1
|
Wei C, Li Z, Hu T, Zhao M, Sun Z, Jia K, Feng J, Pogue BW, Paulsen KD, Jiang S. Model-Based Convolution Neural Network for 3D Near-Infrared Spectral Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:2330-2340. [PMID: 40031020 DOI: 10.1109/tmi.2025.3529621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Near-infrared spectral tomography (NIRST) is a non-invasive imaging technique that provides functional information about biological tissues. Due to diffuse light propagation in tissue and limited boundary measurements, NIRST image reconstruction presents an ill-posed and ill-conditioned computational problem that is difficult to solve. To address this challenge, we developed a reconstruction algorithm (Model-CNN) that integrates a diffusion equation model with a convolutional neural network (CNN). The CNN learns a regularization prior to restrict solutions to the space of desirable chromophore concentration images. Efficacy of Model-CNN was evaluated by training on numerical simulation data, and then applying the network to physical phantom and clinical patient NIRST data. Results demonstrated the superiority of Model-CNN over the conventional Tikhonov regularization approach and a deep learning algorithm (FC-CNN) in terms of absolute bias error (ABE) and peak signal-to-noise ratio (PSNR). Specifically, in comparison to Tikhonov regularization, Model-CNN reduced average ABE by 55% for total hemoglobin (HbT) and 70% water (H $_{\mathbf {{2}}}$ O) concentration, while improved PSNR by an average of 5.3 dB both for HbT and H $_{\mathbf {{2}}}$ O images. Meanwhile, image processing time was reduced by 82%, relative to the Tikhonov regularization. As compared to FC-CNN, the Model-CNN achieved a 91% reduction in ABE for HbT and 75% for H $_{\mathbf {{2}}}$ O images, with increases in PSNR by 7.3 dB and 4.7 dB, respectively. Notably, this Model-CNN approach was not trained on patient data; but instead, was trained on simulated phantom data with simpler geometrical shapes and optical source-detector configurations; yet, achieved superior image recovery when faced with real-world data.
Collapse
|
2
|
Dale R, Ross N, Howard S, O’Sullivan TD, Dehghani H. Towards real-time diffuse optical tomography with a handheld scanning probe. BIOMEDICAL OPTICS EXPRESS 2025; 16:1582-1601. [PMID: 40322000 PMCID: PMC12047716 DOI: 10.1364/boe.549880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/12/2025] [Accepted: 03/12/2025] [Indexed: 05/08/2025]
Abstract
Diffuse optical tomography (DOT) performed using deep-learning allows high-speed reconstruction of tissue optical properties and could thereby enable image-guided scanning, e.g., to enhance clinical breast imaging. Previously published models are geometry-specific and, therefore, require extensive data generation and training for each use case, restricting the scanning protocol at the point of use. A transformer-based architecture is proposed to overcome these obstacles that encode spatially unstructured DOT measurements, enabling a single trained model to handle arbitrary scanning pathways and measurement density. The model is demonstrated with breast tissue-emulating simulated and phantom data, yielding - for 24 mm-deep absorptions (μ a ) and reduced scattering (μ s ') images, respectively - average RMSEs of 0.0095±0.0023 cm-1 and 1.95±0.78 cm-1, Sørensen-Dice coefficients of 0.55±0.12 and 0.67±0.1, and anomaly contrast of 79±10% and 93.3±4.6% of the ground-truth contrast, with an effective imaging speed of 14 Hz. The average absolute μ a and μ s ' values of homogeneous simulated examples were within 10% of the true values.
Collapse
Affiliation(s)
- Robin Dale
- University of Birmingham, Medical Imaging Lab, School of Computer Science, University Rd W, Birmingham, B15 2TT, UK
| | - Nicholas Ross
- University of Notre Dame, Department of Electrical Engineering and Bioengineering Program, 275 Fitzpatrick Hall, Notre Dame, Indiana, 46556, USA
| | - Scott Howard
- University of Notre Dame, Department of Electrical Engineering and Bioengineering Program, 275 Fitzpatrick Hall, Notre Dame, Indiana, 46556, USA
| | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering and Bioengineering Program, 275 Fitzpatrick Hall, Notre Dame, Indiana, 46556, USA
| | - Hamid Dehghani
- University of Birmingham, Medical Imaging Lab, School of Computer Science, University Rd W, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Rosen J, Alford S, Allan B, Anand V, Arnon S, Arockiaraj FG, Art J, Bai B, Balasubramaniam GM, Birnbaum T, Bisht NS, Blinder D, Cao L, Chen Q, Chen Z, Dubey V, Egiazarian K, Ercan M, Forbes A, Gopakumar G, Gao Y, Gigan S, Gocłowski P, Gopinath S, Greenbaum A, Horisaki R, Ierodiaconou D, Juodkazis S, Karmakar T, Katkovnik V, Khonina SN, Kner P, Kravets V, Kumar R, Lai Y, Li C, Li J, Li S, Li Y, Liang J, Manavalan G, Mandal AC, Manisha M, Mann C, Marzejon MJ, Moodley C, Morikawa J, Muniraj I, Narbutis D, Ng SH, Nothlawala F, Oh J, Ozcan A, Park Y, Porfirev AP, Potcoava M, Prabhakar S, Pu J, Rai MR, Rogalski M, Ryu M, Choudhary S, Salla GR, Schelkens P, Şener SF, Shevkunov I, Shimobaba T, Singh RK, Singh RP, Stern A, Sun J, Zhou S, Zuo C, Zurawski Z, Tahara T, Tiwari V, Trusiak M, Vinu RV, Volotovskiy SG, Yılmaz H, De Aguiar HB, Ahluwalia BS, Ahmad A. Roadmap on computational methods in optical imaging and holography [invited]. APPLIED PHYSICS. B, LASERS AND OPTICS 2024; 130:166. [PMID: 39220178 PMCID: PMC11362238 DOI: 10.1007/s00340-024-08280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging. In addition to registering the perspectives of the modern-day architects of the above research areas, the roadmap also reports some of the latest studies on the topic. Computational codes and pseudocodes are presented for computational methods in a plug-and-play fashion for readers to not only read and understand but also practice the latest algorithms with their data. We believe that this roadmap will be a valuable tool for analyzing the current trends in computational methods to predict and prepare the future of computational methods in optical imaging and holography. Supplementary Information The online version contains supplementary material available at 10.1007/s00340-024-08280-3.
