1
|
Karimian S, Ali MM, McAfee M, Saleem W, Duraibabu D, Memon SF, Lewis E. Challenges in Adapting Fibre Optic Sensors for Biomedical Applications. BIOSENSORS 2025; 15:312. [PMID: 40422051 DOI: 10.3390/bios15050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Fibre optic sensors (FOSs) have developed as a transformative technology in healthcare, often offering unparalleled accuracy and sensitivity in monitoring various physiological and biochemical parameters. Their applications range from tracking vital signs to guiding minimally invasive surgeries, enabling advancements in medical diagnostics and treatment. However, the integration of FOSs into biomedical applications faces numerous challenges. This article describes some challenges for adopting FOSs for biomedical purposes, exploring technical and practical obstacles, and examining innovative solutions. Significant challenges include biocompatibility, miniaturization, addressing signal processing complexities, and meeting regulatory standards. By outlining solutions to the stated challenges, it is intended that this article provides a better understanding of FOS technologies in biomedical settings and their implementation. A broader appreciation of the technology, offered in this article, enhances patient care and improved medical outcomes.
Collapse
Affiliation(s)
- Sahar Karimian
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91 YW50 Sligo, Ireland
- Department of Mechatronic Engineering, Faculty of Engineering and Design, Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Muhammad Mahmood Ali
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91 YW50 Sligo, Ireland
- Department of Mechatronic Engineering, Faculty of Engineering and Design, Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91 YW50 Sligo, Ireland
- Department of Mechatronic Engineering, Faculty of Engineering and Design, Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Waqas Saleem
- Department of Mechanical Engineering, Technological University Dublin, D15 YV78 Dublin, Ireland
| | - Dineshbabu Duraibabu
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91 YW50 Sligo, Ireland
- Department of Mechatronic Engineering, Faculty of Engineering and Design, Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Sanober Farheen Memon
- Optical Fibre Sensors Research Centre, University of Limerick, V94 T9PX Limerick, Ireland
| | - Elfed Lewis
- Optical Fibre Sensors Research Centre, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
2
|
Arcadio F, Seggio M, Pitruzzella R, Zeni L, Bossi AM, Cennamo N. An Efficient Bio-Receptor Layer Combined with a Plasmonic Plastic Optical Fiber Probe for Cortisol Detection in Saliva. BIOSENSORS 2024; 14:351. [PMID: 39056627 PMCID: PMC11274917 DOI: 10.3390/bios14070351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Cortisol is a clinically validated stress biomarker that takes part in many physiological and psychological functions related to the body's response to stress factors. In particular, it has emerged as a pivotal tool for understanding stress levels and overall well-being. Usually, in clinics, cortisol levels are monitored in blood or urine, but significant changes are also registered in sweat and saliva. In this work, a surface plasmon resonance probe based on a D-shaped plastic optical fiber was functionalized with a glucocorticoid receptor exploited as a highly efficient bioreceptor specific to cortisol. The developed plastic optical fiber biosensor was tested for cortisol detection in buffer and artificial saliva. The biosensor response showed very good selectivity towards other hormones and a detection limit of about 59 fM and 96 fM in phosphate saline buffer and artificial saliva, respectively. The obtained detection limit, with a rapid detection time (about 5 min) and a low-cost sensor system, paved the way for determining the cortisol concentration in saliva samples without any extraction process or sample pretreatment via a point-of-care test.
Collapse
Affiliation(s)
- Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (F.A.); (R.P.); (L.Z.)
| | - Mimimorena Seggio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Rosalba Pitruzzella
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (F.A.); (R.P.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (F.A.); (R.P.); (L.Z.)
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (F.A.); (R.P.); (L.Z.)
| |
Collapse
|
3
|
Kumar S, Iadicicco A, Kim S, Tosi D, Marques C. Introduction to the feature issue: Advances in Optical Biosensors for Biomedical Applications. BIOMEDICAL OPTICS EXPRESS 2024; 15:3183-3190. [PMID: 38855687 PMCID: PMC11161368 DOI: 10.1364/boe.527613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 06/11/2024]
Abstract
The feature issue of Biomedical Optics Express titled "Advances in Optical Biosensors for Biomedical Applications" presents a comprehensive collection of cutting-edge optical biosensor research. With the growing demand for sensitive, label-free, and real-time detection of biological analytes, optical biosensors have emerged as important devices in a wide range of biomedical applications, including medical diagnostics, bioanalysis, and personalised healthcare. This collection of 26 papers highlights recent advances and innovations in the development, design, and implementation of optical biosensors. The feature issue serves as an opportunity for disseminating ground-breaking findings, promoting new ideas, and inspiring further developments in optical biosensors for medical applications. The authors provide breakthrough technology, innovative approaches, and practical clinical applications that have the potential to revolutionize healthcare and biomedical research.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Agostino Iadicicco
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Seunghyun Kim
- Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Daniele Tosi
- Department of Electrical and Computer Engineering, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Carlos Marques
- CICECO – Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Oliveira SC, Soares S, Rodrigues ACM, Gonçalves BV, Soares AMVM, Santos N, Kumar S, Almeida P, Marques C. Optical fiber immunosensors based on surface plasmon resonance for the detection of Escherichia coli. OPTICS EXPRESS 2024; 32:10077-10092. [PMID: 38571228 DOI: 10.1364/oe.518723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/10/2024] [Indexed: 04/05/2024]
Abstract
Every year, millions of people suffer some form of illness associated with the consumption of contaminated food. Escherichia coli (E. coli), found in the intestines of humans and other animals, is commonly associated with various diseases, due to the existence of pathogenic strains. Strict monitoring of food products for human consumption is essential to ensure public health, but traditional cell culture-based methods are associated with long waiting times and high costs. New approaches must be developed to achieve cheap, fast, and on-site monitoring. Thus, in this work, we developed optical fiber sensors based on surface plasmon resonance. Gold and cysteamine-coated fibers were functionalized with anti-E. coli antibody and tested using E. coli suspensions with concentrations ranging from 1 cell/mL to 105 cells/mL. An average logarithmic sensitivity of 0.21 ± 0.01 nm/log(cells/mL) was obtained for three independent assays. An additional assay revealed that including molybdenum disulfide resulted in an increase of approximately 50% in sensitivity. Specificity and selectivity were also evaluated, and the sensors were used to analyze contaminated water samples, which verified their promising applicability in the aquaculture field.
