1
|
Singh P, Pandit S, Balusamy SR, Madhusudanan M, Singh H, Amsath Haseef HM, Mijakovic I. Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications. Adv Healthc Mater 2025; 14:e2403059. [PMID: 39501968 PMCID: PMC11804848 DOI: 10.1002/adhm.202403059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Indexed: 01/05/2025]
Abstract
Cancer remains one of the most challenging health issues globally, demanding innovative therapeutic approaches for effective treatment. Nanoparticles, particularly those composed of gold, silver, and iron oxide, have emerged as promising candidates for changing cancer therapy. This comprehensive review demonstrates the landscape of nanoparticle-based oncological interventions, focusing on the remarkable advancements and therapeutic potentials of gold, silver, and iron oxide nanoparticles. Gold nanoparticles have garnered significant attention for their exceptional biocompatibility, tunable surface chemistry, and distinctive optical properties, rendering them ideal candidates for various cancer diagnostic and therapeutic strategies. Silver nanoparticles, renowned for their antimicrobial properties, exhibit remarkable potential in cancer therapy through multiple mechanisms, including apoptosis induction, angiogenesis inhibition, and drug delivery enhancement. With their magnetic properties and biocompatibility, iron oxide nanoparticles offer unique cancer diagnosis and targeted therapy opportunities. This review critically examines the recent advancements in the synthesis, functionalization, and biomedical applications of these nanoparticles in cancer therapy. Moreover, the challenges are discussed, including toxicity concerns, immunogenicity, and translational barriers, and ongoing efforts to overcome these hurdles are highlighted. Finally, insights into the future directions of nanoparticle-based cancer therapy and regulatory considerations, are provided aiming to accelerate the translation of these promising technologies from bench to bedside.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Santosh Pandit
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and BiotechnologySejong UniversityGwangjin‐GuSeoul05006Republic of Korea
| | - Mukil Madhusudanan
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Hina Singh
- Division of Biomedical SciencesSchool of MedicineUniversity of CaliforniaRiversideCA92521USA
| | | | - Ivan Mijakovic
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| |
Collapse
|
2
|
Millozzi F, Milán-Rois P, Sett A, Delli Carpini G, De Bardi M, Gisbert-Garzarán M, Sandonà M, Rodríguez-Díaz C, Martínez-Mingo M, Pardo I, Esposito F, Viscomi MT, Bouché M, Parolini O, Saccone V, Toulmé JJ, Somoza Á, Palacios D. Aptamer-conjugated gold nanoparticles enable oligonucleotide delivery into muscle stem cells to promote regeneration of dystrophic muscles. Nat Commun 2025; 16:577. [PMID: 39794309 PMCID: PMC11724063 DOI: 10.1038/s41467-024-55223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/03/2024] [Indexed: 01/13/2025] Open
Abstract
Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy. We show here that this platform is biocompatible, non-toxic, and non-immunogenic, and it can be easily adapted for the release of a wide range of therapeutic oligonucleotides into diseased muscles.
Collapse
Affiliation(s)
- Francesco Millozzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | | | - Arghya Sett
- Bordeaux University, Inserm U1212, CNRS UMR5320, Bordeaux, France
- ERIN Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Giovanni Delli Carpini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Martina Sandonà
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | | | | - Federica Esposito
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
- Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico, Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marina Bouché
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico, Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Valentina Saccone
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico, Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Jean-Jacques Toulmé
- Bordeaux University, Inserm U1212, CNRS UMR5320, Bordeaux, France.
- Novaptech, Gradignan, France.
| | - Álvaro Somoza
- IMDEA Nanociencia, Madrid, Spain.
