1
|
Guan Z, Li Q, Niu C, Fan S, Yu H, Wu W, Feng X, Dai C. Correction of Non-Uniform Rotational Distortion in the Proximally Controlled Endoscopic OCTA. JOURNAL OF BIOPHOTONICS 2025; 18:e202400467. [PMID: 39905654 DOI: 10.1002/jbio.202400467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Endoscopic Optical Coherence Tomography (OCT) can provide high-resolution cross-sectional images for internal organ tissues. Combining the endoscopic imaging with Optical Coherence Tomography Angiography (OCTA), information of blood vessels in superficial lumen tissues is expected to be acquired. However, in endoscopic OCT systems using proximal scanning probes, performance of OCTA encounters significant challenges due to non-uniform rotational distortion (NURD) caused by the non-constant rotation of the distal imaging unit. In this study, we proposed a registration method for endoscopic OCTA imaging in a proximally controlled OCT System. Global registration and A-line registration were employed to correct the distortion caused by mechanical friction between the catheter sheath and torque coil. Experimental performances in both microfluidic channel and rat rectum show significant correction of NURD. Our study achieved the first implementation of endoscopic OCTA under a spiral B-scan rotation scheme in a proximally controlled OCT system, facilitating clear visualization of blood flow.
Collapse
Affiliation(s)
- Zehua Guan
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Qiang Li
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Chen Niu
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Shuhao Fan
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Huanhuan Yu
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Wenjuan Wu
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Xiangfei Feng
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Dai
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| |
Collapse
|
2
|
Zhang T, Yuan S, Xu C, Liu P, Chang HC, Ng SHC, Ren H, Yuan W. PneumaOCT: Pneumatic optical coherence tomography endoscopy for targeted distortion-free imaging in tortuous and narrow internal lumens. SCIENCE ADVANCES 2024; 10:eadp3145. [PMID: 39196931 PMCID: PMC11352845 DOI: 10.1126/sciadv.adp3145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
The complex anatomy of internal luminal organs, like bronchioles, poses challenges for endoscopic optical coherence tomography (OCT). These challenges include limited steerability for targeted imaging and nonuniform rotation distortion (NURD) with proximal scanning. Using rotary micromotors for distal scanning could address NURD but raises concerns about electrical safety and costs. We present pneumaOCT, the first pneumatic OCT endoscope, comprising a steerable catheter with a soft pneumatic actuator and an imaging probe with a miniature pneumatic turbine. With a diameter of 2.8 mm, pneumaOCT allows for a bending angle of up to 237°, facilitating navigation through narrow turns. The pneumatic turbine enables adjustable imaging speeds from 51 to 446 revolutions per second. We demonstrate the pneumaOCT in vivo imaging of mouse esophagus and colon, as well as targeted and distortion-free imaging of peripheral bronchioles in a bronchial phantom and a porcine lung. This advancement substantially improves endoscopic OCT for navigational imaging in curved and narrow lumens.
Collapse
Affiliation(s)
- Tinghua Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sishen Yuan
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chao Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peng Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sze Hang Calvin Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongliang Ren
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Zhang H, Gu C, Lan Q, Zhang W, Liu C, Yang J. Learning-based distortion correction enables proximal-scanning endoscopic OCT elastography. BIOMEDICAL OPTICS EXPRESS 2024; 15:4345-4364. [PMID: 39022540 PMCID: PMC11249688 DOI: 10.1364/boe.528522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Proximal rotary scanning is predominantly used in the clinical practice of endoscopic and intravascular OCT, mainly because of the much lower manufacturing cost of the probe compared to distal scanning. However, proximal scanning causes severe beam stability issues (also known as non-uniform rotational distortion, NURD), which hinders the extension of its applications to functional imaging, such as OCT elastography (OCE). In this work, we demonstrate the abilities of learning-based NURD correction methods to enable the imaging stability required for intensity-based OCE. Compared with the previous learning-based NURD correction methods that use pseudo distortion vectors for model training, we propose a method to extract real distortion vectors from a specific endoscopic OCT system, and validate its superiority in accuracy under both convolutional-neural-network- and transformer-based learning architectures. We further verify its effectiveness in elastography calculations (digital image correlation and optical flow) and the advantages of our method over other NURD correction methods. Using the air pressure of a balloon catheter as a mechanical stimulus, our proximal-scanning endoscopic OCE could effectively differentiate between areas of varying stiffness of atherosclerotic vascular phantoms. Compared with the existing endoscopic OCE methods that measure only in the radial direction, our method could achieve 2D displacement/strain distribution in both radial and circumferential directions.