1
|
Bouvet P, Bevilacqua C, Ambekar Y, Antonacci G, Au J, Caponi S, Chagnon-Lessard S, Czarske J, Dehoux T, Fioretto D, Fu Y, Guck J, Hamann T, Heinemann D, Jähnke T, Jean-Ruel H, Kabakova I, Koski K, Koukourakis N, Krause D, La Cavera S, Landes T, Li J, Margueritat J, Mattarelli M, Monaghan M, Overby DR, Perez-Cota F, Pontecorvo E, Prevedel R, Ruocco G, Sandercock J, Scarcelli G, Scarponi F, Testi C, Török P, Vovard L, Weninger W, Yakovlev V, Yun SH, Zhang J, Palombo F, Bilenca A, Elsayad K. Consensus Statement on Brillouin Light Scattering Microscopy of Biological Materials. ARXIV 2024:arXiv:2411.11712v1. [PMID: 39606723 PMCID: PMC11601801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions. The aim of this consensus statement is to improve the comparability of BLS studies by providing reporting recommendations for the measured parameters and detailing common artifacts. Given that most BLS studies of biological matter are still at proof-of-concept stages and use different--often self-built--spectrometers, a consensus statement is particularly timely to assure unified advancement.
Collapse
Affiliation(s)
- Pierre Bouvet
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Carlo Bevilacqua
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Germany
| | | | | | - Joshua Au
- Fischell Department of Bioengineering, University of Maryland, USA
| | - Silvia Caponi
- CNR - Istituto Officina dei Materiali (IOM), Unità di Perugia, Italy
| | | | - Juergen Czarske
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
- Competence Center for Biomedical Computational Laser Systems, TU Dresden, Germany
| | - Thomas Dehoux
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, France
| | | | - Yujian Fu
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dag Heinemann
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Germany
| | | | | | - Irina Kabakova
- School of Mathematical and Physical Sciences, University of Technology Sydney, Australia
| | - Kristie Koski
- Department of Chemistry, University of California Davis, USA
| | - Nektarios Koukourakis
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| | - David Krause
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| | - Salvatore La Cavera
- Optics & Photonics Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | - Timm Landes
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Germany
| | - Jinhao Li
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Germany
| | - Jeremie Margueritat
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, France
| | | | - Michael Monaghan
- Discipline of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Ireland
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, United Kingdom
| | - Fernando Perez-Cota
- Optics & Photonics Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | | | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | | | | | | | - Claudia Testi
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Peter Török
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine, Singapore Centre of Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
- Institute for Digital Molecular Analytics & Sciences, Nanyang Technological University, Singapore
| | - Lucie Vovard
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, France
| | - Wolfgang Weninger
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Vladislav Yakovlev
- Department of Biomedical Engineering, Texas A&M University, USA
- Department of Electrical and Computer Engineering, Texas A&M University, USA
- Department of Physics and Astronomy, Texas A&M University, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Massachusetts General Hospital, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, USA
| | - Francesca Palombo
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Israel
| | - Kareem Elsayad
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| |
Collapse
|
2
|
Galli R, Uckermann O. Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration. Biophys Rev 2024; 16:219-235. [PMID: 38737209 PMCID: PMC11078905 DOI: 10.1007/s12551-023-01158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/22/2023] [Indexed: 05/14/2024] Open
Abstract
Neurological disorders, including spinal cord injury, peripheral nerve injury, traumatic brain injury, and neurodegenerative diseases, pose significant challenges in terms of diagnosis, treatment, and understanding the underlying pathophysiological processes. Label-free multiphoton microscopy techniques, such as coherent Raman scattering, two-photon excited autofluorescence, and second and third harmonic generation microscopy, have emerged as powerful tools for visualizing nervous tissue with high resolution and without the need for exogenous labels. Coherent Raman scattering processes as well as third harmonic generation enable label-free visualization of myelin sheaths, while their combination with two-photon excited autofluorescence and second harmonic generation allows for a more comprehensive tissue visualization. They have shown promise in assessing the efficacy of therapeutic interventions and may have future applications in clinical diagnostics. In addition to multiphoton microscopy, vibrational spectroscopy methods such as infrared and Raman spectroscopy offer insights into the molecular signatures of injured nervous tissues and hold potential as diagnostic markers. This review summarizes the application of these label-free optical techniques in preclinical models and illustrates their potential in the diagnosis and treatment of neurological disorders with a special focus on injury, degeneration, and regeneration. Furthermore, it addresses current advancements and challenges for bridging the gap between research findings and their practical applications in a clinical setting.