- Unidad Asociada de Nanobiomedicina, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Daniela Palacios
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
- Institute for Systems Analysis and Computer Science "Antonio Ruberti" (IASI), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
3
|
Katoozi D, Clayton AHA, Moss DJ, Chon JWM. On the accuracy bounds of high-order image correlation spectroscopy. OPTICS EXPRESS 2024; 32:22095-22109. [PMID: 39538705 DOI: 10.1364/oe.521390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/22/2024] [Indexed: 11/16/2024]
Abstract
High-order image correlation spectroscopy (HICS) or related image-based cumulant analysis of emitter species are important for identifying properties and concentrations of biomolecules or nanoparticles. However, lack of a thorough parameter space test limits its use in full potential. The current study focused on mapping accuracy bounds of bimodal species concentration space by simulating and analysing more than 2 × 105 images (∼1011 data points). Concentration space maps for four values of quantum yield contrast ratio between two species in a mixture and two sampling spaces (834 and 13357 beam areas in an image) were created, which showed clear accuracy bounds governed by two factors, Poisson fluctuation and quantum yield ratio. Typically, brighter species concentration was 1-3 orders of magnitude lower than that of dimmer species, and higher brightness contrast allowed higher concentration difference. Upper limit of accuracy bounds was governed by resolvable Poisson fluctuation, where this condition was violated for emitter density beyond 10 particles per beam area. The accuracy bounds are shown to be largely invariant under noise correction or the calculation method, and are compared against previous experimental results, showing consistent agreement. This study shows that concentration limit needs to be observed when using HICS or related image moment or cumulant analysis techniques. As a rule of thumb, a large quantum yield contrast and large sampling points allow more concentration difference between two species to be resolved in an analysis.
Collapse
|
4
|
Adamus-Grabicka AA, Hikisz P, Sikora J. Nanotechnology as a Promising Method in the Treatment of Skin Cancer. Int J Mol Sci 2024; 25:2165. [PMID: 38396841 PMCID: PMC10889690 DOI: 10.3390/ijms25042165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The incidence of skin cancer continues to grow. There are an estimated 1.5 million new cases each year, of which nearly 350,000 are melanoma, which is often fatal. Treatment is challenging and often ineffective, with conventional chemotherapy playing a limited role in this context. These disadvantages can be overcome by the use of nanoparticles and may allow for the early detection and monitoring of neoplastic changes and determining the effectiveness of treatment. This article briefly reviews the present understanding of the characteristics of skin cancers, their epidemiology, and risk factors. It also outlines the possibilities of using nanotechnology, especially nanoparticles, for the transport of medicinal substances. Research over the previous decade on carriers of active substances indicates that drugs can be delivered more accurately to the tumor site, resulting in higher therapeutic efficacy. The article describes the application of liposomes, carbon nanotubes, metal nanoparticles, and polymer nanoparticles in existing therapies. It discusses the challenges encountered in nanoparticle therapy and the possibilities of improving their performance. Undoubtedly, the use of nanoparticles is a promising method that can help in the fight against skin cancer.
Collapse
Affiliation(s)
- Angelika A. Adamus-Grabicka
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
5
|
Li W, Li S, Brown TC, Sun Q, Wang X, Yakovlev VV, Kealy A, Moran B, Greentree AD. Estimation of the number of single-photon emitters for multiple fluorophores with the same spectral signature. AVS QUANTUM SCIENCE 2023; 5:041401. [PMID: 38053619 PMCID: PMC10694824 DOI: 10.1116/5.0162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023]
Abstract
Fluorescence microscopy is of vital importance for understanding biological function. However, most fluorescence experiments are only qualitative inasmuch as the absolute number of fluorescent particles can often not be determined. Additionally, conventional approaches to measuring fluorescence intensity cannot distinguish between two or more fluorophores that are excited and emit in the same spectral window, as only the total intensity in a spectral window can be obtained. Here we show that, by using photon number resolving experiments, we are able to determine the number of emitters and their probability of emission for a number of different species, all with the same measured spectral signature. We illustrate our ideas by showing the determination of the number of emitters per species and the probability of photon collection from that species, for one, two and three otherwise unresolvable fluorophores. The convolution binomial model is presented to represent the counted photons emitted by multiple species. Then, the expectation-maximization (EM) algorithm is used to match the measured photon counts to the expected convolution binomial distribution function. In applying the EM algorithm, to leverage the problem of being trapped in a sub-optimal solution, the moment method is introduced to yield an initial guess for the EM algorithm. Additionally, the associated Cramér-Rao lower bound is derived and compared with the simulation results.
