1
|
Zhang YS, Li HY, Zhai L, Zheng GZ, Xing HB, Du SX, Li XD. Comparative analysis and validation of posterior cruciate ligament management in mobile-bearing total knee arthroplasty: Meta-analysis and animal study. J Orthop Surg (Hong Kong) 2024; 32:10225536241287910. [PMID: 39403997 DOI: 10.1177/10225536241287910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Total knee arthroplasty (TKA) is an effective treatment for end-stage knee joint diseases. The debate over preserving or sacrificing the posterior cruciate ligament (PCL) in mobile-bearing TKA (MB TKA) still needs to be solved due to the lack of high-quality evidence, particularly meta-analyses comparing these techniques. This study aims to conduct a meta-analysis to compare the outcomes of PCL retention (CR) and PCL sacrifice (PS) in terms of clinical and functional knee scores, range of motion, complication rates, and revision rates and to validate these findings through animal experiments. A comprehensive search was conducted using MEDLINE, Cochrane, and Embase databases. Relevant studies were selected for the meta-analysis using RevMan 5.3. Additionally, an animal experiment using Sprague-Dawley rats simulated MB TKA to compare the effects of PCL retention and sacrifice surgeries. 12 studies were included in the meta-analysis. No significant differences were found between CR and PS techniques regarding HSS, KSS, KSFS, WOMAC, ROM, and medial/lateral instability. However, CR MB showed slight superiority in NKJS, while PS MB had better outcomes in complication and revision rates. In the animal study, CR rats exhibited significant early postoperative inflammation, but both groups' knee structures gradually normalized. The meta-analysis indicates that PCL retention (CR MB) and sacrifice (PS MB) have similar effects on various clinical and functional knee scores. However, PS MB is significantly better at reducing complications and revision rates. The animal experiment confirms PS MB's advantages in reducing inflammation and promoting joint recovery. Despite the strong evidence, long-term follow-up and larger-scale randomized controlled trials are necessary to confirm these findings.
Collapse
Affiliation(s)
- Yuan-Shi Zhang
- Dafeng Hospital of Chaoyang District in Shantou City, Shantou, China
| | - Hao-Yu Li
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, China
- Department of Medical Imaging, Inner Mongolia Medical University, Huhhot, China
| | - Lei Zhai
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, China
- Anhui University of Science and Technology, Huainan, China
| | - Gui-Zhou Zheng
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, China
| | - Hong-Bo Xing
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, China
- Anhui University of Science and Technology, Huainan, China
| | - Shi-Xin Du
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, China
| | - Xue-Dong Li
- Dafeng Hospital of Chaoyang District in Shantou City, Shantou, China
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Yu S, Yuan B. Improving the spatial resolution and signal-to-noise ratio of ultrasound switchable fluorescence imaging. JOURNAL OF BIOPHOTONICS 2024; 17:e202300533. [PMID: 38430212 PMCID: PMC11065562 DOI: 10.1002/jbio.202300533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Ultrasound switchable fluorescence (USF) imaging, a hybrid imaging technology that combines the advantages of both fluorescence sensitivity and acoustic resolution in centimeter-deep tissue, has great potential for biomedical different applications. A camera-based USF imaging system reveals its capability of capturing both spatial and temporal dynamics of the USF signal in tissue. In this study, various algorithms were explored to enhance the spatial resolution and signal-to-noise ratio (SNR) of USF images, utilizing temporal and spatial information from a camera-based time-domain USF imaging system. The correlation method proved effective in boosting SNR, while the ascending-slope-weighted method enhanced spatial resolution. Additionally, the spatially back-projection method significantly improved spatial resolution in silicone phantoms. The results underscore the advantages of incorporating temporal and spatial information from USF signals.
Collapse
Affiliation(s)
- Shuai Yu
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, The University of Texas at Arlington and The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Baohong Yuan
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, The University of Texas at Arlington and The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Ren L, Liu Y, Yao T, Nguyen KT, Yuan B. In vivo tumor ultrasound-switchable fluorescence imaging via intravenous injections of size-controlled thermosensitive nanoparticles. NANO RESEARCH 2023; 16:1009-1020. [PMID: 38098888 PMCID: PMC10720766 DOI: 10.1007/s12274-022-4846-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/13/2022] [Accepted: 08/01/2022] [Indexed: 12/17/2023]
Abstract
Near-infrared fluorescence imaging has emerged as a noninvasive, inexpensive, and ionizing-radiation-free monitoring tool for assessing tumor growth and treatment efficacy. In particular, ultrasound switchable fluorescence (USF) imaging has been explored with improved imaging sensitivity and spatial resolution in centimeter-deep tissues. This study achieved size control of polymer-based and indocyanine green (ICG) encapsulated USF contrast agents, capable of accumulating at the tumor after intravenous injections. These nanoprobes varied in size from 58 nm to 321 nm. The bioimaging profiles demonstrated that the proposed nanoparticles can efficiently eliminate the background light from normal tissue and show a tumor-specific fluorescence enhancement in the BxPC-3 tumor-bearing mice models possibly via the enhanced permeability and retention effect. In vivo tumor USF imaging further proved that these nanoprobes can effectively be switched 'ON' with enhanced fluorescence in response to a focused ultrasound stimulation in the tumor microenvironment, contributing to the high-resolution USF images. Therefore, our findings suggest that ICG-encapsulated nanoparticles are good candidates for USF imaging of tumors in living animals, indicating their great potential in optical tumor imaging in deep tissue.