Collapse
Affiliation(s)
- Joseph Rosen
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Blake Allan
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Vijayakumar Anand
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Shlomi Arnon
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Francis Gracy Arockiaraj
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Jonathan Art
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Ganesh M. Balasubramaniam
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Tobias Birnbaum
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- Swave BV, Gaston Geenslaan 2, 3001 Leuven, Belgium
| | - Nandan S. Bisht
- Applied Optics and Spectroscopy Laboratory, Department of Physics, Soban Singh Jeena University Campus Almora, Almora, Uttarakhand 263601 India
| | - David Blinder
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Liangcai Cao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Qian Chen
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
| | - Ziyang Chen
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Karen Egiazarian
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Mert Ercan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Andrew Forbes
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - G. Gopakumar
- Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, Vallikavu, Kerala India
| | - Yunhui Gao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Paweł Gocłowski
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Alon Greenbaum
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695 USA
| | - Ryoichi Horisaki
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
| | - Daniel Ierodiaconou
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Saulius Juodkazis
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Tanushree Karmakar
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Vladimir Katkovnik
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Svetlana N. Khonina
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
- Samara National Research University, 443086 Samara, Russia
| | - Peter Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Vladislav Kravets
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Ravi Kumar
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Yingming Lai
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Chen Li
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Jiaji Li
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shaoheng Li
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Yuzhu Li
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Jinyang Liang
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Gokul Manavalan
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Aditya Chandra Mandal
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Manisha Manisha
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Christopher Mann
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011 USA
- Center for Materials Interfaces in Research and Development, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Marcin J. Marzejon
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Chané Moodley
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Junko Morikawa
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Inbarasan Muniraj
- LiFE Lab, Department of Electronics and Communication Engineering, Alliance School of Applied Engineering, Alliance University, Bangalore, Karnataka 562106 India
| | - Donatas Narbutis
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, Sauletekio 9, 10222 Vilnius, Lithuania
| | - Soon Hock Ng
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Fazilah Nothlawala
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeonghun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
- Tomocube Inc., Daejeon, 34051 South Korea
| | - Alexey P. Porfirev
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Mariana Potcoava
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Shashi Prabhakar
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Jixiong Pu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Mani Ratnam Rai
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Mikołaj Rogalski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Meguya Ryu
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (AIST), 1-1-1 Umezono, Tsukuba, 305-8563 Japan
| | - Sakshi Choudhary
- Department Chemical Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Shiva, Israel
| | - Gangi Reddy Salla
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Peter Schelkens
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | - Sarp Feykun Şener
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Igor Shevkunov
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Tomoyoshi Shimobaba
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Rakesh K. Singh
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Ravindra P. Singh
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Adrian Stern
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Jiasong Sun
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shun Zhou
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Chao Zuo
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Tatsuki Tahara
- Applied Electromagnetic Research Center, Radio Research Institute, National Institute of Information and Communications Technology (NICT), 4-2-1 Nukuikitamachi, Koganei, Tokyo 184-8795 Japan
| | - Vipin Tiwari
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - R. V. Vinu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Sergey G. Volotovskiy
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Hasan Yılmaz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Hilton Barbosa De Aguiar
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Balpreet S. Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
4
|
Xue M, Li S, Zhu Q. Improving diffuse optical tomography imaging quality using APU-Net: an attention-based physical U-Net model. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:086001. [PMID: 39070721 PMCID: PMC11272096 DOI: 10.1117/1.jbo.29.8.086001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Significance Traditional diffuse optical tomography (DOT) reconstructions are hampered by image artifacts arising from factors such as DOT sources being closer to shallow lesions, poor optode-tissue coupling, tissue heterogeneity, and large high-contrast lesions lacking information in deeper regions (known as shadowing effect). Addressing these challenges is crucial for improving the quality of DOT images and obtaining robust lesion diagnosis. Aim We address the limitations of current DOT imaging reconstruction by introducing an attention-based U-Net (APU-Net) model to enhance the image quality of DOT reconstruction, ultimately improving lesion diagnostic accuracy. Approach We designed an APU-Net model incorporating a contextual transformer attention module to enhance DOT reconstruction. The model was trained on simulation and phantom data, focusing on challenges such as artifact-induced distortions and lesion-shadowing effects. The model was then evaluated by the clinical data. Results Transitioning from simulation and phantom data to clinical patients' data, our APU-Net model effectively reduced artifacts with an average artifact contrast decrease of 26.83% and improved image quality. In addition, statistical analyses revealed significant contrast improvements in depth profile with an average contrast increase of 20.28% and 45.31% for the second and third target layers, respectively. These results highlighted the efficacy of our approach in breast cancer diagnosis. Conclusions The APU-Net model improves the image quality of DOT reconstruction by reducing DOT image artifacts and improving the target depth profile.