Collapse
|
5
|
Bekmurzayeva A, Nurlankyzy M, Abdossova A, Myrkhiyeva Z, Tosi D. All-fiber label-free optical fiber biosensors: from modern technologies to current applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2024; 15:1453-1473. [PMID: 38495725 PMCID: PMC10942689 DOI: 10.1364/boe.515563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
Biosensors are established as promising analytical tools for detecting various analytes important in biomedicine and environmental monitoring. Using fiber optic technology as a sensing element in biosensors offers low cost, high sensitivity, chemical inertness, and immunity to electromagnetic interference. Optical fiber sensors can be used in in vivo applications and multiplexed to detect several targets simultaneously. Certain configurations of optical fiber technology allow the detection of analytes in a label-free manner. This review aims to discuss recent advances in label-free optical fiber biosensors from a technological and application standpoint. First, modern technologies used to build label-free optical fiber-based sensors will be discussed. Then, current applications where these technologies are applied are elucidated. Namely, examples of detecting soluble cancer biomarkers, hormones, viruses, bacteria, and cells are presented.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Marzhan Nurlankyzy
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Albina Abdossova
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Zhuldyz Myrkhiyeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
6
|
Yang C, Wang Z, Xiao K, Ushakov N, Kumar S, Li X, Min R. Portable optical fiber biosensors integrated with smartphone: technologies, applications, and challenges [Invited]. BIOMEDICAL OPTICS EXPRESS 2024; 15:1630-1650. [PMID: 38495719 PMCID: PMC10942678 DOI: 10.1364/boe.517534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 03/19/2024]
Abstract
The increasing demand for individualized health monitoring and diagnostics has prompted considerable research into the integration of portable optical fiber biosensors integrated with smartphones. By capitalizing on the benefits offered by optical fibers, these biosensors enable qualitative and quantitative biosensing across a wide range of applications. The integration of these sensors with smartphones, which possess advanced computational power and versatile sensing capabilities, addresses the increasing need for portable and rapid sensing solutions. This extensive evaluation thoroughly examines the domain of optical fiber biosensors in conjunction with smartphones, including hardware complexities, sensing approaches, and integration methods. Additionally, it explores a wide range of applications, including physiological and chemical biosensing. Furthermore, the review provides an analysis of the challenges that have been identified in this rapidly evolving area of research and concludes with relevant suggestions for the progression of the field.
Collapse
Affiliation(s)
- Chengwei Yang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - Zhuo Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - Kun Xiao
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Nikolai Ushakov
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Santosh Kumar
- Department of Electronics and Communication Engineering, K L Deemed to be University, Guntur, Andhra Pradesh 522302, India
| | - Xiaoli Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, China
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
7
|
Li X, Singh R, Zhang B, Kumar S, Li G. S-Tapered WaveFlex Biosensor Based on Multimode Fiber and Seven-Core Fiber Composite Structure for Detection of Alpha-Fetoprotein. IEEE SENSORS JOURNAL 2024; 24:4480-4487. [DOI: 10.1109/jsen.2023.3346180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Xiangshan Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, China
| | - Ragini Singh
- Department of Biotechnology, K L Deemed to be University, Guntur, Andhra Pradesh, India
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, China
| | - Santosh Kumar
- Department of Electronics and Communication Engineering, K L Deemed to be University, Guntur, Andhra Pradesh, India
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, China
| |
Collapse
|
8
|
Santonocito R, Puglisi R, Cavallaro A, Pappalardo A, Trusso Sfrazzetto G. Cortisol sensing by optical sensors. Analyst 2024; 149:989-1001. [PMID: 38226461 DOI: 10.1039/d3an01801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
During a stress condition, the human body synthesizes catecholamine neurotransmitters and specific hormones (called "stress hormones"), the most important of which is cortisol. The monitoring of cortisol levels is extremely important for controlling the stress levels. For this reason, it has important medical applications. Common analytical methods (HPLC, GC-MS) cannot be used in real life due to the bulkiness of the instruments and the necessity of specialized operators. Molecular probes solve this problem. This review aims to provide a description of recent developments in this field, focusing on the analytical aspects and the possibility to obtain real practical devices from these molecular probes.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
9
|
Nifontova G, Charlier C, Ayadi N, Fleury F, Karaulov A, Sukhanova A, Nabiev I. Photonic Crystal Surface Mode Real-Time Imaging of RAD51 DNA Repair Protein Interaction with the ssDNA Substrate. BIOSENSORS 2024; 14:43. [PMID: 38248420 PMCID: PMC10813746 DOI: 10.3390/bios14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Photonic crystals (PCs) are promising tools for label-free sensing in drug discovery screening, diagnostics, and analysis of ligand-receptor interactions. Imaging of PC surface modes has emerged as a novel approach to the detection of multiple binding events at the sensor surface. PC surface modification and decoration with recognition units yield an interface providing the highly sensitive detection of cancer biomarkers, antibodies, and oligonucleotides. The RAD51 protein plays a central role in DNA repair via the homologous recombination pathway. This recombinase is essential for the genome stability and its overexpression is often correlated with aggressive cancer. RAD51 is therefore a potential target in the therapeutic strategy for cancer. Here, we report the designing of a PC-based array sensor for real-time monitoring of oligonucleotide-RAD51 recruitment by means of surface mode imaging and validation of the concept of this approach. Our data demonstrate that the designed biosensor ensures the highly sensitive multiplexed analysis of association-dissociation events and detection of the biomarker of DNA damage using a microfluidic PC array. The obtained results highlight the potential of the developed technique for testing the functionality of candidate drugs, discovering new molecular targets and drug entities. This paves the way to further adaption and bioanalytical use of the biosensor for high-content screening to identify new DNA repair inhibitor drugs targeting the RAD51 nucleoprotein filament or to discover new molecular targets.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Cathy Charlier
- Nantes Université, CNRS, US2B, UMR 6286, IMPACT Platform and SFR Bonamy, 44000 Nantes, France;
| | - Nizar Ayadi
- Nantes Université, CNRS, US2B, UMR 6286, DNA Repair Group, 44000 Nantes, France; (N.A.); (F.F.)