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chengfu Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Lan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlong Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Singh AP, Göb M, Ahrens M, Eixmann T, Schulte B, Schulz-Hildebrandt H, Hüttmann G, Ellrichmann M, Huber R, Rahlves M. Virtual Hall sensor triggered multi-MHz endoscopic OCT imaging for stable real-time visualization. OPTICS EXPRESS 2024; 32:5809-5825. [PMID: 38439298 DOI: 10.1364/oe.514636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Circumferential scanning in endoscopic imaging is crucial across various disciplines, and optical coherence tomography (OCT) is often the preferred choice due to its high-speed, high-resolution, and micron-scale imaging capabilities. Moreover, real-time and high-speed 3D endoscopy is a pivotal technology for medical screening and precise surgical guidance, among other applications. However, challenges such as image jitter and non-uniform rotational distortion (NURD) are persistent obstacles that hinder real-time visualization during high-speed OCT procedures. To address this issue, we developed an innovative, low-cost endoscope that employs a brushless DC motor for scanning, and a sensorless technique for triggering and synchronizing OCT imaging with the scanning motor. This sensorless approach uses the motor's electrical feedback (back electromotive force, BEMF) as a virtual Hall sensor to initiate OCT image acquisition and synchronize it with a Fourier Domain Mode-Locked (FDML)-based Megahertz OCT system. Notably, the implementation of BEMF-triggered OCT has led to a substantial reduction in image jitter and NURD (<4 mrad), thereby opening up a new window for real-time visualization capabilities. This approach suggests potential benefits across various applications, aiming to provide a more accurate, deployable, and cost-effective solution. Subsequent studies can explore the adaptability of this system to specific clinical scenarios and its performance under practical endoscopic conditions.
Collapse
|
5
|
Cao G, Li S, Zhang S, Peng Z, Wu Y, Wang D, Dai C. Improved FAST algorithm for non-uniform rotational distortion correction in OCT endoscopic imaging. OPTICS EXPRESS 2023; 31:2754-2767. [PMID: 36785282 DOI: 10.1364/oe.474955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Optical Coherence Tomography (OCT) is widely used for endoscopic imaging in endoluminal organs because of its high imaging accuracy and resolution. However, OCT endoscopic imaging suffers from Non-Uniform Rotational Distortion (NURD), which can be caused by many factors, such as irregular motor rotation and changes in friction between the probe and the sheath. Correcting this distortion is essential to obtaining high-quality Optical Coherence Tomography Angiography (OCTA) images. There are two main approaches for correcting NURD: hardware-based methods and algorithm-based methods. Hardware-based methods can be costly, challenging to implement, and may not eliminate NURD. Algorithm-based methods, such as image registration, can be effective for correcting NURD but can also be prone to the problem of NURD propagation. To address this issue, we process frames by coarse and fine registration, respectively. The new reference frame is generated by filtering out the A-scan that may have the NURD problem by coarse registration. And the fine registration uses this frame to achieve the final NURD correction. In addition, we have improved the Features from Accelerated Segment Test (FAST) algorithm and put it into coarse and fine registration process. Four evaluation functions were used for the experimental results, including signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), mean squared error (MSE), and structural similarity index measure (SSIM). By comparing with Scale-invariant feature transform (SIFT), Speeded up robust features (SURF), Oriented FAST and Rotated BRIEF (ORB), intensity-based (Cross-correlation), and Optical Flow algorithms, our algorithm has a higher similarity between the corrected frames. Moreover, the noise in the OCTA data is better suppressed, and the vascular information is well preserved. Our image registration-based algorithm reduces the problem of NURD propagation between B-scan frames and improves the imaging quality of OCT endoscopic images.
