1
|
Liu CJ, Ammon W, Jones RJ, Nolan JC, Gong D, Maffei C, Blanke N, Edlow BL, Augustinack JC, Magnain C, Yendiki A, Villiger M, Fischl B, Wang H. Three-dimensional fiber orientation mapping of ex vivo human brain at micrometer resolution. NPJ IMAGING 2025; 3:13. [PMID: 40213097 PMCID: PMC11978517 DOI: 10.1038/s44303-025-00074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/14/2025] [Indexed: 04/16/2025]
Abstract
The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Comprehensive reconstruction of axonal tracts and small fascicles requires high-resolution technology beyond the ability of current in vivo imaging (e.g., diffusion magnetic resonance imaging). Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) can quantify fiber orientation at micrometer resolution but have been limited to two-dimensional in-plane orientation, preventing the comprehensive study of connectivity in 3D. In this work we present a novel method to quantify volumetric 3D orientation in full angular space with PS-OCT in postmortem human brain tissues. We measure the polarization contrasts of the brain sample from two illumination angles of 0 and 15° and apply a computational method that yields the 3D optic axis orientation and true birefringence. We further present 3D fiber orientation maps of entire coronal cerebrum sections and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain as well as other complex fibrous tissues at microscopic level.
Collapse
Affiliation(s)
- Chao J. Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| | - William Ammon
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| | - Robert J. Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| | - Jackson C. Nolan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| | - Dayang Gong
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| | - Nathan Blanke
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jean C. Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| | - Caroline Magnain
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA
| |
Collapse
|
2
|
Liu CJ, Ammon W, Jones RJ, Nolan JC, Gong D, Maffei C, Edlow BL, Augustinack JC, Magnain C, Yendiki A, Villiger M, Fischl B, Wang H. Three-dimensional fiber orientation mapping of the human brain at micrometer resolution. RESEARCH SQUARE 2024:rs.3.rs-4725871. [PMID: 39149445 PMCID: PMC11326409 DOI: 10.21203/rs.3.rs-4725871/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Comprehensive reconstruction of axonal tracts and small fascicles requires high-resolution technology beyond the ability of current in vivo imaging (e.g. diffusion magnetic resonance imaging). Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) and polarization microscopy can quantify fiber orientation at micrometer resolution but have been limited to two-dimensional in-plane orientation or thin slices, preventing the comprehensive study of connectivity in 3D. In this work we present a novel method to quantify volumetric 3D orientation in full angular space with PS-OCT. We measure the polarization contrasts of the brain sample from two illumination angles of 0 and 15 degrees and apply a computational method that yields the 3D optic axis orientation and true birefringence. We further present 3D fiber orientation maps of entire coronal cerebrum sections and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain as well as other complex fibrous tissues at microscopic level.
Collapse
Affiliation(s)
- Chao J. Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
- These authors contributed equally to this work
| | - William Ammon
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
- These authors contributed equally to this work
| | - Robert J. Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Jackson C. Nolan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Dayang Gong
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jean C. Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Caroline Magnain
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
3
|
Liu J, Shi Y, Gong Z, Zhang Y, Wang RK. Adaptive contour-tracking to aid wide-field swept-source optical coherence tomography imaging of large objects with uneven surface topology. BIOMEDICAL OPTICS EXPRESS 2024; 15:4891-4908. [PMID: 39347000 PMCID: PMC11427217 DOI: 10.1364/boe.533399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 10/01/2024]
Abstract
High-speed and wide-field optical coherence tomography (OCT) imaging is increasingly essential for clinical applications yet faces challenges due to its inherent sensitivity roll-off and limited depth of focus, particularly when imaging samples with significant variations in surface contour. Here, we propose one innovative solution of adaptive contour tracking and scanning methods to address these challenges. The strategy integrates an electrically tunable lens and adjustable optical delay line control with real-time surface contour information, enabling dynamic optimization of imaging protocols. It rapidly pre-scans the sample surface to acquire a comprehensive contour map. Using this map, it generates a tailored scanning protocol by partitioning the entire system ranging distance into depth-resolved segments determined by the optical Raleigh length of the objective lens, ensuring optimal imaging at each segment. Employing short-range imaging mode along the sample contour minimizes data storage and post-processing requirements, while adaptive adjustment of focal length and reference optical delay line maintains high imaging quality throughout. Experimental demonstrations show the effectiveness of the adaptive contour tracking OCT in maintaining high contrast and signal-to-noise ratio across the entire field of view, even in samples with significantly uneven surface curvatures. Notably, this approach achieves these results with reduced data volume compared to traditional OCT methods. This advancement holds promise for enhancing OCT imaging in clinical settings, particularly in applications requiring rapid, wide-field imaging of tissue structures and blood flow.
