1
|
Song P, Song C, Zhang Y, Han X, Tang P, Duvvuri C, Xu J, Huang Y, Qin J, An L, Twa MD, Lan G. Air-pulse optical coherence elastography: how excitation angle affects mechanical wave propagation. BIOMEDICAL OPTICS EXPRESS 2025; 16:1371-1391. [PMID: 40322015 PMCID: PMC12047731 DOI: 10.1364/boe.557984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 05/08/2025]
Abstract
We evaluate the effect of excitation angles on the observation and characterization of surface wave propagations used to derive tissue's mechanical properties in optical coherence tomography (OCT)-based elastography (OCE). Air-pulse stimulation was performed at the center of the sample with excitation angles ranging from oblique (e.g., 70° or 45°) to perpendicular (0°). OCT scanning was conducted radially to record en face mechanical wave propagations in 360°, and the wave features (amplitude, attenuation, group and phase velocities) were calculated in the spatiotemporal or wavenumber-frequency domains. We conducted measurements on isotropic, homogeneous samples (1-1.6% agar phantoms), anisotropic samples (chicken breast), and samples with complex boundaries, coupling media, and stress conditions (ex vivo porcine cornea, intraocular pressure (IOP): 5-20 mmHg). Our findings indicate that mechanical wave velocities are less affected by excitation angles compared to displacement features, demonstrating the robustness of using mechanical waves for elasticity estimations. Agar and chicken breast sample measurements showed that all these metrics (particularly wave velocities) are relatively consistent when excitation angles are smaller than 45°. However, significant disparities were observed in the porcine cornea measurements across different excitation angles (even between 15° and 0°), particularly at high IOP levels (e.g., 20 mmHg). Our findings provide valuable insights for enhancing the accuracy of biomechanical assessments using air-pulse-based or other dynamic OCE approaches. This facilitates the refinement and clinical translation of the OCE technique and could ultimately improve diagnostic and therapeutic applications across various biomedical fields.
Collapse
Affiliation(s)
- Pengfei Song
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Chengjin Song
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Yubao Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiao Han
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, China
- School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
| | - Peijun Tang
- School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | | | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| |
Collapse
|
2
|
Ma G, Cai J, Zhong R, He W, Ye H, Duvvuri C, Song C, Feng J, An L, Qin J, Huang Y, Xu J, Twa MD, Lan G. Corneal Surface Wave Propagation Associated with Intraocular Pressures: OCT Elastography Assessment in a Simplified Eye Model. Bioengineering (Basel) 2023; 10:754. [PMID: 37508781 PMCID: PMC10376591 DOI: 10.3390/bioengineering10070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Assessing corneal biomechanics in vivo has long been a challenge in the field of ophthalmology. Despite recent advances in optical coherence tomography (OCT)-based elastography (OCE) methods, controversy remains regarding the effect of intraocular pressure (IOP) on mechanical wave propagation speed in the cornea. This could be attributed to the complexity of corneal biomechanics and the difficulties associated with conducting in vivo corneal shear-wave OCE measurements. We constructed a simplified artificial eye model with a silicone cornea and controllable IOPs and performed surface wave OCE measurements in radial directions (54-324°) of the silicone cornea at different IOP levels (10-40 mmHg). The results demonstrated increases in wave propagation speeds (mean ± STD) from 6.55 ± 0.09 m/s (10 mmHg) to 9.82 ± 0.19 m/s (40 mmHg), leading to an estimate of Young's modulus, which increased from 145.23 ± 4.43 kPa to 326.44 ± 13.30 kPa. Our implementation of an artificial eye model highlighted that the impact of IOP on Young's modulus (ΔE = 165.59 kPa, IOP: 10-40 mmHg) was more significant than the effect of stretching of the silicone cornea (ΔE = 15.79 kPa, relative elongation: 0.98-6.49%). Our study sheds light on the potential advantages of using an artificial eye model to represent the response of the human cornea during OCE measurement and provides valuable insights into the impact of IOP on wave-based OCE measurement for future in vivo corneal biomechanics studies.
Collapse
Affiliation(s)
- Guoqin Ma
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, China
| | - Jing Cai
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Rijian Zhong
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Weichao He
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Haoxi Ye
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | | | - Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lin An
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Jia Qin
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Weiren Meditech Co., Ltd., Foshan 528000, China
| |
Collapse
|
3
|
Lan G, Twa MD, Song C, Feng J, Huang Y, Xu J, Qin J, An L, Wei X. In vivo corneal elastography: A topical review of challenges and opportunities. Comput Struct Biotechnol J 2023; 21:2664-2687. [PMID: 37181662 PMCID: PMC10173410 DOI: 10.1016/j.csbj.2023.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Clinical measurement of corneal biomechanics can aid in the early diagnosis, progression tracking, and treatment evaluation of ocular diseases. Over the past two decades, interdisciplinary collaborations between investigators in optical engineering, analytical biomechanical modeling, and clinical research has expanded our knowledge of corneal biomechanics. These advances have led to innovations in testing methods (ex vivo, and recently, in vivo) across multiple spatial and strain scales. However, in vivo measurement of corneal biomechanics remains a long-standing challenge and is currently an active area of research. Here, we review the existing and emerging approaches for in vivo corneal biomechanics evaluation, which include corneal applanation methods, such as ocular response analyzer (ORA) and corneal visualization Scheimpflug technology (Corvis ST), Brillouin microscopy, and elastography methods, and the emerging field of optical coherence elastography (OCE). We describe the fundamental concepts, analytical methods, and current clinical status for each of these methods. Finally, we discuss open questions for the current state of in vivo biomechanics assessment techniques and requirements for wider use that will further broaden our understanding of corneal biomechanics for the detection and management of ocular diseases, and improve the safety and efficacy of future clinical practice.
Collapse
Affiliation(s)
- Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, United States
| | - Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - JinPing Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- International Cancer Institute, Peking University, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|