Collapse
|
6
|
Endoscopic OCT Angiography Using Clinical Proximal-End Scanning Catheters. PHOTONICS 2022. [DOI: 10.3390/photonics9050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endoscopic optical coherence tomography angiography (OCTA) is a promising modality to inspect the microvasculature of inner organs in the early-stage tumor diagnosis. However, an endoscopic clinical proximal-end scanning catheter has limited flow imaging capability due to the nonuniform rotational distortion (NURD) and physiological motion. In this study, a combined local and global (CLG) optical flow algorithm was used to estimate the motion vectors caused by NURD and physiological motion. The motion vectors were used to bicubic-interpolation-resample the OCT structure to ensure that the circumferential pixels were equally spaced in the space domain. Then, angiograms were computed based on the statistical relation between inverse SNR (iSNR) and amplitude decorrelation (IDa), termed as IDa-OCTA. Finally, the ability of this technique for endoscopic OCTA imaging was demonstrated by flow phantom experiments and human nailfold capillary imaging.
Collapse
|
7
|
Marques MJ, Hughes MR, Uceda AF, Gelikonov G, Bradu A, Podoleanu A. Endoscopic en-face optical coherence tomography and fluorescence imaging using correlation-based probe tracking. BIOMEDICAL OPTICS EXPRESS 2022; 13:761-776. [PMID: 35284172 PMCID: PMC8884237 DOI: 10.1364/boe.444170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 05/25/2023]
Abstract
Forward-viewing endoscopic optical coherence tomography (OCT) provides 3D imaging in vivo, and can be combined with widefield fluorescence imaging by use of a double-clad fiber. However, it is technically challenging to build a high-performance miniaturized 2D scanning system with a large field-of-view. In this paper we demonstrate how a 1D scanning probe, which produces cross-sectional OCT images (B-scans) and 1D fluorescence T-scans, can be transformed into a 2D scanning probe by manual scanning along the second axis. OCT volumes are assembled from the B-scans using speckle decorrelation measurements to estimate the out-of-plane motion along the manual scan direction. Motion within the plane of the B-scans is corrected using image registration by normalized cross correlation. En-face OCT slices and fluorescence images, corrected for probe motion in 3D, can be displayed in real-time during the scan. For a B-scan frame rate of 250 Hz, and an OCT lateral resolution of approximately 20 μ m , the approach can handle out-of-plane motion at speeds of up to 4 mm/s.
Collapse
Affiliation(s)
- Manuel J. Marques
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
- Both authors contributed equally to this publication
| | - Michael R. Hughes
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
- Both authors contributed equally to this publication
| | - Adrián F. Uceda
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | | | - Adrian Bradu
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Adrian Podoleanu
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| |
Collapse
|
8
|
Qi L, Zhuang Z, Zhang S, Huang S, Feng Q, Chen W. Automatic correction of the initial rotation angle error improves 3D reconstruction in endoscopic airway optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:7616-7631. [PMID: 35003856 PMCID: PMC8713659 DOI: 10.1364/boe.439120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 05/11/2023]
Abstract
Endoscopic airway optical coherence tomography (OCT) is an advanced imaging modality capable of capturing the internal anatomy and geometry of the airway. Due to fiber-optic catheter bending and friction, the rotation speed of the endoscopic probe is usually non-uniform: at each B-scan image, the initial rotation angle of the probe is easily misaligned with that of the previous slices. During the pullback operation, this initial rotation angle error (IRAE) will be accumulated and will result in distortion and deformation of the reconstructed 3D airway structure. Previous attempts to correct this error were mainly manual corrections, which are time-consuming and suffered from observer variation. In this paper, we present a method to correct the IRAE for anatomically improved visualization of the airway. Our method derived the rotation angular difference of adjacent B-scans by measuring their contour similarity and then tracks the IRAE by formulating its continuous drift as a graph-based problem. The algorithm was tested on a simulated airway contour dataset, and also on experimental datasets acquired by two different long range endoscopic airway OCT platforms. Effective and smooth compensation of the frame-by-frame initial angle difference was achieved. Our method has real-time capability and thus has the potential to improve clinical imaging efficiency.
Collapse
Affiliation(s)
- Li Qi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- These authors contributed equally to this work
| | - Zhijian Zhuang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- These authors contributed equally to this work
| | - Shuangyang Zhang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Shixian Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
9
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|