Collapse
Affiliation(s)
- Minghao Xue
- Washington University in St. Louis, Biomedical Engineering Department, St. Louis, Missouri, United States
| | - Shuying Li
- Boston University, Electrical and Computer Engineering Department, Boston, Massachusetts, United States
| | - Quing Zhu
- Washington University in St. Louis, Biomedical Engineering Department, St. Louis, Missouri, United States
- Washington University in St. Louis, Radiology Department, St. Louis, Missouri, United States
| |
Collapse
|
5
|
Mozumder M, Hirvi P, Nissilä I, Hauptmann A, Ripoll J, Singh DE. Diffuse optical tomography of the brain: effects of inaccurate baseline optical parameters and refinements using learned post-processing. BIOMEDICAL OPTICS EXPRESS 2024; 15:4470-4485. [PMID: 39347006 PMCID: PMC11427210 DOI: 10.1364/boe.524245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 10/01/2024]
Abstract
Diffuse optical tomography (DOT) uses near-infrared light to image spatially varying optical parameters in biological tissues. In functional brain imaging, DOT uses a perturbation model to estimate the changes in optical parameters, corresponding to changes in measured data due to brain activity. The perturbation model typically uses approximate baseline optical parameters of the different brain compartments, since the actual baseline optical parameters are unknown. We simulated the effects of these approximate baseline optical parameters using parameter variations earlier reported in literature, and brain atlases from four adult subjects. We report the errors in estimated activation contrast, localization, and area when incorrect baseline values were used. Further, we developed a post-processing technique based on deep learning methods that can reduce the effects due to inaccurate baseline optical parameters. The method improved imaging of brain activation changes in the presence of such errors.
Collapse
Affiliation(s)
- Meghdoot Mozumder
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Pauliina Hirvi
- Department of Mathematics and Systems Analysis, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Ilkka Nissilä
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076 Aalto, Finland
| | - Andreas Hauptmann
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
- Department of Computer Science, University College London, London WC1E 6BT, United Kingdom
| | - Jorge Ripoll
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
| | - David E Singh
- Departamento de Informática, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
| |
Collapse
|
6
|
Ben Yedder H, Cardoen B, Shokoufi M, Golnaraghi F, Hamarneh G. Deep orthogonal multi-wavelength fusion for tomogram-free diagnosis in diffuse optical imaging. Comput Biol Med 2024; 178:108676. [PMID: 38878395 DOI: 10.1016/j.compbiomed.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 07/24/2024]
Abstract
Novel portable diffuse optical tomography (DOT) devices for breast cancer lesions hold great promise for non-invasive, non-ionizing breast cancer screening. Critical to this capability is not just the identification of lesions but rather the complex problem of discriminating between malignant and benign lesions. To accurately reconstruct the highly heterogeneous tissue of a cancer lesion in healthy breast tissue using DOT, multiple wavelengths can be leveraged to maximize signal penetration while minimizing sensitivity to noise. However, these wavelength responses can overlap, capture common information, and correlate, potentially confounding reconstruction and downstream end tasks. We show that an orthogonal fusion loss regularizes multi-wavelength DOT leading to improved reconstruction and accuracy of end-to-end discrimination of malignant versus benign lesions. We further show that our raw-to-task model significantly reduces computational complexity without sacrificing accuracy, making it ideal for real-time throughput, desired in medical settings where handheld devices have severely restricted power budgets. Furthermore, our results indicate that image reconstruction is not necessary for unbiased classification of lesions with a balanced accuracy of 77% and 66% on the synthetic dataset and clinical dataset, respectively, using the raw-to-task model. Code is available at https://github.com/sfu-mial/FuseNet.
Collapse
Affiliation(s)
- Hanene Ben Yedder
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, BC Canada V5A 1S6.
| | - Ben Cardoen
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, BC Canada V5A 1S6
| | - Majid Shokoufi
- School of Mechatronic Systems Engineering, Simon Fraser University, BC Canada V5A 1S6
| | - Farid Golnaraghi
- School of Mechatronic Systems Engineering, Simon Fraser University, BC Canada V5A 1S6
| | - Ghassan Hamarneh
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, BC Canada V5A 1S6.
| |
Collapse
|
7
|
Dale R, Zheng B, Orihuela-Espina F, Ross N, O’Sullivan TD, Howard S, Dehghani H. Deep learning-enabled high-speed, multi-parameter diffuse optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:076004. [PMID: 39035576 PMCID: PMC11259453 DOI: 10.1117/1.jbo.29.7.076004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Significance Frequency-domain diffuse optical tomography (FD-DOT) could enhance clinical breast tumor characterization. However, conventional diffuse optical tomography (DOT) image reconstruction algorithms require case-by-case expert tuning and are too computationally intensive to provide feedback during a scan. Deep learning (DL) algorithms front-load computational and tuning costs, enabling high-speed, high-fidelity FD-DOT. Aim We aim to demonstrate a simultaneous reconstruction of three-dimensional absorption and reduced scattering coefficients using DL-FD-DOT, with a view toward real-time imaging with a handheld probe. Approach A DL model was trained to solve the DOT inverse problem using a realistically simulated FD-DOT dataset emulating a handheld probe for human breast imaging and tested using both synthetic and experimental data. Results Over a test set of 300 simulated tissue phantoms for absorption and scattering reconstructions, the DL-DOT model reduced the root mean square error by 12 % ± 40 % and 23 % ± 40 % , increased the spatial similarity by 17 % ± 17 % and 9 % ± 15 % , increased the anomaly contrast accuracy by 9 % ± 9 % (μ a ), and reduced the crosstalk by 5 % ± 18 % and 7 % ± 11 % , respectively, compared with model-based tomography. The average reconstruction time was reduced from 3.8 min to 0.02 s for a single reconstruction. The model was successfully verified using two tumor-emulating optical phantoms. Conclusions There is clinical potential for real-time functional imaging of human breast tissue using DL and FD-DOT.