| | - Fabrice Fleury
- Nantes Université, CNRS, US2B, UMR 6286, DNA Repair Group, 44000 Nantes, France; (N.A.); (F.F.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France;
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France;
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russia
| |
Collapse
|
10
|
Ok J, Park S, Jung YH, Kim TI. Wearable and Implantable Cortisol-Sensing Electronics for Stress Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211595. [PMID: 36917076 DOI: 10.1002/adma.202211595] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cortisol is a steroid hormone that is released from the body in response to stress. Although a moderate level of cortisol secretion can help the body maintain homeostasis, excessive secretion can cause various diseases, such as depression and anxiety. Conventional methods for cortisol measurement undergo procedures that limit continuous monitoring, typically collecting samples of bodily fluids, followed by separate analysis in a laboratory setting that takes several hours. Thus, recent studies demonstrate wearable, miniaturized sensors integrated with electronic modules that enable wireless real-time analysis. Here, the primary focus is on wearable and implantable electronic devices that continuously measure cortisol concentration. Diverse types of cortisol-sensing techniques, such as antibody-, DNA-aptamer-, and molecularly imprinted polymer-based sensors, as well as wearable and implantable devices that aim to continuously monitor cortisol in a minimally invasive fashion are discussed. In addition to the cortisol monitors that directly measure stress levels, other schemes that indirectly measure stress, such as electrophysiological signals and sweat are also summarized. Finally, the challenges and future directions in stress monitoring and management electronics are reviewed.
Collapse
Affiliation(s)
- Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sumin Park
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
11
|
Ahmadsaidulu S, Banik O, Kumar P, Kumar S, Banoth E. Microfluidic Point-of-Care Diagnostics for Multi-Disease Detection Using Optical Techniques: A Review. IEEE Trans Nanobioscience 2024; 23:140-147. [PMID: 37399163 DOI: 10.1109/tnb.2023.3291544] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The lifestyle of modern society is a major contributing factor for the majority of patients suffering from more than one disease. To Screen and diagnose each of those diseases, there is a great need for portable, and economical diagnostic tools, which are highly stipulated to yield rapid and accurate results using a small volume of the samples such as blood, saliva, sweat, etc. Point-of-care Testing (POCT) is one of the approaches to harvest prompt diagnosis of numerous diseases. The Majority of Point-of-Care Devices (POCD) are developed to diagnose one disease within the specimen. On the other hand, multi-disease detection capabilities in the same point-of-care devices are considered to be an efficient candidate to execute the state-of-the-art platform for multi-disease detection. Most of the literature reviews in this field focus on Point-of-Care (POC) devices, their underlying principles of operation, and their potential applications. It is evident from a perusal of the scholarly works that no review articles have been written on multi-disease detection POC devices. A review study analyzing the current level and functionality of multi-disease detection POC devices would be of great use to future researchers and device manufacturers. This review paper is addressing the above gap by focusing on various optical techniques like fluorescence, Absorbance, and Surface Plasmon Resonance (SPR) for multi-disease detection by harnessing the microfluidic-based POC device.
Collapse
|
12
|
Fu Q, Xie Y, Gao F, Zhu W, Lang X, Singh R, Zhang B, Kumar S. Signal-enhanced multi-core fiber-based WaveFlex biosensor for ultra-sensitive xanthine detection. OPTICS EXPRESS 2023; 31:43178-43197. [PMID: 38178418 DOI: 10.1364/oe.503443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
In this work, we introduce a novel multimode fiber (MMF) - seven core fiber (SCF) - MMF (MCM) optical fiber biosensor, also known as the WaveFlex biosensor (plasma wave assisted fiber biosensor), based on localized surface plasmon resonance (LSPR) for qualitative detection of xanthine. Xanthine is a purine base widely distributed in human blood and tissues, and commonly used as an indicator for various disease detections. The MCM sensor incorporates a tapered optical fiber structure, fabricated using the combiner manufacturing system (CMS), and is designed with SCF and MMF. By effectively harnessing LSPR, the sensor boosts the attachment points of biomolecules on the probe surface through immobilized tungsten disulfide (WS2)-thin layers, gold nanoparticles (AuNPs), and carbon nitride quantum dots (C3N-QDs). The functionalization of xanthine oxidase (XO) on the sensing probe further enhances the sensor's specificity. The proposed WaveFlex biosensor exhibits a remarkable sensitivity of 3.2 nm/mM and a low detection limit of 96.75 µM within the linear detection range of 100 - 900 µM. Moreover, the sensor probe demonstrates excellent reusability, reproducibility, stability, and selectivity. With its sensitivity, biocompatibility, and immense potential for detecting human serum and fish products, this WaveFlex biosensor presents a promising platform for future applications.
Collapse
|
13
|
Zhang G, Singh R, Zhang B, Kumar S, Li G. WaveFlex biosensor based on S-tapered and waist-expanded technique for detection of glycosylated hemoglobin. BIOMEDICAL OPTICS EXPRESS 2023; 14:6100-6113. [PMID: 38021109 PMCID: PMC10659782 DOI: 10.1364/boe.505864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Glycosylated hemoglobin (HbA1c) is considered a new standard for the detection of diabetes mellitus because it is more accurate than regular blood sugar tests and there is no need to take blood on an empty stomach or at a specific time. In this work, we have developed a novel optical fiber biosensor, referred to as the "WaveFlex biosensor," which operates on the principles of localized surface plasmon resonance (LSPR) plasmonic wave. The sensor is fabricated using an innovative S-tapered and waist-expanded technique, enabling it to effectively detect HbA1c. Compared to the HbA1c sensors currently in use, HbA1c optical fiber sensors possess the characteristics of high sensitivity, low cost, and strong anti-interference ability. The gold nanoparticles (AuNPs), cerium oxide (CeO2) nanorods (NRs), and tungsten disulfide (WS2) nanosheets (NSs) are functionalized to improve the effectiveness of the fiber sensor on the probe surface. AuNPs are utilized to generate LSPR by the excitation of evanescent waves to amplify the sensing signal. The CeO2-NRs can have a strong metal-carrier interaction with AuNPs, enhancing the cascade of CeO2-NRs and AuNPs. The WS2-NSs with layered fold structure have a large specific surface area. Therefore, the combination of CeO2-NRs and WS2-NSs is conducive to the binding of antibodies and the addition of sites. The functionalized antibodies on the fiber make the sensor probe capable of specific selection. The developed probe is applied to test the HbA1c solution over concentrations of 0-1000 µg/mL, and the sensitivity and limits of detection of 1.195×10-5 a.u./(µg/mL) and 1.66 µg/mL are obtained, respectively. The sensor probe is also evaluated using assays for reproducibility, reusability, selectivity, and pH. According to the findings, a novel method for detecting blood glucose based on a plasmonic biosensor is proposed.