Collapse
Affiliation(s)
- Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Kabakova I, Zhang J, Xiang Y, Caponi S, Bilenca A, Guck J, Scarcelli G. Brillouin microscopy. NATURE REVIEWS. METHODS PRIMERS 2024; 4:8. [PMID: 39391288 PMCID: PMC11465583 DOI: 10.1038/s43586-023-00286-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 10/12/2024]
Abstract
The field of Brillouin microscopy and imaging was established approximately 20 years ago, thanks to the development of non-scanning high-resolution optical spectrometers. Since then, the field has experienced rapid expansion, incorporating technologies from telecommunications, astrophotonics, multiplexed microscopy, quantum optics and machine learning. Consequently, these advancements have led to much-needed improvements in imaging speed, spectral resolution and sensitivity. The progress in Brillouin microscopy is driven by a strong demand for label-free and contact-free methods to characterize the mechanical properties of biomaterials at the cellular and subcellular scales. Understanding the local biomechanics of cells and tissues has become crucial in predicting cellular fate and tissue pathogenesis. This Primer aims to provide a comprehensive overview of the methods and applications of Brillouin microscopy. It includes key demonstrations of Brillouin microscopy and imaging that can serve as a reference for the existing research community and new adopters of this technology. The article concludes with an outlook, presenting the authors' vision for future developments in this vibrant field. The Primer also highlights specific examples where Brillouin microscopy can have a transformative impact on biology and biomedicine.
Collapse
Affiliation(s)
- Irina Kabakova
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Yuchen Xiang
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Silvia Caponi
- Istituto Officina dei Materiali–National Research Council (IOM-CNR)–Research Unit in Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Maryland Biophysics Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Martinez-Vidal L, Testi C, Pontecorvo E, Pederzoli F, Alchera E, Locatelli I, Venegoni C, Spinelli A, Lucianò R, Salonia A, Podestà A, Ruocco G, Alfano M. Progressive alteration of murine bladder elasticity in actinic cystitis detected by Brillouin microscopy. Sci Rep 2024; 14:484. [PMID: 38177637 PMCID: PMC10766652 DOI: 10.1038/s41598-023-51006-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024] Open
Abstract
Bladder mechanical properties are critical for organ function and tissue homeostasis. Therefore, alterations of tissue mechanics are linked to disease onset and progression. This study aims to characterize the tissue elasticity of the murine bladder wall considering its different anatomical components, both in healthy conditions and in actinic cystitis, a state characterized by tissue fibrosis. Here, we exploit Brillouin microscopy, an emerging technique in the mechanobiology field that allows mapping tissue mechanics at the microscale, in non-contact mode and free of labeling. We show that Brillouin imaging of bladder tissues is able to recognize the different anatomical components of the bladder wall, confirmed by histopathological analysis, showing different tissue mechanical properties of the physiological bladder, as well as a significant alteration in the presence of tissue fibrosis. Our results point out the potential use of Brillouin imaging on clinically relevant samples as a complementary technique to histopathological analysis, deciphering complex mechanical alteration of each tissue layer of an organ that strongly relies on mechanical properties to perform its function.