Collapse
Affiliation(s)
- Robin Dale
- University of Birmingham, School of Computer Science, Medical Imaging Lab, Birmingham, United Kingdom
| | - Biao Zheng
- University of Birmingham, School of Computer Science, Medical Imaging Lab, Birmingham, United Kingdom
| | - Felipe Orihuela-Espina
- University of Birmingham, School of Computer Science, Medical Imaging Lab, Birmingham, United Kingdom
| | - Nicholas Ross
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Scott Howard
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Medical Imaging Lab, Birmingham, United Kingdom
| |
Collapse
|
8
|
Yi H, Yang R, Wang Y, Wang Y, Guo H, Cao X, Zhu S, He X. Enhanced model iteration algorithm with graph neural network for diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:1910-1925. [PMID: 38495688 PMCID: PMC10942675 DOI: 10.1364/boe.509775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Diffuse optical tomography (DOT) employs near-infrared light to reveal the optical parameters of biological tissues. Due to the strong scattering of photons in tissues and the limited surface measurements, DOT reconstruction is severely ill-posed. The Levenberg-Marquardt (LM) is a popular iteration method for DOT, however, it is computationally expensive and its reconstruction accuracy needs improvement. In this study, we propose a neural model based iteration algorithm which combines the graph neural network with Levenberg-Marquardt (GNNLM), which utilizes a graph data structure to represent the finite element mesh. In order to verify the performance of the graph neural network, two GNN variants, namely graph convolutional neural network (GCN) and graph attention neural network (GAT) were employed in the experiments. The results showed that GCNLM performs best in the simulation experiments within the training data distribution. However, GATLM exhibits superior performance in the simulation experiments outside the training data distribution and real experiments with breast-like phantoms. It demonstrated that the GATLM trained with simulation data can generalize well to situations outside the training data distribution without transfer training. This offers the possibility to provide more accurate absorption coefficient distributions in clinical practice.
Collapse
Affiliation(s)
- Huangjian Yi
- School of Information Sciences and Technology, Northwest University, Xi’an, Shaanxi 710069, China
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, No. 1 Xuefu Avenue, 710127 Xi’an, Shaanxi, China
| | - Ruigang Yang
- School of Information Sciences and Technology, Northwest University, Xi’an, Shaanxi 710069, China
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, No. 1 Xuefu Avenue, 710127 Xi’an, Shaanxi, China
| | - Yishuo Wang
- School of Information Sciences and Technology, Northwest University, Xi’an, Shaanxi 710069, China
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, No. 1 Xuefu Avenue, 710127 Xi’an, Shaanxi, China
| | - Yihan Wang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710026, China
| | - Hongbo Guo
- School of Information Sciences and Technology, Northwest University, Xi’an, Shaanxi 710069, China
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, No. 1 Xuefu Avenue, 710127 Xi’an, Shaanxi, China
| | - Xu Cao
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710026, China
| | - Shouping Zhu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710026, China
| | - Xiaowei He
- School of Information Sciences and Technology, Northwest University, Xi’an, Shaanxi 710069, China
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, No. 1 Xuefu Avenue, 710127 Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Xue M, Zhang M, Li S, Zou Y, Zhu Q. Automated pipeline for breast cancer diagnosis using US assisted diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:6072-6087. [PMID: 38021111 PMCID: PMC10659805 DOI: 10.1364/boe.502244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Ultrasound (US)-guided diffuse optical tomography (DOT) is a portable and non-invasive imaging modality for breast cancer diagnosis and treatment response monitoring. However, DOT data pre-processing and imaging reconstruction often require labor intensive manual processing which hampers real-time diagnosis. In this study, we aim at providing an automated US-assisted DOT pre-processing, imaging and diagnosis pipeline to achieve near real-time diagnosis. We have developed an automated DOT pre-processing method including motion detection, mismatch classification using deep-learning approach, and outlier removal. US-lesion information needed for DOT reconstruction was extracted by a semi-automated lesion segmentation approach combined with a US reading algorithm. A deep learning model was used to evaluate the quality of the reconstructed DOT images and a two-step deep-learning model developed earlier is implemented to provide final diagnosis based on US imaging features and DOT measurements and imaging results. The presented US-assisted DOT pipeline accurately processed the DOT measurements and reconstruction and reduced the procedure time to 2 to 3 minutes while maintained a comparable classification result with manually processed dataset.