Collapse
Affiliation(s)
- Liqin Ren
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Liu
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tingfeng Yao
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T. Nguyen
- Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Baohong Yuan
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Liu Y, Yao T, Ren L, Yuan B. Size effect of liposomes on centimeter-deep ultrasound-switchable fluorescence imaging and ultrasound-controlled release. J Mater Chem B 2022; 10:8970-8980. [PMID: 36285768 PMCID: PMC9670236 DOI: 10.1039/d2tb01343f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Liposomes have been widely used in both medical imaging and drug delivery fields due to their excellent biocompatibility and easy surface modification. Recently our lab reported for the first-time the implementation of temperature-sensitive and indocyanine green (ICG)-encapsulated liposome microparticles for in vivo ultrasound-switchable fluorescence (USF) imaging. A previous study showed that liposome microparticles achieved USF imaging in centimeter-deep tissue. This study aimed to control the size of liposomes at the nanoscale and study the size effect on the USF imaging depth. Also, we explored the feasibility of combining USF imaging with ultrasound-controlled release. Liposomes were synthesized via the hydration method and the size was controlled by an extruding process. Characterization parameters, including fluorescence profile, spectra, size, stability, encapsulation efficiency, and ultrasound-controlled release, were evaluated. USF imaging in blood serum was conducted successfully in a phantom model, and an imaging depth study was conducted at 1.0 cm and 2.5 cm and confirmed that nano-sized liposomes had a stronger USF signal than micron-sized liposomes. Additionally, releasing tests indicated that both ultrasound power and exposure time affected the release efficiency in that increasing the power and extending the exposure time led to higher release efficiency. Above all, this study shows the potential for using liposomes for USF imaging and ultrasound-controlled release.
Collapse
Affiliation(s)
- Yang Liu
- Department of Bioengineering, The University of Texas at Arlington, TX 76010, USA. Joint Biomedical Engineering Program, The University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Tingfeng Yao
- Department of Bioengineering, The University of Texas at Arlington, TX 76010, USA. Joint Biomedical Engineering Program, The University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Liqin Ren
- Department of Bioengineering, The University of Texas at Arlington, TX 76010, USA. Joint Biomedical Engineering Program, The University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Baohong Yuan
- Department of Bioengineering, The University of Texas at Arlington, TX 76010, USA. Joint Biomedical Engineering Program, The University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| |
Collapse
|
5
|
Yuan B. Interstitial fluid streaming in deep tissue induced by ultrasound momentum transfer for accelerating nanoagent transport and controlling its distribution. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac88b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. This study aims to theoretically investigate the dynamics of ultrasound-induced interstitial fluid streaming and tissue recovery after ultrasound exposure for potentially accelerating nanoagent transport and controlling its distribution in tissue. Approach. Starting from fundamental equations, the dynamics of ultrasound-induced interstitial fluid streaming and tissue relaxation after an ultrasound exposure were modeled, derived and simulated. Also, both ultrasound-induced mechanical and thermal effects were considered in the models. Main results. The proposed new mechanism was named squeezing interstitial fluid via transfer of ultrasound momentum (SIF-TUM). It means that an ultrasound beam can squeeze the tissue in a small focal volume from all the directions, and generate a macroscopic streaming of interstitial fluid and a compression of tissue solid matrix. After the ultrasound is turned off, the solid matrix will recover and can generate a backflow. Rather than the ultrasound pressure itself or intensity, the streaming velocity is determined by the dot product of the ultrasound pressure gradient and its conjugate. Tissue and nanoagent properties also affect the streaming and recovery velocities. Significance. The mobility of therapeutic or diagnostic agents, such as drugs, drug carriers, or imaging contrast agents, in the interstitial space of many diseased tissues, such as tumors, is usually extremely low because of the inefficiency of the natural transport mechanisms. Therefore, the interstitial space is one of the major barriers hindering agent deliveries. The ability to externally accelerate agent transport and control its distribution is highly desirable. Potentially, SIF-TUM can be a powerful technology to accelerate agent transport in deep tissue and control the distribution if appropriate parameters are selected.