Collapse
Affiliation(s)
- Wenchao Li
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Shuo Li
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, VIC 3001, Australia
| | - Timothy C. Brown
- School of Mathematics, Monash University, Melbourne, VIC 3800, Australia
| | - Qiang Sun
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, VIC 3001, Australia
| | - Xuezhi Wang
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Allison Kealy
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | | | - Andrew D. Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
6
|
Mihailescu M, Miclea LC, Pleava AM, Tarba N, Scarlat EN, Negoita RD, Moisescu MG, Savopol T. Method for nanoparticles uptake evaluation based on double labeled fluorescent cells scanned in enhanced darkfield microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:2796-2810. [PMID: 37342715 PMCID: PMC10278607 DOI: 10.1364/boe.490136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023]
Abstract
We present a method that integrates the standard imaging tools for locating and detecting unlabeled nanoparticles (NPs) with computational tools for partitioning cell volumes and NPs counting within specified regions to evaluate their internal traffic. The method uses enhanced dark field CytoViva optical system and combines 3D reconstructions of double fluorescently labeled cells with hyperspectral images. The method allows the partitioning of each cell image into four regions: nucleus, cytoplasm, and two neighboring shells, as well as investigations across thin layers adjacent to the plasma membrane. MATLAB scripts were developed to process the images and to localize NPs in each region. Specific parameters were computed to assess the uptake efficiency: regional densities of NPs, flow densities, relative accumulation indices, and uptake ratios. The results of the method are in line with biochemical analyses. It was shown that a sort of saturation limit for intracellular NPs density is reached at high extracellular NPs concentrations. Higher NPs densities were found in the proximity of the plasma membranes. A decrease of the cell viability with increasing extracellular NPs concentration was observed and explained the negative correlation of the cell eccentricity with NPs number.
Collapse
Affiliation(s)
- Mona Mihailescu
- Holographic Imaging and Processing Laboratory, Physics Department, Politehnica University Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
- Centre for Research in Fundamental Sciences Applied in Engineering, Politehnica University Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Luminita C Miclea
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Ana M Pleava
- CAMPUS Research Center, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Nicolae Tarba
- Doctoral School of Automatic Control and Computers, Physics Department, Faculty of Applied Sciences, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Eugen N Scarlat
- Holographic Imaging and Processing Laboratory, Physics Department, Politehnica University Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Raluca D Negoita
- Applied Sciences Doctoral School, Politehnica University of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Mihaela G Moisescu
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Tudor Savopol
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| |
Collapse
|
7
|
Zhang C, Zhu X, Hou S, Pan W, Liao W. Functionalization of Nanomaterials for Skin Cancer Theranostics. Front Bioeng Biotechnol 2022; 10:887548. [PMID: 35557870 PMCID: PMC9086318 DOI: 10.3389/fbioe.2022.887548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 12/02/2022] Open
Abstract
Skin cancer has drawn attention for the increasing incident rates and high morbidity worldwide. Timely diagnosis and efficient treatment are of paramount importance for prompt and effective therapy. Thus, the development of novel skin cancer diagnosis and treatment strategies is of great significance for both fundamental research and clinical practice. Recently, the emerging field of nanotechnology has profoundly impact on early diagnosis and better treatment planning of skin cancer. In this review, we will discuss the current encouraging advances in functional nanomaterials for skin cancer theranostics. Challenges in the field and safety concerns of nanomaterials will also be discussed.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinlin Zhu
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shuming Hou
- Orthopaedic Oncology Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Wanqing Liao, ; Weihua Pan,
| | - Wanqing Liao
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Wanqing Liao, ; Weihua Pan,
| |
Collapse
|