Collapse
Affiliation(s)
- Minghao Xue
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Menghao Zhang
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Shuying Li
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yun Zou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Deng B, Gu H, Zhu H, Chang K, Hoebel KV, Patel JB, Kalpathy-Cramer J, Carp SA. FDU-Net: Deep Learning-Based Three-Dimensional Diffuse Optical Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2439-2450. [PMID: 37028063 PMCID: PMC10446911 DOI: 10.1109/tmi.2023.3252576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Near-infrared diffuse optical tomography (DOT) is a promising functional modality for breast cancer imaging; however, the clinical translation of DOT is hampered by technical limitations. Specifically, conventional finite element method (FEM)-based optical image reconstruction approaches are time-consuming and ineffective in recovering full lesion contrast. To address this, we developed a deep learning-based reconstruction model (FDU-Net) comprised of a Fully connected subnet, followed by a convolutional encoder-Decoder subnet, and a U-Net for fast, end-to-end 3D DOT image reconstruction. The FDU-Net was trained on digital phantoms that include randomly located singular spherical inclusions of various sizes and contrasts. Reconstruction performance was evaluated in 400 simulated cases with realistic noise profiles for the FDU-Net and conventional FEM approaches. Our results show that the overall quality of images reconstructed by FDU-Net is significantly improved compared to FEM-based methods and a previously proposed deep-learning network. Importantly, once trained, FDU-Net demonstrates substantially better capability to recover true inclusion contrast and location without using any inclusion information during reconstruction. The model was also generalizable to multi-focal and irregularly shaped inclusions unseen during training. Finally, FDU-Net, trained on simulated data, could successfully reconstruct a breast tumor from a real patient measurement. Overall, our deep learning-based approach demonstrates marked superiority over the conventional DOT image reconstruction methods while also offering over four orders of magnitude acceleration in computational time. Once adapted to the clinical breast imaging workflow, FDU-Net has the potential to provide real-time accurate lesion characterization by DOT to assist the clinical diagnosis and management of breast cancer.
Collapse
|
11
|
Zhang M, Li S, Xue M, Zhu Q. Two-stage classification strategy for breast cancer diagnosis using ultrasound-guided diffuse optical tomography and deep learning. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:086002. [PMID: 37638108 PMCID: PMC10457211 DOI: 10.1117/1.jbo.28.8.086002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
Significance Ultrasound (US)-guided diffuse optical tomography (DOT) has demonstrated great potential for breast cancer diagnosis in which real-time or near real-time diagnosis with high accuracy is desired. Aim We aim to use US-guided DOT to achieve an automated, fast, and accurate classification of breast lesions. Approach We propose a two-stage classification strategy with deep learning. In the first stage, US images and histograms created from DOT perturbation measurements are combined to predict benign lesions. Then the non-benign suspicious lesions are passed through to the second stage, which combine US image features, DOT histogram features, and 3D DOT reconstructed images for final diagnosis. Results The first stage alone identified 73.0% of benign cases without image reconstruction. In distinguishing between benign and malignant breast lesions in patient data, the two-stage classification approach achieved an area under the receiver operating characteristic curve of 0.946, outperforming the diagnoses of all single-modality models and of a single-stage classification model that combines all US images, DOT histogram, and imaging features. Conclusions The proposed two-stage classification strategy achieves better classification accuracy than single-modality-only models and a single-stage classification model that combines all features. It can potentially distinguish breast cancers from benign lesions in near real-time.
Collapse
Affiliation(s)
- Menghao Zhang
- Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
| | - Shuying Li
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Minghao Xue
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Quing Zhu
- Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| |
Collapse
|
12
|
Lininger A, Aththanayake A, Boyd J, Ali O, Goel M, Jizhe Y, Hinczewski M, Strangi G. Machine learning to optimize additive manufacturing for visible photonics. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2767-2778. [PMID: 39635468 PMCID: PMC11501914 DOI: 10.1515/nanoph-2022-0815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 12/07/2024]
Abstract
Additive manufacturing has become an important tool for fabricating advanced systems and devices for visible nanophotonics. However, the lack of simulation and optimization methods taking into account the essential physics of the optimization process leads to barriers for greater adoption. This issue can often result in sub-optimal optical responses in fabricated devices on both local and global scales. We propose that physics-informed design and optimization methods, and in particular physics-informed machine learning, are particularly well-suited to overcome these challenges by incorporating known physics, constraints, and fabrication knowledge directly into the design framework.
Collapse
Affiliation(s)
- Andrew Lininger
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd., Cleveland, OH44106, USA
| | - Akeshi Aththanayake
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd., Cleveland, OH44106, USA
| | - Jonathan Boyd
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd., Cleveland, OH44106, USA
| | - Omar Ali
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd., Cleveland, OH44106, USA
| | - Madhav Goel
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd., Cleveland, OH44106, USA
| | - Yangheng Jizhe
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd., Cleveland, OH44106, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd., Cleveland, OH44106, USA
| | - Giuseppe Strangi
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd., Cleveland, OH44106, USA
- University of Calabria and CNR – Institute of Nanotechnology, Rende, CS, Italy
| |
Collapse
|
13
|
Xu M, Chen Z, Zheng J, Zhao Q, Yuan Z. Artificial Intelligence-Aided Optical Imaging for Cancer Theranostics. Semin Cancer Biol 2023:S1044-579X(23)00094-9. [PMID: 37302519 DOI: 10.1016/j.semcancer.2023.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
The use of artificial intelligence (AI) to assist biomedical imaging have demonstrated its high accuracy and high efficiency in medical decision-making for individualized cancer medicine. In particular, optical imaging methods are able to visualize both the structural and functional information of tumors tissues with high contrast, low cost, and noninvasive property. However, no systematic work has been performed to inspect the recent advances on AI-aided optical imaging for cancer theranostics. In this review, we demonstrated how AI can guide optical imaging methods to improve the accuracy on tumor detection, automated analysis and prediction of its histopathological section, its monitoring during treatment, and its prognosis by using computer vision, deep learning and natural language processing. By contrast, the optical imaging techniques involved mainly consisted of various tomography and microscopy imaging methods such as optical endoscopy imaging, optical coherence tomography, photoacoustic imaging, diffuse optical tomography, optical microscopy imaging, Raman imaging, and fluorescent imaging. Meanwhile, existing problems, possible challenges and future prospects for AI-aided optical imaging protocol for cancer theranostics were also discussed. It is expected that the present work can open a new avenue for precision oncology by using AI and optical imaging tools.