Collapse
|
6
|
Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials. Polymers (Basel) 2022; 14:polym14061221. [PMID: 35335551 PMCID: PMC8956086 DOI: 10.3390/polym14061221] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is an important branch of science in therapies known as “nanomedicine” and is the junction of various fields such as material science, chemistry, biology, physics, and optics. Nanomaterials are in the range between 1 and 100 nm in size and provide a large surface area to volume ratio; thus, they can be used for various diseases, including cardiovascular diseases, cancer, bacterial infections, and diabetes. Nanoparticles play a crucial role in therapy as they can enhance the accumulation and release of pharmacological agents, improve targeted delivery and ultimately decrease the intensity of drug side effects. In this review, we discussthe types of nanomaterials that have various biomedical applications. Biomolecules that are often conjugated with nanoparticles are proteins, peptides, DNA, and lipids, which can enhance biocompatibility, stability, and solubility. In this review, we focus on bioconjugation and nanoparticles and also discuss different types of nanoparticles including micelles, liposomes, carbon nanotubes, nanospheres, dendrimers, quantum dots, and metallic nanoparticles and their crucial role in various diseases and clinical applications. Additionally, we review the use of nanomaterials for bio-imaging, drug delivery, biosensing tissue engineering, medical devices, and immunoassays. Understandingthe characteristics and properties of nanoparticles and their interactions with the biological system can help us to develop novel strategies for the treatment, prevention, and diagnosis of many diseases including cancer, pulmonary diseases, etc. In this present review, the importance of various kinds of nanoparticles and their biomedical applications are discussed in much detail.
Collapse
|
7
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
8
|
Liu RL, Cai RQ. Recent advances in ultrasound-controlled fluorescence technology for deep tissue optical imaging. J Pharm Anal 2021; 12:530-540. [PMID: 36105171 PMCID: PMC9463483 DOI: 10.1016/j.jpha.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/13/2021] [Accepted: 10/09/2021] [Indexed: 12/01/2022] Open
Abstract
Fluorescence imaging is a noninvasive and dynamic real-time imaging technique; however, it exhibits poor spatial resolution in centimeter-deep tissues because biological tissues are highly scattering media for optical radiation. The recently developed ultrasound-controlled fluorescence (UCF) imaging is a novel imaging technique that can overcome this bottleneck. Previous studies suggest that the effective contrast agent and sensitive imaging system are the two pivotal factors for generating high-resolution UCF images ex vivo and/or in vivo. Here, this review highlights the recent advances (2015–2020) in the design and synthesis of contrast agents and the improvement of imaging systems to realize high-resolution UCF imaging of deep tissues. The imaging performances of various UCF systems, including the signal-to-noise ratio, imaging resolution, and imaging depth, are specifically discussed. In addition, the challenges and prospects are highlighted. With continuously increasing research interest in this field and emerging multidisciplinary applications, UCF imaging with higher spatial resolution and larger imaging depth may be developed shortly, which is expected to have a far-reaching impact on disease surveillance and/or therapy. The unique UCF technique in high resolution imaging was described. The contrast agents and imaging systems of UCF imaging were discussed. Recent advances and prospects of NIR-UCF technique were summarized.
Collapse
Affiliation(s)
- Rui-Lin Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
- Corresponding author. School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ru-Qian Cai
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
9
|
Yu S, Wang Z, Yao T, Yuan B. Near-infrared temperature-switchable fluorescence nanoparticles. Quant Imaging Med Surg 2020; 11:1010-1022. [PMID: 33654673 DOI: 10.21037/qims-20-797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Near infrared (NIR) environment-sensitive fluorophores are highly desired for many biomedical applications because of its non-invasive operation, high sensitivity and specificity, non-ionizing radiation and deep penetration in biological tissue. When the fluorophores are appropriately encapsulated in or conjugated with some thermal-sensitive polymers, they could work as excellent temperature-sensing probes. Methods In this study, we synthesized and characterized a series of NIR temperature-switchable nanoparticles based on two series of NIR fluorophores aza-BODIPY (ADP is used for abbreviation in this work) and Zinc phthalocyanine (ZnPc) and four pluronic polymers (F127, F98, F68 and F38). Encapsulating the fluorophores in the polymers by sonication, we synthesized the nanoparticles that showed switch-like functions of the fluorescence intensity (and/or lifetime) as the temperature, with high switch on-to-off ratio. We also investigated various factors that might change the temperature thresholds (Tth) of the switch functions, in order to control Tth during synthesis. Results These nanoparticles showed excellent temperature-switchable properties of fluorescence intensity and/or lifetime. Meanwhile, some factors (i.e., pluronic categories and nanoparticles' concentration) significantly affected the nanoparticles' Tths while other (i.e., fluorophore categories) that weakly affected Tths. Conclusions By selecting appropriate pluronic categories and adjusting the nanoparticle's concentration, we can synthesize the nanoparticles with a wide range of Tths. These temperature-switchable fluorescence nanoparticles can be used for biomedical imaging and in vivo tissue temperature sensing/imaging.
Collapse
Affiliation(s)
- Shuai Yu
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA.,Joint Biomedical Engineering Program, The University of Texas at Arlington and The University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
| | - Zhen Wang
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA.,Joint Biomedical Engineering Program, The University of Texas at Arlington and The University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
| | - Tingfeng Yao
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA.,Joint Biomedical Engineering Program, The University of Texas at Arlington and The University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
| | - Baohong Yuan
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA.,Joint Biomedical Engineering Program, The University of Texas at Arlington and The University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
| |
Collapse
|