1
|
Mailfert S, Djendli M, Fabre R, Marguet D, Bertaux N. Quality control maps: Real-time quantitative control of single-molecule localization microscopy data. Biophys J 2025; 124:1132-1145. [PMID: 40012204 PMCID: PMC11993929 DOI: 10.1016/j.bpj.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
Single-molecule localization microscopy (SMLM) has revolutionized the understanding of cellular organization by reconstructing informative images with quantifiable spatial distributions of molecules far beyond the optical diffraction limit. Much effort has been devoted to optimizing localization accuracy. One such approach is the assessment of SMLM data quality in real time rather than after lengthy postacquisition analysis, which nevertheless represents a computational challenge We overcame this difficulty by implementing an innovative mathematical approach we designed to drastically reduce the computational analysis of particle localization. Our quality control maps (QCM) workflow enables a much higher rate of data processing compared to that limited by the frequency required by current cameras. Accordingly, using an innovative computational approach for the detection step and an estimator based on a Gaussian model of the point spread function, subpixel particle locations and their accuracy can be determined through a straightforward analytical calculation without the need for iterations. As a true parameter-free algorithm, QCM is robust and adaptable to all types of SMLM data, with high speed enabling the real-time calculation of quantitative quality control indicators. Such features are compatible with smart microscopy, the concept of which depends on the adjustment of acquisition parameters in real time according to analytical results. Finally, the offline QCM mode can be used as a tool to evaluate synthetic or previously acquired data, as well as to teach the basic concepts of SMLM.
Collapse
Affiliation(s)
- Sébastien Mailfert
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie Marseille Luminy, Marseille, France
| | - Meriem Djendli
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie Marseille Luminy, Marseille, France
| | - Roxane Fabre
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie Marseille Luminy, Marseille, France
| | - Didier Marguet
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie Marseille Luminy, Marseille, France.
| | - Nicolas Bertaux
- Aix Marseille University, CNRS, Centrale Méditerranée, Institut Fresnel, Marseille, France.
| |
Collapse
|
2
|
Kulik N, Kale D, Spurna K, Shamayeva K, Hauser F, Milic S, Janout H, Zayats V, Jacak J, Ludwig J. Dimerisation of the Yeast K + Translocation Protein Trk1 Depends on the K + Concentration. Int J Mol Sci 2022; 24:ijms24010398. [PMID: 36613841 PMCID: PMC9820094 DOI: 10.3390/ijms24010398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
In baker's yeast (Saccharomyces cerevisiae), Trk1, a member of the superfamily of K-transporters (SKT), is the main K+ uptake system under conditions when its concentration in the environment is low. Structurally, Trk1 is made up of four domains, each similar and homologous to a K-channel α subunit. Because most K-channels are proteins containing four channel-building α subunits, Trk1 could be functional as a monomer. However, related SKT proteins TrkH and KtrB were crystallised as dimers, and for Trk1, a tetrameric arrangement has been proposed based on molecular modelling. Here, based on Bimolecular Fluorescence Complementation experiments and single-molecule fluorescence microscopy combined with molecular modelling; we provide evidence that Trk1 can exist in the yeast plasma membrane as a monomer as well as a dimer. The association of monomers to dimers is regulated by the K+ concentration.
Collapse
Affiliation(s)
- Natalia Kulik
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Deepika Kale
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Karin Spurna
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Katsiaryna Shamayeva
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Fabian Hauser
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Sandra Milic
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Hannah Janout
- Bioinformatics, University of Applied Sciences Upper Austria, 4232 Hagenberg, Austria
- Institute of Symbolic AI, Johannes Kepler University, 4040 Linz, Austria
| | - Vasilina Zayats
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Jost Ludwig
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
- Correspondence:
| |
Collapse
|
3
|
Strohmeier K, Hofmann M, Jacak J, Narzt MS, Wahlmueller M, Mairhofer M, Schaedl B, Holnthoner W, Barsch M, Sandhofer M, Wolbank S, Priglinger E. Multi-Level Analysis of Adipose Tissue Reveals the Relevance of Perivascular Subpopulations and an Increased Endothelial Permeability in Early-Stage Lipedema. Biomedicines 2022; 10:biomedicines10051163. [PMID: 35625899 PMCID: PMC9138324 DOI: 10.3390/biomedicines10051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro. Although there were no significant differences in histological stainings, we found altered gene expression of factors relevant for local estrogen metabolism (aromatase), preadipocyte commitment (ZNF423) and immune cell infiltration (CD11c) in lipedema on the tissue level, as well as in distinct cellular subpopulations. Machine learning analysis of immunofluorescence images of CD31 and ZO-1 revealed a morphological difference in the cellular junctions of EC cultures derived from healthy and lipedema individuals. Furthermore, the secretome of lipedema-derived SVF cells was sufficient to significantly increase leakiness of healthy human primary EC, which was also reflected by decreased mRNA expression of VE-cadherin. Here, we showed for the first time that the secretome of SVF cells creates an environment that triggers endothelial barrier dysfunction in early-stage lipedema. Moreover, since alterations in gene expression were detected on the cellular and/or tissue level, the choice of sample material is of high importance in elucidating this complex disease.
Collapse
Affiliation(s)
- Karin Strohmeier
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Martina Hofmann
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- School of Medical Engineering and Applied Social Science, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Jaroslaw Jacak
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- School of Medical Engineering and Applied Social Science, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Marie-Sophie Narzt
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Marlene Wahlmueller
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Mario Mairhofer
- Department of Hematology and Internal Oncology, Johannes Kepler University, 4020 Linz, Austria;
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Martin Barsch
- Austrian Center for Lipedema, Skin Aesthetic Vein Laser Practice, 4020 Linz, Austria; (M.B.); (M.S.)
| | - Matthias Sandhofer
- Austrian Center for Lipedema, Skin Aesthetic Vein Laser Practice, 4020 Linz, Austria; (M.B.); (M.S.)
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- Correspondence:
| |
Collapse
|
4
|
CRISPR/Cas9 Genome Editing vs. Over-Expression for Fluorescent Extracellular Vesicle-Labeling: A Quantitative Analysis. Int J Mol Sci 2021; 23:ijms23010282. [PMID: 35008709 PMCID: PMC8745383 DOI: 10.3390/ijms23010282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Over-expression of fluorescently-labeled markers for extracellular vesicles is frequently used to visualize vesicle up-take and transport. EVs that are labeled by over-expression show considerable heterogeneity regarding the number of fluorophores on single particles, which could potentially bias tracking and up-take studies in favor of more strongly-labeled particles. To avoid the potential artefacts that are caused by over-expression, we developed a genome editing approach for the fluorescent labeling of the extracellular vesicle marker CD63 with green fluorescent protein using the CRISPR/Cas9 technology. Using single-molecule sensitive fluorescence microscopy, we quantitatively compared the degree of labeling of secreted small extracellular vesicles from conventional over-expression and the CRISPR/Cas9 approach with true single-particle measurements. With our analysis, we can demonstrate a larger fraction of single-GFP-labeled EVs in the EVs that were isolated from CRISPR/Cas9-modified cells (83%) compared to EVs that were isolated from GFP-CD63 over-expressing cells (36%). Despite only single-GFP-labeling, CRISPR-EVs can be detected and discriminated from auto-fluorescence after their up-take into cells. To demonstrate the flexibility of the CRISPR/Cas9 genome editing method, we fluorescently labeled EVs using the HaloTag® with lipid membrane permeable dye, JaneliaFluor® 646, which allowed us to perform 3D-localization microscopy of single EVs taken up by the cultured cells.
Collapse
|