1
|
Sheng M, Zhao Y, Wu Z, Zhao J, Lui H, Kalia S, Zeng H. Single source CARS-based multimodal microscopy system for biological tissue imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2024; 15:131-141. [PMID: 38223172 PMCID: PMC10783911 DOI: 10.1364/boe.504978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 01/16/2024]
Abstract
A coherent anti-Stokes Raman scattering (CARS)-based multimodality microscopy system was developed using a single Ti:sapphire femtosecond laser source for biological imaging. It provides three complementary and co-registered imaging modalities: CARS, MPM (multiphoton microscopy), and RCM (reflectance confocal microscopy). The imaging speed is about 1 frame-per-second (fps) with a digital resolution of 1024 × 1024 pixels. This microscopy system can provide clear 2-dimensional and 3-dimensional images of ex-vivo biological tissue samples. Its spectral selection initiates vibrational excitation in lipid cells (approximately 2850 cm-1) using two filters on the pump and Stokes beam paths. The excitation can be tuned over a wide spectral range with adjustable spectral filters. The imaging capability of this CARS-based multimodal microscopy system was demonstrated using porcine fat, murine skin, and murine liver tissue samples.
Collapse
Affiliation(s)
- Mingyu Sheng
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Yuan Zhao
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Zhenguo Wu
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Jianhua Zhao
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Harvey Lui
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Sunil Kalia
- Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Haishan Zeng
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, Canada
| |
Collapse
|
2
|
Alonso D, Garcia J, Micó V. Fluholoscopy-Compact and Simple Platform Combining Fluorescence and Holographic Microscopy. BIOSENSORS 2023; 13:253. [PMID: 36832019 PMCID: PMC9954010 DOI: 10.3390/bios13020253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The combination of different imaging modalities into single imaging platforms has a strong potential in biomedical sciences as it permits the analysis of complementary properties of the target sample. Here, we report on an extremely simple, cost-effective, and compact microscope platform for achieving simultaneous fluorescence and quantitative phase imaging modes with the capability of working in a single snapshot. It is based on the use of a single illumination wavelength to both excite the sample's fluorescence and provide coherent illumination for phase imaging. After passing the microscope layout, the two imaging paths are separated using a bandpass filter, and the two imaging modes are simultaneously obtained using two digital cameras. We first present calibration and analysis of both fluorescence and phase imaging modalities working independently and, later on, experimental validation for the proposed common-path dual-mode imaging platform considering static (resolution test targets, fluorescent micro-beads, and water-suspended lab-made cultures) as well as dynamic (flowing fluorescent beads, human sperm cells, and live specimens from lab-made cultures) samples.
Collapse
|
3
|
Pelicci S, Furia L, Pelicci PG, Faretta M. Correlative Multi-Modal Microscopy: A Novel Pipeline for Optimizing Fluorescence Microscopy Resolutions in Biological Applications. Cells 2023; 12:cells12030354. [PMID: 36766696 PMCID: PMC9913119 DOI: 10.3390/cells12030354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The modern fluorescence microscope is the convergence point of technologies with different performances in terms of statistical sampling, number of simultaneously analyzed signals, and spatial resolution. However, the best results are usually obtained by maximizing only one of these parameters and finding a compromise for the others, a limitation that can become particularly significant when applied to cell biology and that can reduce the spreading of novel optical microscopy tools among research laboratories. Super resolution microscopy and, in particular, molecular localization-based approaches provide a spatial resolution and a molecular localization precision able to explore the scale of macromolecular complexes in situ. However, its use is limited to restricted regions, and consequently few cells, and frequently no more than one or two parameters. Correlative microscopy, obtained by the fusion of different optical technologies, can consequently surpass this barrier by merging results from different spatial scales. We discuss here the use of an acquisition and analysis correlative microscopy pipeline to obtain high statistical sampling, high content, and maximum spatial resolution by combining widefield, confocal, and molecular localization microscopy.
Collapse
Affiliation(s)
- Simone Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
- Correspondence:
| |
Collapse
|
5
|
Ryu J, Kang U, Song JW, Kim J, Kim JW, Yoo H, Gweon B. Erratum: Multimodal microscopy for the simultaneous visualization of five different imaging modalities using a single light source: publisher's note. BIOMEDICAL OPTICS EXPRESS 2021; 12:7917. [PMID: 35003875 PMCID: PMC8713676 DOI: 10.1364/boe.449424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 06/14/2023]
Abstract
[This corrects the article on p. 5452 in vol. 12, PMID: 34692194.].
Collapse
Affiliation(s)
- Jiheun Ryu
- Massachusetts General Hospital, Wellman Center for Photomedicine, 55 Fruit Street, Boston, MA 02114, USA
- Contributed equally
| | - Ungyo Kang
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Contributed equally
| | - Joon Woo Song
- Korea University Guro Hospital, Cardiovascular Center, 148 Gurodong-ro, Seoul 08308, Republic of Korea
| | - Junyoung Kim
- Massachusetts General Hospital, Wellman Center for Photomedicine, 55 Fruit Street, Boston, MA 02114, USA
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jin Won Kim
- Korea University Guro Hospital, Cardiovascular Center, 148 Gurodong-ro, Seoul 08308, Republic of Korea
| | - Hongki Yoo
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Bomi Gweon
- Sejong University, Department of Mechanical Engineering, 209 Neungdong-ro, Seoul 05006, Republic of Korea
| |
Collapse
|