical imaging. This review focuses on recent achievements in TDM development. Current trends and perspectives of the technique are also discussed.
Collapse
Affiliation(s)
- Nicolas Verrier
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499), Université de Haute-Alsace, IUT Mulhouse, 61 rue Albert Camus, 68093 Mulhouse, France; (M.D.); (O.H.)
| | | | | |
Collapse
|
4
|
Oh J, Hugonnet H, Park Y. Non-interferometric stand-alone single-shot holographic camera using reciprocal diffractive imaging. Nat Commun 2023; 14:4870. [PMID: 37573340 PMCID: PMC10423261 DOI: 10.1038/s41467-023-40019-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/07/2023] [Indexed: 08/14/2023] Open
Abstract
An ideal holographic camera measures the amplitude and phase of the light field so that the focus can be numerically adjusted after the acquisition, and depth information about an imaged object can be deduced. The performance of holographic cameras based on reference-assisted holography is significantly limited owing to their vulnerability to vibration and complex optical configurations. Non-interferometric holographic cameras can resolve these issues. However, existing methods require constraints on an object or measurement of multiple-intensity images. In this paper, we present a holographic image sensor that reconstructs the complex amplitude of scattered light from a single-intensity image using reciprocal diffractive imaging. We experimentally demonstrate holographic imaging of three-dimensional diffusive objects and suggest its potential applications by imaging a variety of samples under both static and dynamic conditions.
Collapse
Affiliation(s)
- Jeonghun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - Herve Hugonnet
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea.
- Tomocube, Inc., Daejeon, 34051, Republic of Korea.
| |
Collapse
|
5
|
Li K, Wang Y, Liu Y, Li W, Weng Z, Li H, He Y, Li Z. Morphological characteristics of zebrafish's yolk sac for malformation based on orthogonal-polarization-gating optical coherence tomography. JOURNAL OF BIOPHOTONICS 2022; 15:e202200098. [PMID: 35701385 DOI: 10.1002/jbio.202200098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, an automatic algorithm combining an ellipsoid approximation and U-net has been presented for the characterization of a zebrafish's yolk sac. The polarization-difference-balanced-detection image of zebrafish was obtained based on orthogonal-polarization-gating optical coherence tomography and used to segment the yolk sac region. And ellipsoid can approximate the shape of the three-dimensional yolk sac, and the multiple parameters of volume and the three principal axes (k, l and m) can be used to quantify the yolk sac. In addition, the multiple parameters of two principal axes (l and m) and volume can distinguish the malformation from the normal controlled group. Finally, the volume malformation of the yolk sac calculated by the proposed algorithm ranges from 16.55% to 46.05%. Thus, the degree of malformation can be applied for toxicity analysis. And this method provides a potential application for an accurate judgment index for biotoxicological testing.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Yi Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Yujia Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Wangbiao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Hui Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Youwu He
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhifang Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Lipke W, Winnik J, Trusiak M. Numerical analysis of the effect of reduced temporal coherence in quantitative phase microscopy and tomography. OPTICS EXPRESS 2022; 30:21241-21257. [PMID: 36224847 DOI: 10.1364/oe.458167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
We present the numerical analysis of the effect of the temporarily partially coherent illumination on the phase measurement accuracy in digital holography microscopy (DHM) and optical diffraction tomography (ODT), as reconstruction algorithms tend to assume purely monochromatic conditions. In the regime of reduced temporal coherence, we simulate the hologram formation in two different optical setups, representing classical off-axis two-beam and grating common-path configurations. We consider two ODT variants: with sample rotation and angle-scanning of illumination. Besides the coherence degree of illumination, our simulation considers the influence of the sample normal dispersion, shape of the light spectrum, and optical parameters of the imaging setup. As reconstruction algorithms we employ Fourier hologram method and first-order Rytov approximation with direct inversion and nonnegativity constraints. Quantitative evaluation of the measurement results deviations introduced by the mentioned error sources is comprehensively analyzed, for the first time to the best of our knowledge. Obtained outcomes indicate low final DHM/ODT reconstruction errors for the grating-assisted common-path configuration. Nevertheless, dispersion and asymmetric spectrum introduce non-negligible overestimated refractive index values and noise, and should be thus carefully considered within experimental frameworks.