Collapse
Affiliation(s)
- Guiwei Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
14
|
Du Y, Ye C. Rayleigh scattering-based single mode-graded index multimode-coreless fiber structure for distributed liquid detection. OPTICS EXPRESS 2023; 31:35948-35955. [PMID: 38017755 DOI: 10.1364/oe.506039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 11/30/2023]
Abstract
Liquid sensing is crucial in numerous industrial contexts, from chemical processing to power transformers, ensuring safety and operational optimization. While electrochemical liquid sensors are common, they pose safety risks, especially when monitoring hazardous liquids. Optical fiber sensors, with advantages like immunity to electromagnetic fields and resistance to chemical corrosion, present a safer alternative. These sensors are primarily used for detecting pipeline oil leakages and liquid level sensing. However, current sensors face challenges in detecting liquid spills across multiple locations and require improved spatial resolution. This paper presents what we believe to be a novel single mode-graded index multimode-coreless fiber sensing structure that directly interacts with liquids. Integrated with a distributed optical fiber sensing system, this sensor can detect liquid droplets with high precision, as demonstrated by the successful identification and size estimation of four consecutive oil droplets. Our approach offers an innovative solution for distributed liquid droplet detection and it paves the way for industrial liquid detecting applications.
Collapse
|
15
|
Gohar A, Yan J, Xu Z, Shen K, Anwar H, Shi X, Iqbal N, Zhai T. Tunable random laser based on hybrid plasmonic enhancement. OPTICS EXPRESS 2023; 31:36150-36160. [PMID: 38017770 DOI: 10.1364/oe.503031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/30/2023] [Indexed: 11/30/2023]
Abstract
This research investigates the hybridized plasmonic response of silver film combined with dispersed silver (Ag) nanowires (NWs) to random laser emission. The mixture of Rhodamine B (RhB) dye and polyvinyl alcohol (PVA) matrix is taken as the gain medium for random lasing, and the silver combination provides feedback mechanisms for light trapping. Importantly, film roughness and the coupling between localized and extended (delocalized) surface plasmons play a vital role in RL performance evaluation. The laser threshold is strongly influenced by film thickness attributed to surface roughness. Furthermore, the variation in film thickness also supports the wavelength modulation of 9 nm (597 nm to 606 nm), which results from the reabsorption of RhB. Additionally, the intriguing capability of emission wavelength tuning under the variation of temperature facilitates exciting prospects for precise wavelength control in plasmonic devices.
Collapse
|
16
|
Tan Q, Wu S, Liu Z, Chen X, He S. Polished hollow core Bragg fiber sensor for simultaneous measurement of cortisol concentration and temperature. OPTICS EXPRESS 2023; 31:25662-25679. [PMID: 37710447 DOI: 10.1364/oe.496833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
Disturbance of surrounding temperature inevitably affects the accuracy of fiber biosensors. To that end, we propose a compact label-free optofluidic sensor based on a polished hollow core Bragg fiber (HCBF) that can simultaneously measure the cortisol concentration and surrounding temperature in real-time. The sensor is comprised of fusion splicing single mode fiber (SMF), multimode fiber (MMF) and HCBF. HCBF is side polished to remove part of the cladding that the suspended inner surface of the fiber can contact the external environment. After the incident light passes through the MMF from the SMF, it enters the hollow area, high refractive index (RI) layers, respectively, where the anti-resonant reflecting optical waveguide (ARROW) guiding mechanism and Mach-Zehnder interferometer (MZI) are simultaneously excited. Taking advantage of the high RI layers of HCBF, compared to the fiber with uniform cladding, the light can be more confined in the cladding and more sensitive to inner surface medium. The inner surface of sensor is immobilized with cortisol aptamer for the sake of achieving high sensitivity and specific sensing of cortisol with the limit of detection (LOD) to be 4.303 pM. The proposed sensor has a compact structure, enables temperature compensation, and can be fabricated at low cost making it highly suitable for in-situ monitoring and high-precision sensing of cortisol and other biological analytes.
Collapse
|
17
|
Potdar RP, Khollam YB, Shaikh SF, Raut RW, Pandit B, More PS. Evanescent wave sensor for potassium ion detection with special reference to agricultural application. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Zhang W, Lang X, Liu X, Li G, Singh R, Zhang B, Kumar S. Advances in Tapered Optical Fiber Sensor Structures: From Conventional to Novel and Emerging. BIOSENSORS 2023; 13:644. [PMID: 37367009 DOI: 10.3390/bios13060644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Optical fiber sensors based on tapered optical fiber (TOF) structure have attracted a considerable amount of attention from researchers due to the advantages of simple fabrication, high stability, and diverse structures, and have great potential for applications in many fields such as physics, chemistry, and biology. Compared with conventional optical fibers, TOF with their unique structural characteristics significantly improves the sensitivity and response speed of fiber-optic sensors and broadens the application range. This review presents an overview of the latest research status and characteristics of fiber-optic sensors and TOF sensors. Then, the working principle of TOF sensors, fabrication schemes of TOF structures, novel TOF structures in recent years, and the growing emerging application areas are described. Finally, the development trends and challenges of TOF sensors are prospected. The objective of this review is to convey novel perspectives and strategies for the performance optimization and design of TOF sensors based on fiber-optic sensing technologies.