Collapse
Affiliation(s)
- Mengze Xu
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Zhiyi Chen
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxiao Zheng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Qi Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
14
|
Wang F, Kim SH, Zhao Y, Raghuram A, Veeraraghavan A, Robinson J, Hielscher AH. High-Speed Time-Domain Diffuse Optical Tomography with a Sensitivity Equation-based Neural Network. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2023; 9:459-474. [PMID: 37456517 PMCID: PMC10348778 DOI: 10.1109/tci.2023.3273423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Steady progress in time-domain diffuse optical tomography (TD-DOT) technology is allowing for the first time the design of low-cost, compact, and high-performance systems, thus promising more widespread clinical TD-DOT use, such as for recording brain tissue hemodynamics. TD-DOT is known to provide more accurate values of optical properties and physiological parameters compared to its frequency-domain or steady-state counterparts. However, achieving high temporal resolution is still difficult, as solving the inverse problem is computationally demanding, leading to relatively long reconstruction times. The runtime is further compromised by processes that involve 'nontrivial' empirical tuning of reconstruction parameters, which increases complexity and inefficiency. To address these challenges, we present a new reconstruction algorithm that combines a deep-learning approach with our previously introduced sensitivity-equation-based, non-iterative sparse optical reconstruction (SENSOR) code. The new algorithm (called SENSOR-NET) unfolds the iterations of SENSOR into a deep neural network. In this way, we achieve high-resolution sparse reconstruction using only learned parameters, thus eliminating the need to tune parameters prior to reconstruction empirically. Furthermore, once trained, the reconstruction time is not dependent on the number of sources or wavelengths used. We validate our method with numerical and experimental data and show that accurate reconstructions with 1 mm spatial resolution can be obtained in under 20 milliseconds regardless of the number of sources used in the setup. This opens the door for real-time brain monitoring and other high-speed DOT applications.
Collapse
Affiliation(s)
- Fay Wang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Stephen H Kim
- Department of Biomedical Engineering, New York University - Tandon School of Engineering, New York, NY 10001
| | - Yongyi Zhao
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Ankit Raghuram
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Ashok Veeraraghavan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Jacob Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Andreas H Hielscher
- Department of Biomedical Engineering, New York University - Tandon School of Engineering, New York, NY 10001
| |
Collapse
|
15
|
Zhang M, Xue M, Li S, Zou Y, Zhu Q. Fusion deep learning approach combining diffuse optical tomography and ultrasound for improving breast cancer classification. BIOMEDICAL OPTICS EXPRESS 2023; 14:1636-1646. [PMID: 37078047 PMCID: PMC10110311 DOI: 10.1364/boe.486292] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 05/03/2023]
Abstract
Diffuse optical tomography (DOT) is a promising technique that provides functional information related to tumor angiogenesis. However, reconstructing the DOT function map of a breast lesion is an ill-posed and underdetermined inverse process. A co-registered ultrasound (US) system that provides structural information about the breast lesion can improve the localization and accuracy of DOT reconstruction. Additionally, the well-known US characteristics of benign and malignant breast lesions can further improve cancer diagnosis based on DOT alone. Inspired by a fusion model deep learning approach, we combined US features extracted by a modified VGG-11 network with images reconstructed from a DOT deep learning auto-encoder-based model to form a new neural network for breast cancer diagnosis. The combined neural network model was trained with simulation data and fine-tuned with clinical data: it achieved an AUC of 0.931 (95% CI: 0.919-0.943), superior to those achieved using US images alone (0.860) or DOT images alone (0.842).
Collapse
Affiliation(s)
- Menghao Zhang
- Electrical and System Engineering Department, Washington University in St. Louis, 1 Brooking Dr, St. Louis, MO 63130, USA
| | - Minghao Xue
- Biomedical Engineering Department, Washington University in St. Louis, 1 Brooking Dr, St. Louis, MO 63130, USA
| | - Shuying Li
- Biomedical Engineering Department, Washington University in St. Louis, 1 Brooking Dr, St. Louis, MO 63130, USA
| | - Yun Zou
- Biomedical Engineering Department, Washington University in St. Louis, 1 Brooking Dr, St. Louis, MO 63130, USA
| | - Quing Zhu
- Electrical and System Engineering Department, Washington University in St. Louis, 1 Brooking Dr, St. Louis, MO 63130, USA
- Biomedical Engineering Department, Washington University in St. Louis, 1 Brooking Dr, St. Louis, MO 63130, USA
| |
Collapse
|
16
|
Hauptman A, Balasubramaniam GM, Arnon S. Machine Learning Diffuse Optical Tomography Using Extreme Gradient Boosting and Genetic Programming. Bioengineering (Basel) 2023; 10:bioengineering10030382. [PMID: 36978773 PMCID: PMC10045273 DOI: 10.3390/bioengineering10030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Diffuse optical tomography (DOT) is a non-invasive method for detecting breast cancer; however, it struggles to produce high-quality images due to the complexity of scattered light and the limitations of traditional image reconstruction algorithms. These algorithms can be affected by boundary conditions and have a low imaging accuracy, a shallow imaging depth, a long computation time, and a high signal-to-noise ratio. However, machine learning can potentially improve the performance of DOT by being better equipped to solve inverse problems, perform regression, classify medical images, and reconstruct biomedical images. In this study, we utilized a machine learning model called "XGBoost" to detect tumors in inhomogeneous breasts and applied a post-processing technique based on genetic programming to improve accuracy. The proposed algorithm was tested using simulated DOT measurements from complex inhomogeneous breasts and evaluated using the cosine similarity metrics and root mean square error loss. The results showed that the use of XGBoost and genetic programming in DOT could lead to more accurate and non-invasive detection of tumors in inhomogeneous breasts compared to traditional methods, with the reconstructed breasts having an average cosine similarity of more than 0.97 ± 0.07 and average root mean square error of around 0.1270 ± 0.0031 compared to the ground truth.