Collapse
|
7
|
Munck S, Cawthorne C, Escamilla‐Ayala A, Kerstens A, Gabarre S, Wesencraft K, Battistella E, Craig R, Reynaud EG, Swoger J, McConnell G. Challenges and advances in optical 3D mesoscale imaging. J Microsc 2022; 286:201-219. [PMID: 35460574 PMCID: PMC9325079 DOI: 10.1111/jmi.13109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Optical mesoscale imaging is a rapidly developing field that allows the visualisation of larger samples than is possible with standard light microscopy, and fills a gap between cell and organism resolution. It spans from advanced fluorescence imaging of micrometric cell clusters to centimetre-size complete organisms. However, with larger volume specimens, new problems arise. Imaging deeper into tissues at high resolution poses challenges ranging from optical distortions to shadowing from opaque structures. This manuscript discusses the latest developments in mesoscale imaging and highlights limitations, namely labelling, clearing, absorption, scattering, and also sample handling. We then focus on approaches that seek to turn mesoscale imaging into a more quantitative technique, analogous to quantitative tomography in medical imaging, highlighting a future role for digital and physical phantoms as well as artificial intelligence.
Collapse
Affiliation(s)
- Sebastian Munck
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | | | - Abril Escamilla‐Ayala
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | - Axelle Kerstens
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | - Sergio Gabarre
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | | | | | - Rebecca Craig
- Department of Physics, SUPAUniversity of StrathclydeGlasgowUK
| | - Emmanuel G. Reynaud
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinBelfieldIreland
| | - Jim Swoger
- European Molecular Biology Laboratory (EMBL) BarcelonaBarcelonaSpain
| | - Gail McConnell
- Department of Physics, SUPAUniversity of StrathclydeGlasgowUK
| |
Collapse
|
8
|
Roadmap on Digital Holography-Based Quantitative Phase Imaging. J Imaging 2021; 7:jimaging7120252. [PMID: 34940719 PMCID: PMC8703719 DOI: 10.3390/jimaging7120252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Quantitative Phase Imaging (QPI) provides unique means for the imaging of biological or technical microstructures, merging beneficial features identified with microscopy, interferometry, holography, and numerical computations. This roadmap article reviews several digital holography-based QPI approaches developed by prominent research groups. It also briefly discusses the present and future perspectives of 2D and 3D QPI research based on digital holographic microscopy, holographic tomography, and their applications.
Collapse
|
9
|
Munck S, Swoger J, Coll-Lladó M, Gritti N, Vande Velde G. Maximizing content across scales: Moving multimodal microscopy and mesoscopy toward molecular imaging. Curr Opin Chem Biol 2021; 63:188-199. [PMID: 34198170 DOI: 10.1016/j.cbpa.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Molecular imaging aims to depict the molecules in living patients. However, because this aim is still far beyond reach, patchworks of different solutions need to be used to tackle this overarching goal. From the vast toolbox of imaging techniques, we focus on those recent advances in optical microscopy that image molecules and cells at the submicron to centimeter scale. Mesoscopic imaging covers the "imaging gap" between techniques such as confocal microscopy and magnetic resonance imagingthat image entire live samples but with limited resolution. Microscopy focuses on the cellular level; mesoscopy visualizes the organization of molecules and cells into tissues and organs. The correlation between these techniques allows us to combine disciplines ranging from whole body imaging to basic research of model systems. We review current developments focused on improving microscopic and mesoscopic imaging technologies and on hardware and software that push the current sensitivity and resolution boundaries.