Collapse
Affiliation(s)
- Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xianzheng Lang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
19
|
Kumar S, Maurya JB, Roumi B, Abdi-Ghaleh R, Prajapati YK. D-shaped fiber optic plasmonic sensors using planar and grating structures of silver and gold: design and analysis. APPLIED OPTICS 2023; 62:E130-E136. [PMID: 37706928 DOI: 10.1364/ao.481145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/26/2023] [Indexed: 09/15/2023]
Abstract
In this paper, a D-shaped optical fiber plasmonic sensor using planar and grating structures of silver and gold metals is simulated using the finite element method under the wave optics module of COMSOL Multiphysics. Performance defining parameters are based on (i) the transmittance curve, viz., resonance wavelength (λ r), shift in resonance wavelength (Δ λ r), minimum transmittance (T m i n ), and bandwidth (BW), and (ii) on electric field distribution of a surface plasmon wave, viz., penetration depth (PD) and propagation length (PL) obtained for the considered sensor structures. It is found that gold gives wider BW than silver (e.g., at 1.39 refractive index of the sample: 480% for the planar case and 241% for the grating case), which deteriorates sensor performance by degrading detection accuracy. However, gold gives higher Δ λ r than silver (at 1.40-1.39=0.01 change in refractive index of the sample: 18.33% for the planar case and 16.39% for the grating case), which improves sensor performance and enhances sensitivity. A grating slightly increases the BW and Δ λ r for both gold and silver. Further, with respect to silver, the sensor that contains gold demonstrates higher PD (e.g., 22.32% at 1.39 refractive index of the sample for the planar case) and lower PL (e.g., 22.74% at 1.39 refractive index of sample for the planar case). A grating increases the PD (e.g., 10% for silver at 1.39 refractive index of the sample), whereas it decreases the PL (e.g., 8.73% for silver at 1.39 refractive index of the sample). Lower PL signifies the localization of the field, whereas higher PD enables the sensor to detect larger molecules. Therefore, the sensor with grating metals provides better sensitivity with reduced detection accuracy for the detection of comparatively larger molecules.
Collapse
|
20
|
Aguiar D, Marques C, Pereira AC. The Importance of Monitoring Cortisol in the Agri-Food Sector-A Systematic Review. Metabolites 2023; 13:692. [PMID: 37367850 DOI: 10.3390/metabo13060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Cortisol monitoring in the agri-food sector is considered a valuable tool due to its direct correlation with growth, reproduction, the immune system, and overall animal welfare. Strategies to monitor this stress hormone and its correlation to food quality and security have been studied in fish farming and the livestock industry. This review discusses studies on monitoring cortisol in the food industry for the first time. The impact of cortisol on animal production, quality, and the security of food products, and the analytical procedures commonly implemented for sample pre-concentration and quantification by liquid chromatography coupled to mass spectrometry, are reviewed and discussed according to the results published in the period 2012-2022. Aquaculture, or fish farming, is the leading agri-food sector, where cortisol's impact and usefulness are better known than in livestock. The determination of cortisol in fish not only allows for an increase in the production rate, but also the ability to monitor the water quality, enhancing the sustainable development of this industry. In cattle, further studies are needed since it has mainly been used to detect the administration of illicit substances. Current analytical control and monitoring techniques are expensive and often depend on invasive sampling, not allowing fast or real-time monitoring.
Collapse
Affiliation(s)
- Dayana Aguiar
- Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
- ISOPlexis, Centre for Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Carlos Marques
- Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute of Nanostructures, Nanomodelling and Nanofabrication (I3N), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana C Pereira
- ISOPlexis, Centre for Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Institute of Nanostructures, Nanomodelling and Nanofabrication (I3N), University of Aveiro, 3810-193 Aveiro, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Pólo II-Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
21
|
Li Y, Luo B, Liu Y, Wu S, Shi S, Chen H, Zhao M. Microfluidic immunosensor based on a graphene oxide functionalized double helix microfiber coupler for anti-Müllerian hormone detection. BIOMEDICAL OPTICS EXPRESS 2023; 14:1364-1377. [PMID: 37078032 PMCID: PMC10110323 DOI: 10.1364/boe.486717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 05/03/2023]
Abstract
A label-free microfluidic immunosensor based on the double helix microfiber coupler (DHMC) coated with graphene oxide (GO) was proposed for the specific detection of anti-Müllerian hormone (AMH). Two single-mode optical fibers were twisted in a parallel direction, the coning machine was used to fuse and taper them, and the high-sensitivity DHMC was obtained. To make a stable sensing environment, it was immobilized in a microfluidic chip. And then, the DHMC was modified by GO and bio-functionalized by the AMH monoclonal antibodies (anti-AMH MAbs) for the specific detection of AMH. The experimental results showed that the detection range of the immunosensor for AMH antigen solutions was 200 fg/mL∼50 µg/mL, the detection of limit (LOD) was ∼235.15 fg/mL, and the detection sensitivity and the dissociation coefficient were ∼3.518 nm/(log(mg/mL)) and ∼1.85 × 10 - 12 M, respectively. The alpha fetoprotein (AFP), des-carboxy prothrombin (DCP), growth stimulation expressed gene 2 (ST2) and AMH serum were used to confirm the excellent specific and clinical properties of the immunosensor, showing that the proposed immunosensor was easy-made and can be potentially applied in the biosensing field.