Collapse
Affiliation(s)
- Ami Hauptman
- Department of Computer Science, Sapir Academic College, Sderot 7915600, Israel
| | - Ganesh M Balasubramaniam
- Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be'er Sheva 8441405, Israel
| | - Shlomi Arnon
- Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be'er Sheva 8441405, Israel
| |
Collapse
|
17
|
Nizam NI, Ochoa M, Smith JT, Intes X. Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions. BIOMEDICAL OPTICS EXPRESS 2023; 14:1041-1053. [PMID: 36950248 PMCID: PMC10026582 DOI: 10.1364/boe.480091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 06/17/2023]
Abstract
Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric solving of an ill-posed inverse problem. Deep learning (DL) models have been recently proposed to facilitate this challenging step. Herein, we expand on a previously reported deep neural network (DNN) -based architecture (modified AUTOMAP - ModAM) for accurate and fast reconstructions of the absorption coefficient in 3D DOT based on a structured light illumination and detection scheme. Furthermore, we evaluate the improved performances when incorporating a micro-CT structural prior in the DNN-based workflow, named Z-AUTOMAP. This Z-AUTOMAP significantly improves the widefield imaging process's spatial resolution, especially in the transverse direction. The reported DL-based strategies are validated both in silico and in experimental phantom studies using spectral micro-CT priors. Overall, this is the first successful demonstration of micro-CT and DOT fusion using deep learning, greatly enhancing the prospect of rapid data-integration strategies, often demanded in challenging pre-clinical scenarios.
Collapse
|
18
|
Zhao Y, Raghuram A, Wang F, Kim SH, Hielscher A, Robinson JT, Veeraraghavan A. Unrolled-DOT: an interpretable deep network for diffuse optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:036002. [PMID: 36908760 PMCID: PMC9995139 DOI: 10.1117/1.jbo.28.3.036002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Significance Imaging through scattering media is critical in many biomedical imaging applications, such as breast tumor detection and functional neuroimaging. Time-of-flight diffuse optical tomography (ToF-DOT) is one of the most promising methods for high-resolution imaging through scattering media. ToF-DOT and many traditional DOT methods require an image reconstruction algorithm. Unfortunately, this algorithm often requires long computational runtimes and may produce lower quality reconstructions in the presence of model mismatch or improper hyperparameter tuning. Aim We used a data-driven unrolled network as our ToF-DOT inverse solver. The unrolled network is faster than traditional inverse solvers and achieves higher reconstruction quality by accounting for model mismatch. Approach Our model "Unrolled-DOT" uses the learned iterative shrinkage thresholding algorithm. In addition, we incorporate a refinement U-Net and Visual Geometry Group (VGG) perceptual loss to further increase the reconstruction quality. We trained and tested our model on simulated and real-world data and benchmarked against physics-based and learning-based inverse solvers. Results In experiments on real-world data, Unrolled-DOT outperformed learning-based algorithms and achieved over 10× reduction in runtime and mean-squared error, compared to traditional physics-based solvers. Conclusion We demonstrated a learning-based ToF-DOT inverse solver that achieves state-of-the-art performance in speed and reconstruction quality, which can aid in future applications for noninvasive biomedical imaging.
Collapse
Affiliation(s)
- Yongyi Zhao
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Ankit Raghuram
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Fay Wang
- Columbia University, Department of Biomedical Engineering, New York, New York, United States
| | - Stephen Hyunkeol Kim
- Columbia University Irvine Medical Center, Department of Radiology, New York, New York, United States
- New York University - Tandon School of Engineering, Department of Biomedical Engineering, New York, New York, United States
| | - Andreas Hielscher
- New York University - Tandon School of Engineering, Department of Biomedical Engineering, New York, New York, United States
| | - Jacob T. Robinson
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Ashok Veeraraghavan
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| |
Collapse
|
19
|
Zhang W, Hu T, Li Z, Sun Z, Jia K, Dou H, Feng J, Pogue BW. Selfrec-Net: self-supervised deep learning approach for the reconstruction of Cherenkov-excited luminescence scanned tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:783-798. [PMID: 36874507 PMCID: PMC9979688 DOI: 10.1364/boe.480429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
As an emerging imaging technique, Cherenkov-excited luminescence scanned tomography (CELST) can recover a high-resolution 3D distribution of quantum emission fields within tissue using X-ray excitation for deep penetrance. However, its reconstruction is an ill-posed and under-conditioned inverse problem because of the diffuse optical emission signal. Deep learning based image reconstruction has shown very good potential for solving these types of problems, however they suffer from a lack of ground-truth image data to confirm when used with experimental data. To overcome this, a self-supervised network cascaded by a 3D reconstruction network and the forward model, termed Selfrec-Net, was proposed to perform CELST reconstruction. Under this framework, the boundary measurements are input to the network to reconstruct the distribution of the quantum field and the predicted measurements are subsequently obtained by feeding the reconstructed result to the forward model. The network was trained by minimizing the loss between the input measurements and the predicted measurements rather than the reconstructed distributions and the corresponding ground truths. Comparative experiments were carried out on both numerical simulations and physical phantoms. For singular luminescent targets, the results demonstrate the effectiveness and robustness of the proposed network, and comparable performance can be attained to a state-of-the-art deep supervised learning algorithm, where the accuracy of the emission yield and localization of the objects was far superior to iterative reconstruction methods. Reconstruction of multiple objects is still reasonable with high localization accuracy, although with limits to the emission yield accuracy as the distribution becomes more complex. Overall though the reconstruction of Selfrec-Net provides a self-supervised way to recover the location and emission yield of molecular distributions in murine model tissues.