Collapse
Affiliation(s)
- Sebastian Munck
- VIB-KU Leuven Center for Brain & Disease Research, Light Microscopy Expertise Unit & VIB BioImaging Core, O&N4 Herestraat 49 box 602, Leuven, 3000, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N4 Herestraat 49 box 602, Leuven, 3000, Belgium
| | - Jim Swoger
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, 08003, Spain
| | | | - Nicola Gritti
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, 08003, Spain
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Lee M, Kim K, Oh J, Park Y. Isotropically resolved label-free tomographic imaging based on tomographic moulds for optical trapping. LIGHT, SCIENCE & APPLICATIONS 2021; 10:102. [PMID: 33994544 PMCID: PMC8126562 DOI: 10.1038/s41377-021-00535-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 05/13/2023]
Abstract
A major challenge in three-dimensional (3D) microscopy is to obtain accurate spatial information while simultaneously keeping the microscopic samples in their native states. In conventional 3D microscopy, axial resolution is inferior to spatial resolution due to the inaccessibility to side scattering signals. In this study, we demonstrate the isotropic microtomography of free-floating samples by optically rotating a sample. Contrary to previous approaches using optical tweezers with multiple foci which are only applicable to simple shapes, we exploited 3D structured light traps that can stably rotate freestanding complex-shaped microscopic specimens, and side scattering information is measured at various sample orientations to achieve isotropic resolution. The proposed method yields an isotropic resolution of 230 nm and captures structural details of colloidal multimers and live red blood cells, which are inaccessible using conventional tomographic microscopy. We envision that the proposed approach can be deployed for solving diverse imaging problems that are beyond the examples shown here.
Collapse
Affiliation(s)
- Moosung Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea
| | - Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Jeonghun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea.
- Tomocube Inc., Daejeon, 34109, South Korea.
| |
Collapse
|
11
|
Balasubramani V, Kuś A, Tu HY, Cheng CJ, Baczewska M, Krauze W, Kujawińska M. Holographic tomography: techniques and biomedical applications [Invited]. APPLIED OPTICS 2021; 60:B65-B80. [PMID: 33798138 DOI: 10.1364/ao.416902] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 05/23/2023]
Abstract
Holographic tomography (HT) is an advanced label-free optical microscopic imaging method used for biological studies. HT uses digital holographic microscopy to record the complex amplitudes of a biological sample as digital holograms and then numerically reconstruct the sample's refractive index (RI) distribution in three dimensions. The RI values are a key parameter for label-free bio-examination, which correlate with metabolic activities and spatiotemporal distribution of biophysical parameters of cells and their internal organelles, tissues, and small-scale biological objects. This article provides insight on this rapidly growing HT field of research and its applications in biology. We present a review summary of the HT principle and highlight recent technical advancement in HT and its applications.
Collapse
|
12
|
van Rooij J, Kalkman J. Polarization contrast optical diffraction tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:2109-2121. [PMID: 32341870 PMCID: PMC7173917 DOI: 10.1364/boe.381992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 05/29/2023]
Abstract
We demonstrate large scale polarization contrast optical diffraction tomography (ODT). In cross-polarized sample arm detection configuration we determine, from the amplitude of the optical wavefield, a relative measure of the birefringence projection. In parallel-polarized sample arm detection configuration we image the conventional phase projection. For off-axis sample placement we observe for polarization contrast ODT, similar as for phase contrast ODT, a strongly reduced noise contribution. In the limit of small birefringence phase shift δ we demonstrate tomographic reconstruction of polarization contrast images into a full 3D image of an optically cleared zebrafish. The polarization contrast ODT reconstruction shows muscular zebrafish tissue, which cannot be visualized in conventional phase contrast ODT. Polarization contrast ODT images of the zebrafish show a much higher signal to noise ratio (SNR) than the corresponding phase contrast images, SNR=73 and SNR=15, respectively.
Collapse
|