Collapse
Affiliation(s)
- Yujie Li
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Binbin Luo
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Yanan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Sehngxi Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Shenghui Shi
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Huiji Chen
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Mingfu Zhao
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
22
|
Zhang W, Singh R, Wang Z, Li G, Xie Y, Jha R, Marques C, Zhang B, Kumar S. Humanoid shaped optical fiber plasmon biosensor functionalized with graphene oxide/multi-walled carbon nanotubes for histamine detection. OPTICS EXPRESS 2023; 31:11788-11803. [PMID: 37155805 DOI: 10.1364/oe.486844] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Histamine is a biologically active molecule that serves as a reliable predictor of the quality of fish. In this work, authors have developed a novel humanoid-shaped tapered optical fiber (HTOF) biosensor based on the localized surface plasmon resonance (LSPR) phenomenon to detect varying histamine concentrations. In this experiment, a novel and distinctive tapering structure has been developed using a combiner manufacturing system and contemporary processing technologies. Graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) are immobilized on the HTOF probe surface to increase the biocompatibility of biosensor. In this instance, GO/MWCNTs are deployed first, then gold nanoparticles (AuNPs). Consequently, the GO/MWCNTs help to give abundant space for the immobilization of nanoparticles (AuNPs in this case) as well as increase surface area for the attachment of biomolecules to the fiber surface. By immobilizing AuNPs on the surface of the probe, the evanescent field can stimulate the AuNPs and excite the LSPR phenomena for sensing the histamine. The surface of the sensing probe is functionalized with diamine oxidase enzyme in order to enhance the histamine sensor's particular selectivity. The proposed sensor is demonstrated experimentally to have a sensitivity of 5.5 nm/mM and a detection limit of 59.45 µM in the linear detection range of 0-1000 µM. In addition, the probe's reusability, reproducibility, stability, and selectivity are tested; the results of these indices show that the probe has a high application potential for detecting histamine levels in marine products.
Collapse
|
23
|
Ferrari E. Gold Nanoparticle-Based Plasmonic Biosensors. BIOSENSORS 2023; 13:bios13030411. [PMID: 36979623 PMCID: PMC10046074 DOI: 10.3390/bios13030411] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/10/2023]
Abstract
One of the emerging technologies in molecular diagnostics of the last two decades is the use of gold nanoparticles (AuNPs) for biosensors. AuNPs can be functionalized with various biomolecules, such as nucleic acids or antibodies, to recognize and bind to specific targets. AuNPs present unique optical properties, such as their distinctive plasmonic band, which confers a bright-red color to AuNP solutions, and their extremely high extinction coefficient, which makes AuNPs detectable by the naked eye even at low concentrations. Ingenious molecular mechanisms triggered by the presence of a target analyte can change the colloidal status of AuNPs from dispersed to aggregated, with a subsequent visible change in color of the solution due to the loss of the characteristic plasmonic band. This review describes how the optical properties of AuNPs have been exploited for the design of plasmonic biosensors that only require the simple mixing of reagents combined with a visual readout and focuses on the molecular mechanisms involved. This review illustrates selected examples of AuNP-based plasmonic biosensors and promising approaches for the point-of-care testing of various analytes, spanning from the viral RNA of SARS-CoV-2 to the molecules that give distinctive flavor and color to aged whisky.
Collapse
Affiliation(s)
- Enrico Ferrari
- Department of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
24
|
Karachaliou CE, Koukouvinos G, Goustouridis D, Raptis I, Kakabakos S, Petrou P, Livaniou E. Cortisol Immunosensors: A Literature Review. BIOSENSORS 2023; 13:bios13020285. [PMID: 36832050 PMCID: PMC9954523 DOI: 10.3390/bios13020285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 05/26/2023]
Abstract
Cortisol is a steroid hormone that is involved in a broad range of physiological processes in human/animal organisms. Cortisol levels in biological samples are a valuable biomarker, e.g., of stress and stress-related diseases; thus, cortisol determination in biological fluids, such as serum, saliva and urine, is of great clinical value. Although cortisol analysis can be performed with chromatography-based analytical techniques, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), conventional immunoassays (radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs), etc.) are considered the "gold standard" analytical methodology for cortisol, due to their high sensitivity along with a series of practical advantages, such as low-cost instrumentation, an assay protocol that is fast and easy to perform, and high sample throughput. Especially in recent decades, research efforts have focused on the replacement of conventional immunoassays by cortisol immunosensors, which may offer further improvements in the field, such as real-time analysis at the point of care (e.g., continuous cortisol monitoring in sweat through wearable electrochemical sensors). In this review, most of the reported cortisol immunosensors, mainly electrochemical and also optical ones, are presented, focusing on their immunosensing/detection principles. Future prospects are also briefly discussed.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Georgios Koukouvinos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Dimitrios Goustouridis
- ThetaMetrisis S.A., Christou Lada 40, 121 32 Athens, Greece
- Department of Electrical & Electronics Engineering, University of West Attica, 122 44 Athens, Greece
| | - Ioannis Raptis
- ThetaMetrisis S.A., Christou Lada 40, 121 32 Athens, Greece
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Sotirios Kakabakos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Panagiota Petrou
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| |
Collapse
|
25
|
Mustapha Kamil Y, Abu Bakar MH, Zainuddin NH, Yaacob MH, Mahdi MA. Progress and Trends of Optical Microfiber-Based Biosensors. BIOSENSORS 2023; 13:270. [PMID: 36832036 PMCID: PMC9954031 DOI: 10.3390/bios13020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Biosensors are central to diagnostic and medicinal applications, especially in terms of monitoring, managing illness, and public health. Microfiber-based biosensors are known to be capable of measuring both the presence and behavior of biological molecules in a highly sensitive manner. In addition, the flexibility of microfiber in supporting a variety of sensing layer designs and the integration of nanomaterials with biorecognition molecules brings immense opportunity for specificity enhancement. This review paper aims to discuss and explore different microfiber configurations by highlighting their fundamental concepts, fabrication processes, and performance as biosensors.