Collapse
Affiliation(s)
- Laura Martinez-Vidal
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy.
| | - Claudia Testi
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy.
| | - Emanuele Pontecorvo
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy
- CrestOptics S.p.A., Via Di Torre Rossa, 66, 00165, Roma, Italy
| | - Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Antonello Spinelli
- Experimental Imaging Centre, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Roberta Lucianò
- Pathology Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy
| | - Alessandro Podestà
- Dipartimento Di Fisica "Aldo Pontremoli" and CIMAINA, Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy
- Dipartimento Di Fisica, Universitá Di Roma "La Sapienza", Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| |
Collapse
|
5
|
Kurbanova B, Ashikbayeva Z, Amantayeva A, Sametova A, Blanc W, Gaipov A, Tosi D, Utegulov Z. Thermo-Visco-Elastometry of RF-Wave-Heated and Ablated Flesh Tissues Containing Au Nanoparticles. BIOSENSORS 2022; 13:bios13010008. [PMID: 36671844 PMCID: PMC9855978 DOI: 10.3390/bios13010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
We report non-contact laser-based Brillouin light-scattering (BLS) spectroscopy measurements of the viscoelastic properties of hyperthermally radiofrequency (RF)-heated and ablated bovine liver and chicken flesh tissues with embedded gold nanoparticles (AuNPs). The spatial lateral profile of the local surface temperature in the flesh samples during their hyperthermia was measured through optical backscattering reflectometry (OBR) using Mg−silica-NP-doped sensing fibers distributed with an RF applicator and correlated with viscoelastic variations in heat-affected and ablated tissues. Substantial changes in the tissue stiffness after heating and ablation were directly related to their heat-induced structural modifications. The main proteins responsible for muscle elasticity were denatured and irreversibly aggregated during the RF ablation. At T > 100 °C, the proteins constituting the flesh further shrank and became disorganized, leading to substantial plastic deformation of biotissues. Their uniform destruction with larger thermal lesions and a more viscoelastic network was attained via AuNP-mediated RF hyperthermal ablation. The results demonstrated here pave the way for simultaneous real-time hybrid optical sensing of viscoelasticity and local temperature in biotissues during their denaturation and gelation during hyperthermia for future applications that involve mechanical- and thermal-property-controlled theranostics.
Collapse
Affiliation(s)
- Bayan Kurbanova
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Aida Amantayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Akbota Sametova
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Wilfried Blanc
- Université Côte d’Azur, INPHYNI, CNRS UMR7010, Avenue Joseph Vallot, 06108 Nice, France
| | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, Astana 010000, Kazakhstan
| | - Zhandos Utegulov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
6
|
Bai B, Wang H, Li Y, de Haan K, Colonnese F, Wan Y, Zuo J, Doan NB, Zhang X, Zhang Y, Li J, Yang X, Dong W, Darrow MA, Kamangar E, Lee HS, Rivenson Y, Ozcan A. Label-Free Virtual HER2 Immunohistochemical Staining of Breast Tissue using Deep Learning. BME FRONTIERS 2022; 2022:9786242. [PMID: 37850170 PMCID: PMC10521710 DOI: 10.34133/2022/9786242] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/25/2022] [Indexed: 10/19/2023] Open
Abstract
The immunohistochemical (IHC) staining of the human epidermal growth factor receptor 2 (HER2) biomarker is widely practiced in breast tissue analysis, preclinical studies, and diagnostic decisions, guiding cancer treatment and investigation of pathogenesis. HER2 staining demands laborious tissue treatment and chemical processing performed by a histotechnologist, which typically takes one day to prepare in a laboratory, increasing analysis time and associated costs. Here, we describe a deep learning-based virtual HER2 IHC staining method using a conditional generative adversarial network that is trained to rapidly transform autofluorescence microscopic images of unlabeled/label-free breast tissue sections into bright-field equivalent microscopic images, matching the standard HER2 IHC staining that is chemically performed on the same tissue sections. The efficacy of this virtual HER2 staining framework was demonstrated by quantitative analysis, in which three board-certified breast pathologists blindly graded the HER2 scores of virtually stained and immunohistochemically stained HER2 whole slide images (WSIs) to reveal that the HER2 scores determined by inspecting virtual IHC images are as accurate as their immunohistochemically stained counterparts. A second quantitative blinded study performed by the same diagnosticians further revealed that the virtually stained HER2 images exhibit a comparable staining quality in the level of nuclear detail, membrane clearness, and absence of staining artifacts with respect to their immunohistochemically stained counterparts. This virtual HER2 staining framework bypasses the costly, laborious, and time-consuming IHC staining procedures in laboratory and can be extended to other types of biomarkers to accelerate the IHC tissue staining used in life sciences and biomedical workflow.
