1
|
Andriani MS, Bianco M, Montinaro C, Balena A, Pisanello M, Pisano F, Vittorio MD, Pisanello F. Low-NA two-photon lithography patterning of metal/dielectric tapered optical fibers for depth-selective, volumetric optical neural interfaces. OPTICS EXPRESS 2024; 32:48772-48785. [PMID: 39876173 DOI: 10.1364/oe.541017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/28/2024] [Indexed: 01/30/2025]
Abstract
Optical neural implants allow neuroscientists to access deep brain regions, enabling to decipher complex patterns of neural activity. In this field, the use of optical fibers is rapidly increasing, and the ability to generate high-quality metal patterns on their non-planar surface would further extend their application. Here, we propose to use alternating metal shielding and dielectric confinement to engineer the mode-division properties of tapered optical fiber neural implants. This is accomplished through an unconventional application of two-photon lithography (TPL), which employs a low-numerical aperture objective to pattern extensive waveguide sections at both low and high curvature radii. The low-NA TPL is used to polymerize a mask of photoresist, while the rest of the taper undergoes wet metal etching. This implies no direct destructive interaction between the laser beam and the metal to be removed, preserving the optical properties of the dielectric waveguide and of the metal coating. The advantages provided by the presented fabrication method, combined with the intrinsic modal properties of the dielectric waveguide, enable the engineering of the light guiding mechanisms, achieving depth-selective light delivery with a high extinction ratio. The device's light emission and collection properties were investigated in quasi-transparent media and highly scattering brain slices, finding that our proposed method facilitates 360° symmetric light collection around the dielectric-confined section with depth resolution. This opens a perspective for the realization of optical neural implants that can interface the implant axis all-around, with low-NA TPL that can also be applied on other types of non-planar surfaces.
Collapse
|
2
|
Michaud F, Francavilla R, Topolnik D, Iloun P, Tamboli S, Calon F, Topolnik L. Altered firing output of VIP interneurons and early dysfunctions in CA1 hippocampal circuits in the 3xTg mouse model of Alzheimer's disease. eLife 2024; 13:RP95412. [PMID: 39264364 PMCID: PMC11392531 DOI: 10.7554/elife.95412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Alzheimer's disease (AD) leads to progressive memory decline, and alterations in hippocampal function are among the earliest pathological features observed in human and animal studies. GABAergic interneurons (INs) within the hippocampus coordinate network activity, among which type 3 interneuron-specific (I-S3) cells expressing vasoactive intestinal polypeptide and calretinin play a crucial role. These cells provide primarily disinhibition to principal excitatory cells (PCs) in the hippocampal CA1 region, regulating incoming inputs and memory formation. However, it remains unclear whether AD pathology induces changes in the activity of I-S3 cells, impacting the hippocampal network motifs. Here, using young adult 3xTg-AD mice, we found that while the density and morphology of I-S3 cells remain unaffected, there were significant changes in their firing output. Specifically, I-S3 cells displayed elongated action potentials and decreased firing rates, which was associated with a reduced inhibition of CA1 INs and their higher recruitment during spatial decision-making and object exploration tasks. Furthermore, the activation of CA1 PCs was also impacted, signifying early disruptions in CA1 network functionality. These findings suggest that altered firing patterns of I-S3 cells might initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.
Collapse
Affiliation(s)
- Felix Michaud
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Ruggiero Francavilla
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Dimitry Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Parisa Iloun
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Suhel Tamboli
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Frederic Calon
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| |
Collapse
|
3
|
Tamboli S, Singh S, Topolnik D, El Amine Barkat M, Radhakrishnan R, Guet-McCreight A, Topolnik L. Mouse hippocampal CA1 VIP interneurons detect novelty in the environment and support recognition memory. Cell Rep 2024; 43:114115. [PMID: 38607918 DOI: 10.1016/j.celrep.2024.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.
Collapse
Affiliation(s)
- Suhel Tamboli
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Sanjay Singh
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Dimitry Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Mohamed El Amine Barkat
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Risna Radhakrishnan
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | | | - Lisa Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada.
| |
Collapse
|
4
|
Yang X, Chen Q, Jian T, Du H, Jin W, Liang M, Wang R, Chen X, Liao X, Qin H. Optrode recording of an entorhinal-cortical circuit in freely moving mice. BIOMEDICAL OPTICS EXPRESS 2023; 14:1911-1922. [PMID: 37206131 PMCID: PMC10191667 DOI: 10.1364/boe.487191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/21/2023]
Abstract
The deep layers of medial entorhinal cortex (MEC) are considered a crucial station for spatial cognition and memory. The deep sublayer Va of MEC (MECVa) serves as the output stage of the entorhinal-hippocampal system and sends extensive projections to brain cortical areas. However, the functional heterogeneity of these efferent neurons in MECVa is poorly understood, due to the difficulty of performing single-neuron activity recording from the narrow band of cell population while the animals are behaving. In the current study, we combined multi-electrode electrophysiological recording and optical stimulation to record cortical-projecting MECVa neurons at single-neuron resolution in freely moving mice. First, injection of a viral Cre-LoxP system was used to express channelrhodopsin-2 specifically in MECVa neurons that project to the medial part of the secondary visual cortex (V2M-projecting MECVa neurons). Then, a lightweight, self-made optrode was implanted into MECVa to identify the V2M-projecting MECVa neurons and to enable single-neuron activity recordings in mice performing the open field test and 8-arm radial maze. Our results demonstrate that optrode approach is an accessible and reliable method for single-neuron recording of V2M-projecting MECVa neurons in freely moving mice, paving the way for future circuit studies designed to characterize the activity of MECVa neurons during specific tasks.
Collapse
Affiliation(s)
- Xinyu Yang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Qianwei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China
| | - Haoran Du
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Mengru Liang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Rui Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|