Collapse
Affiliation(s)
| | - Muhammad Hafiz Abu Bakar
- Wireless and Photonic Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | | | | | | |
Collapse
|
26
|
Marques C, Leal-Júnior A, Kumar S. Multifunctional Integration of Optical Fibers and Nanomaterials for Aircraft Systems. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1433. [PMID: 36837063 PMCID: PMC9967808 DOI: 10.3390/ma16041433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/25/2023]
Abstract
Smart sensing for aeronautical applications is a multidisciplinary process that involves the development of various sensor elements and advancements in the nanomaterials field. The expansion of research has fueled the development of commercial and military aircrafts in the aeronautical field. Optical technology is one of the supporting pillars for this, as well as the fact that the unique high-tech qualities of aircrafts align with sustainability criteria. In this study, a multidisciplinary investigation of airplane monitoring systems employing optical technologies based on optical fiber and nanomaterials that are incorporated into essential systems is presented. This manuscript reports the multifunctional integration of optical fibers and nanomaterials for aircraft sector discussing topics, such as airframe monitoring, flight environment sensing (from temperature and humidity to pressure sensing), sensors for navigation (such as gyroscopes and displacement or position sensors), pilot vital health monitoring, and novel nanomaterials for aerospace applications. The primary objective of this review is to provide researchers with direction and motivation to design and fabricate the future of the aeronautical industry, based on the actual state of the art of such vital technology, thereby aiding their future research.
Collapse
Affiliation(s)
- Carlos Marques
- i3N & Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Arnaldo Leal-Júnior
- Mechanical Department and Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Espírito Santo 29075-910, Brazil
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
27
|
Quintanilla-Villanueva GE, Maldonado J, Luna-Moreno D, Rodríguez-Delgado JM, Villarreal-Chiu JF, Rodríguez-Delgado MM. Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control. BIOSENSORS 2023; 13:90. [PMID: 36671925 PMCID: PMC9856096 DOI: 10.3390/bios13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 05/06/2023]
Abstract
Aquaculture is an expanding economic sector that nourishes the world's growing population due to its nutritional significance over the years as a source of high-quality proteins. However, it has faced severe challenges due to significant cases of environmental pollution, pathogen outbreaks, and the lack of traceability that guarantees the quality assurance of its products. Such context has prompted many researchers to work on the development of novel, affordable, and reliable technologies, many based on nanophotonic sensing methodologies. These emerging technologies, such as surface plasmon resonance (SPR), localised SPR (LSPR), and fibre-optic SPR (FO-SPR) systems, overcome many of the drawbacks of conventional analytical tools in terms of portability, reagent and solvent use, and the simplicity of sample pre-treatments, which would benefit a more sustainable and profitable aquaculture. To highlight the current progress made in these technologies that would allow them to be transferred for implementation in the field, along with the lag with respect to the most cutting-edge plasmonic sensing, this review provides a variety of information on recent advances in these emerging methodologies that can be used to comprehensively monitor the various operations involving the different commercial stages of farmed aquaculture. For example, to detect environmental hazards, track fish health through biochemical indicators, and monitor disease and biosecurity of fish meat products. Furthermore, it highlights the critical issues associated with these technologies, how to integrate them into farming facilities, and the challenges and prospects of developing plasmonic-based sensors for aquaculture.
Collapse
Affiliation(s)
- Gabriela Elizabeth Quintanilla-Villanueva
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Mexico
| | - Jesús Maldonado
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Donato Luna-Moreno
- Centro de Investigaciones en Óptica AC, Div. de Fotónica, Loma del Bosque 115, Col. Lomas del Campestre, León 37150, Mexico
| | - José Manuel Rodríguez-Delgado
- Tecnológico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada Sur No. 2501, Col. Tecnológico, Monterrey 64849, Mexico
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Mexico
| | - Melissa Marlene Rodríguez-Delgado
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Mexico
| |
Collapse
|
28
|
Wang Z, Zhang W, Liu X, Li M, Lang X, Singh R, Marques C, Zhang B, Kumar S. Novel Optical Fiber-Based Structures for Plasmonics Sensors. BIOSENSORS 2022; 12:1016. [PMID: 36421134 PMCID: PMC9688463 DOI: 10.3390/bios12111016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
Optical fiber sensors based on surface plasma technology have many unique advantages in specific applications such as extreme environmental monitoring, physical parameter determination, and biomedical indicators testing. In recent decades, various kinds of fiber probes with special structures were developed according to special processing such as tapering, splicing, etching, fiber balls, grating etc. In this paper, the fabrication technology, characteristics, development status and application scenarios of different special optical fiber structures are briefly reviewed, including common processing equipment. Furthermore, many special novel optical fiber structures reported in recent years are summarized, which have been used in various kinds of plasmonic sensing work. Then, the fiber-plasmonic sensors for practical applications are also introduced and examined in detail. The main aim of this review is to provide guidance and inspiration for researchers to design and fabricate special optical fiber structures, thus facilitating their further research.
Collapse
Affiliation(s)
- Zhi Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xianzheng Lang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Carlos Marques
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
29
|
Li M, Singh R, Wang Y, Marques C, Zhang B, Kumar S. Advances in Novel Nanomaterial-Based Optical Fiber Biosensors-A Review. BIOSENSORS 2022; 12:bios12100843. [PMID: 36290980 PMCID: PMC9599727 DOI: 10.3390/bios12100843] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 05/24/2023]
Abstract
This article presents a concise summary of current advancements in novel nanomaterial-based optical fiber biosensors. The beneficial optical and biological properties of nanomaterials, such as nanoparticle size-dependent signal amplification, plasmon resonance, and charge-transfer capabilities, are widely used in biosensing applications. Due to the biocompatibility and bioreceptor combination, the nanomaterials enhance the sensitivity, limit of detection, specificity, and response time of sensing probes, as well as the signal-to-noise ratio of fiber optic biosensing platforms. This has established a practical method for improving the performance of fiber optic biosensors. With the aforementioned outstanding nanomaterial properties, the development of fiber optic biosensors has been efficiently promoted. This paper reviews the application of numerous novel nanomaterials in the field of optical fiber biosensing and provides a brief explanation of the fiber sensing mechanism.