Collapse
Affiliation(s)
- Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Hongda Wang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Yuzhu Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Kevin de Haan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | | | - Yujie Wan
- Physics and Astronomy Department, University of California, Los Angeles, CA 90095, USA
| | - Jingyi Zuo
- Computer Science Department, University of California, Los Angeles, CA, USA
| | - Ngan B. Doan
- Translational Pathology Core Laboratory, University of California, Los Angeles, CA 90095, USA
| | - Xiaoran Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Yijie Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Jingxi Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Xilin Yang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Wenjie Dong
- Statistics Department, University of California, Los Angeles, CA 90095, USA
| | - Morgan Angus Darrow
- Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Elham Kamangar
- Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Han Sung Lee
- Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Yair Rivenson
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
- Department of Surgery, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Li J, Zhang H, Lu M, Wei H, Li Y. Sensitive impulsive stimulated Brillouin spectroscopy by an adaptive noise-suppression Matrix Pencil. OPTICS EXPRESS 2022; 30:29598-29610. [PMID: 36299131 DOI: 10.1364/oe.465106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/17/2022] [Indexed: 06/16/2023]
Abstract
Impulsive stimulated Brillouin spectroscopy (ISBS) plays a critical role in investigating mechanical properties thanks to its fast measurement rate. However, traditional Fourier transform-based data processing cannot decipher measured data sensitively because of its incompetence in dealing with low signal-to-noise ratio (SNR) signals caused by a short exposure time and weak signals in a multi-peak spectrum. Here, we propose an adaptive noise-suppression Matrix Pencil method for heterodyne ISBS as an alternative spectral analysis technique, speeding up the measurement regardless of the low SNR and enhancing the sensitivity of multi-component viscoelastic identification. The algorithm maintains accuracy of 0.005% for methanol sound speed even when the SNR drops 33 dB and the exposure time is reduced to 0.4 ms. Moreover, it proves to extract a weak component that accounts for 6% from a polymer mixture, which is inaccessible for the traditional method. With its outstanding ability to sensitively decipher weak signals without spectral a priori information and regardless of low SNRs or concentrations, this method offers a fresh perspective for ISBS on fast viscoelasticity measurements and multi-component identifications.
Collapse
|
8
|
Alunni Cardinali M, Di Michele A, Mattarelli M, Caponi S, Govoni M, Dallari D, Brogini S, Masia F, Borri P, Langbein W, Palombo F, Morresi A, Fioretto D. Brillouin-Raman microspectroscopy for the morpho-mechanical imaging of human lamellar bone. J R Soc Interface 2022; 19:20210642. [PMID: 35104431 PMCID: PMC8807060 DOI: 10.1098/rsif.2021.0642] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Bone has a sophisticated architecture characterized by a hierarchical organization, starting at the sub-micrometre level. Thus, the analysis of the mechanical and structural properties of bone at this scale is essential to understand the relationship between its physiology, physical properties and chemical composition. Here, we unveil the potential of Brillouin-Raman microspectroscopy (BRaMS), an emerging correlative optical approach that can simultaneously assess bone mechanics and chemistry with micrometric resolution. Correlative hyperspectral imaging, performed on a human diaphyseal ring, reveals a complex microarchitecture that is reflected in extremely rich and informative spectra. An innovative method for mechanical properties analysis is proposed, mapping the intermixing of soft and hard tissue areas and revealing the coexistence of regions involved in remodelling processes, nutrient transportation and structural support. The mineralized regions appear elastically inhomogeneous, resembling the pattern of the osteons' lamellae, while Raman and energy-dispersive X-ray images through scanning electron microscopy show an overall uniform distribution of the mineral content, suggesting that other structural factors are responsible for lamellar micromechanical heterogeneity. These results, besides giving an important insight into cortical bone tissue properties, highlight the potential of BRaMS to access the origin of anisotropic mechanical properties, which are almost ubiquitous in other biological tissues.