Collapse
Affiliation(s)
- Wenqian Zhang
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Ting Hu
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Zhe Li
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Zhonghua Sun
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Kebin Jia
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Huijing Dou
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Jinchao Feng
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Brian W. Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
20
|
Li S, Zhang M, Xue M, Zhu Q. Difference imaging from single measurements in diffuse optical tomography: a deep learning approach. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220081GRR. [PMID: 36008881 PMCID: PMC9403167 DOI: 10.1117/1.jbo.27.8.086003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE "Difference imaging," which reconstructs target optical properties using measurements with and without target information, is often used in diffuse optical tomography (DOT) in vivo imaging. However, taking additional reference measurements is time consuming, and mismatches between the target medium and the reference medium can cause inaccurate reconstruction. AIM We aim to streamline the data acquisition and mitigate the mismatch problems in DOT difference imaging using a deep learning-based approach to generate data from target measurements only. APPROACH We train an artificial neural network to output data for difference imaging from target measurements only. The model is trained and validated on simulation data and tested with simulations, phantom experiments, and clinical data from 56 patients with breast lesions. RESULTS The proposed method has comparable performance to the traditional approach using measurements without mismatch between the target side and the reference side, and it outperforms the traditional approach using measurements when there is a mismatch. It also improves the target-to-artifact ratio and lesion localization in patient data. CONCLUSIONS The proposed method can simplify the data acquisition procedure, mitigate mismatch problems, and improve reconstructed image quality in DOT difference imaging.
Collapse
Affiliation(s)
- Shuying Li
- Washington University in St. Louis, Optical and Ultrasound Imaging Lab, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Menghao Zhang
- Washington University in St. Louis, Optical and Ultrasound Imaging Lab, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
| | - Minghao Xue
- Washington University in St. Louis, Optical and Ultrasound Imaging Lab, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Quing Zhu
- Washington University in St. Louis, Optical and Ultrasound Imaging Lab, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| |
Collapse
|
21
|
Balasubramaniam GM, Arnon S. Regression-based neural network for improving image reconstruction in diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:2006-2017. [PMID: 35519246 PMCID: PMC9045936 DOI: 10.1364/boe.449448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/02/2023]
Abstract
Diffuse optical tomography (DOT) is a non-invasive imaging technique utilizing multi-scattered light at visible and infrared wavelengths to detect anomalies in tissues. However, the DOT image reconstruction is based on solving the inverse problem, which requires massive calculations and time. In this article, for the first time, to the best of our knowledge, a simple, regression-based cascaded feed-forward deep learning neural network is derived to solve the inverse problem of DOT in compressed breast geometry. The predicted data is subsequently utilized to visualize the breast tissues and their anomalies. The dataset in this study is created using a Monte-Carlo algorithm, which simulates the light propagation in the compressed breast placed inside a parallel plate source-detector geometry (forward process). The simulated DL-DOT system's performance is evaluated using the Pearson correlation coefficient (R) and the Mean squared error (MSE) metrics. Although a comparatively smaller dataset (50 nos.) is used, our simulation results show that the developed feed-forward network algorithm to solve the inverse problem delivers an increment of ∼30% over the analytical solution approach, in terms of R. Furthermore, the proposed network's MSE outperforms that of the analytical solution's MSE by a large margin revealing the robustness of the network and the adaptability of the system for potential applications in medical settings.
Collapse
|
22
|
Smith JT, Ochoa M, Faulkner D, Haskins G, Intes X. Deep learning in macroscopic diffuse optical imaging. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210288VRR. [PMID: 35218169 PMCID: PMC8881080 DOI: 10.1117/1.jbo.27.2.020901] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/09/2022] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Biomedical optics system design, image formation, and image analysis have primarily been guided by classical physical modeling and signal processing methodologies. Recently, however, deep learning (DL) has become a major paradigm in computational modeling and has demonstrated utility in numerous scientific domains and various forms of data analysis. AIM We aim to comprehensively review the use of DL applied to macroscopic diffuse optical imaging (DOI). APPROACH First, we provide a layman introduction to DL. Then, the review summarizes current DL work in some of the most active areas of this field, including optical properties retrieval, fluorescence lifetime imaging, and diffuse optical tomography. RESULTS The advantages of using DL for DOI versus conventional inverse solvers cited in the literature reviewed herein are numerous. These include, among others, a decrease in analysis time (often by many orders of magnitude), increased quantitative reconstruction quality, robustness to noise, and the unique capability to learn complex end-to-end relationships. CONCLUSIONS The heavily validated capability of DL's use across a wide range of complex inverse solving methodologies has enormous potential to bring novel DOI modalities, otherwise deemed impractical for clinical translation, to the patient's bedside.
Collapse
Affiliation(s)
- Jason T. Smith
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| | - Marien Ochoa
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| | - Denzel Faulkner
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| | - Grant Haskins
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Center for Modeling, Simulation and Imaging for Medicine, Troy, New York, United States
| |
Collapse
|