Collapse
Affiliation(s)
- Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Yiran Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Carlos Marques
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
30
|
Kiruba Daniel SCG, Pai PS, Sabbella HR, Singh K, Rangaiah A, Gowdara Basawarajappa S, Thakur CS. Handheld, Low-Cost, Aptamer-Based Sensing Device for Rapid SARS-CoV-2 RNA Detection Using Novelly Synthesized Gold Nanoparticles. IEEE SENSORS JOURNAL 2022; 22:18437-18445. [PMID: 36416744 PMCID: PMC9647715 DOI: 10.1109/jsen.2022.3196598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
The development of a cost-efficient device to rapidly detect pandemic viruses is paramount. Hence, an innovative and scalable synthesis of metal nanoparticles followed by its usage for rapid detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been reported in this work. The simple synthesis of metal nanoparticles utilizing tin as a solid-state reusable reducing agent is used for the SARS-CoV-2 ribonucleic acid (RNA) detection. Moreover, the solid-state reduction process occurs faster and leads to the enhanced formation of silver and gold nanoparticles (AuNPs) with voltage. By adding tin as a solid-state reducing agent with the precursor, the nanoparticles are formed within 30 s. This synthesis method can be easily scaled up for a commercially viable process to obtain different-sized metal nanoparticles. This is the first disclosure of the usage of tin as a reusable solid-state reducing agent for metal nanoparticle synthesis. An electronic device, consisting of AuNPs functionalized with a deoxyribonucleic acid (DNA)-based aptamer, can detect SARS-CoV-2 RNA in less than 5 min. With an increase in SARS-CoV-2 variants, such as Delta and Omicron, the detection device could be used for identifying the nucleic acids of the COVID-19 variants by modifying the aptamer sequence. The reported work overcomes the drawbacks of complex instrumentation, trained labor, and increased turnaround time.
Collapse
Affiliation(s)
- S. C. G. Kiruba Daniel
- NeuRonICS LabDepartment of Electronic Systems EngineeringIndian Institute of ScienceBengaluru560012India
| | - Poojitha S. Pai
- NeuRonICS LabDepartment of Electronic Systems EngineeringIndian Institute of ScienceBengaluru560012India
| | - Hemanth Reddy Sabbella
- NeuRonICS LabDepartment of Electronic Systems EngineeringIndian Institute of ScienceBengaluru560012India
| | - Kumar Singh
- Department of MicrobiologyBangalore Medical College and Research InstituteBengaluru560002India
| | - Ambica Rangaiah
- Department of MicrobiologyBangalore Medical College and Research InstituteBengaluru560002India
| | | | - Chetan Singh Thakur
- NeuRonICS LabDepartment of Electronic Systems EngineeringIndian Institute of ScienceBengaluru560012India
| |
Collapse
|
31
|
Feng D, Li Z, Zheng H, Jiang B, Albert J, Zhao J. Strong cladding mode excitation in ultrathin fiber inscribed Bragg grating with ultraviolet photosensitivity. OPTICS EXPRESS 2022; 30:25936-25945. [PMID: 36237113 DOI: 10.1364/oe.464572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
Strong UV-written Bragg gratings written in 50 µm-diameter cladding single mode fibers compatible with conventional fiber couple core guided light to dozens of cladding modes distributed across 140 nm in the 1400-1600 nm region, without the need for complex symmetry breaking mechanisms such as tilted, laterally offset, or localized gratings. The extent of the coupling to high order modes and the smaller cladding diameter both contribute to increasing the sensitivity to surrounding refractive index changes by more than one order of magnitude, and to an increased spacing between mode resonances to facilitate unambiguous measurements of larger index changes between 1.3 and 1.44. These improvements are confirmed by theoretical and experimental studies that also cover the temperature and strain differential sensitivities of the cladding mode resonances for complete multiparameter sensing capability.
Collapse
|
32
|
Pandey PS, Raghuwanshi SK, Shadab A, Ansari MTI, Tiwari UK, Kumar S. SPR Based Biosensing Chip for COVID-19 Diagnosis-A Review. IEEE SENSORS JOURNAL 2022; 22:13800-13810. [PMID: 36346093 PMCID: PMC9423036 DOI: 10.1109/jsen.2022.3181423] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/13/2023]
Abstract
Surface Plasmon Resonance (SPR) techniques are highly accurate in detecting biomolecular like blood group measurement, food adulteration, milk adulteration and recently developing as a rapid detection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In order to validate the clinical diagnosis, Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal swabs has been utilized, which is time consuming and expensive. For fast and accurate detection of the SARS-CoV-2 virus, SPR based biosensing chips are described in this review article. SPR sensors have the potential to be employed for fast, accurate, and portable SARS-CoV-2 virus diagnosis. To combat the SARS-CoV-2 pandemic, there is considerable interest in creating innovative biosensors that are quick, reliable, and sensitive for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Purnendu Shekhar Pandey
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Sanjeev Kumar Raghuwanshi
- Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Azhar Shadab
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Md Tauseef Iqbal Ansari
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Umesh Kumar Tiwari
- Advanced Materials and Sensors DivisionCentral Scientific Instruments Organisation (CSIO) Chandigarh 160030 India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information TechnologyLiaocheng University Liaocheng 252059 China
| |
Collapse
|
33
|
Pandey PS, Raghuwanshi SK, Shadab A, Ansari MTI, Tiwari UK, Kumar S. SPR Based Biosensing Chip for COVID-19 Diagnosis-A Review. IEEE SENSORS JOURNAL 2022; 22:13800-13810. [PMID: 36346093 DOI: 10.1109/jsen.2021.3133007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/24/2023]
Abstract
Surface Plasmon Resonance (SPR) techniques are highly accurate in detecting biomolecular like blood group measurement, food adulteration, milk adulteration and recently developing as a rapid detection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In order to validate the clinical diagnosis, Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal swabs has been utilized, which is time consuming and expensive. For fast and accurate detection of the SARS-CoV-2 virus, SPR based biosensing chips are described in this review article. SPR sensors have the potential to be employed for fast, accurate, and portable SARS-CoV-2 virus diagnosis. To combat the SARS-CoV-2 pandemic, there is considerable interest in creating innovative biosensors that are quick, reliable, and sensitive for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Purnendu Shekhar Pandey
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Sanjeev Kumar Raghuwanshi
- Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Azhar Shadab
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Md Tauseef Iqbal Ansari
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Umesh Kumar Tiwari
- Advanced Materials and Sensors DivisionCentral Scientific Instruments Organisation (CSIO) Chandigarh 160030 India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information TechnologyLiaocheng University Liaocheng 252059 China
| |
Collapse
|