Collapse
Affiliation(s)
- M. Alunni Cardinali
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - A. Di Michele
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Mattarelli
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - S. Caponi
- Istituto Officina Dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - D. Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - S. Brogini
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, Bologna 40136, Italy
| | - F. Masia
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - P. Borri
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - W. Langbein
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK
| | - F. Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - A. Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - D. Fioretto
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
- CEMIN - Center of Excellence for Innovative Nanostructured Material, Via Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
9
|
Alunni Cardinali M, Morresi A, Fioretto D, Vivarelli L, Dallari D, Govoni M. Brillouin and Raman Micro-Spectroscopy: A Tool for Micro-Mechanical and Structural Characterization of Cortical and Trabecular Bone Tissues. MATERIALS 2021; 14:ma14226869. [PMID: 34832271 PMCID: PMC8618195 DOI: 10.3390/ma14226869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Human bone is a specialized tissue with unique material properties, providing mechanical support and resistance to the skeleton and simultaneously assuring capability of adaptation and remodelling. Knowing the properties of such a structure down to the micro-scale is of utmost importance, not only for the design of effective biomimetic materials but also to be able to detect pathological alterations in material properties, such as micro-fractures or abnormal tissue remodelling. The Brillouin and Raman micro-spectroscopic (BRmS) approach has the potential to become a first-choice technique, as it is capable of simultaneously investigating samples’ mechanical and structural properties in a non-destructive and label-free way. Here, we perform a mapping of cortical and trabecular bone sections of a femoral epiphysis, demonstrating the capability of the technique for discovering the morpho-mechanics of cells, the extracellular matrix, and marrow constituents. Moreover, the interpretation of Brillouin and Raman spectra merged with an approach of data mining is used to compare the mechanical alterations in specimens excised from distinct anatomical areas and subjected to different sample processing. The results disclose in both cases specific alterations in the morphology and/or in the tissue chemical make-up, which strongly affects bone mechanical properties, providing a method potentially extendable to other important biomedical issues.
Collapse
Affiliation(s)
- Martina Alunni Cardinali
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, I-06123 Perugia, Italy;
- Correspondence:
| | - Assunta Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, I-06123 Perugia, Italy;
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, I-06123 Perugia, Italy;
- CEMIN—Center of Excellence for Innovative Nanostructured Material, I-06123 Perugia, Italy
| | - Leonardo Vivarelli
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (L.V.); (D.D.); (M.G.)
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (L.V.); (D.D.); (M.G.)
| | - Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (L.V.); (D.D.); (M.G.)
| |
Collapse
|
10
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|
11
|
Mechanical mapping of mammalian follicle development using Brillouin microscopy. Commun Biol 2021; 4:1133. [PMID: 34580426 PMCID: PMC8476509 DOI: 10.1038/s42003-021-02662-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
In early mammalian development, the maturation of follicles containing the immature oocytes is an important biological process as the functional oocytes provide the bulk genetic and cytoplasmic materials for successful reproduction. Despite recent work demonstrating the regulatory role of mechanical stress in oocyte growth, quantitative studies of ovarian mechanical properties remain lacking both in vivo and ex vivo. In this work, we quantify the material properties of ooplasm, follicles and connective tissues in intact mouse ovaries at distinct stages of follicle development using Brillouin microscopy, a non-invasive tool to probe mechanics in three-dimensional (3D) tissues. We find that the ovarian cortex and its interior stroma have distinct material properties associated with extracellular matrix deposition, and that intra-follicular mechanical compartments emerge during follicle maturation. Our work provides an alternative approach to study the role of mechanics in follicle morphogenesis and might pave the way for future understanding of mechanotransduction in reproductive biology, with potential implications for infertility diagnosis and treatment.
Collapse
|