Collapse
Affiliation(s)
- Jian Liu
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Zhaoyu Gong
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Yi Zhang
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
4
|
Shi Y, Liu J, Wang RK. High-speed, long-range and wide-field OCT for in vivo 3D imaging of the oral cavity achieved by a 600 kHz swept source laser. BIOMEDICAL OPTICS EXPRESS 2024; 15:4365-4380. [PMID: 39022551 PMCID: PMC11249692 DOI: 10.1364/boe.528287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 07/20/2024]
Abstract
We report a high-speed, long-range, and wide-field swept-source optical coherence tomography (SS-OCT) system aimed for imaging microstructures and microcirculations in the oral cavity. This system operates at a scan speed of 600 kHz, delivering a wide imaging field of view at 42 × 42 mm2 and a ranging distance of 36 mm. To simultaneously meet the requirements of high speed and long range, it is necessary for the k-clock trigger signal to be generated at its maximum speed, which may induce non-linear phase response in electronic devices due to the excessive k-clock frequency bandwidth, leading to phase errors. To address this challenge, we introduced a concept of electrical dispersion and a global k-clock compensation approach to improve overall performance of the imaging system. Additionally, image distortion in the wide-field imaging mode is also corrected using a method based on distortion vector maps. With this system, we demonstrate comprehensive structural and blood flow imaging of the anterior oral cavity in healthy individuals. The high-speed, long-range, and wide-field SS-OCT system opens new opportunities for comprehensive oral cavity examinations and holds promise as a reliable tool for assessing oral health conditions.
Collapse
Affiliation(s)
- Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jian Liu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Xu J, Zhu M, Tang P, Li J, Gao K, Qiu H, Zhao S, Lan G, Jia H, Yu B. Visualization enhancement by PCA-based image fusion for skin burns assessment in polarization-sensitive OCT. BIOMEDICAL OPTICS EXPRESS 2024; 15:4190-4205. [PMID: 39022536 PMCID: PMC11249677 DOI: 10.1364/boe.521399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024]
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) is a functional imaging tool for measuring tissue birefringence characteristics. It has been proposed as a potentially non-invasive technique for evaluating skin burns. However, the PS-OCT modality usually suffers from high system complexity and relatively low tissue-specific contrast, which makes assessing the extent of burns in skin tissue difficult. In this study, we employ an all-fiber-based PS-OCT system with single-state input, which is simple and efficient for skin burn assessment. Multiple parameters, such as phase retardation (PR), degree of polarization uniformity (DOPU), and optical axis orientation, are obtained to extract birefringent features, which are sensitive to subtle changes in structural arrangement and tissue composition. Experiments on ex vivo porcine skins burned at different temperatures were conducted for skin burn investigation. The burned depths estimated by PR and DOPU increase linearly with the burn temperature to a certain extent, which is helpful in classifying skin burn degrees. We also propose an algorithm of image fusion based on principal component analysis (PCA) to enhance tissue contrast for the multi-parameter data of PS-OCT imaging. The results show that the enhanced images generated by the PCA-based image fusion method have higher tissue contrast, compared to the en-face polarization images by traditional mean value projection. The proposed approaches in this study make it possible to assess skin burn severity and distinguish between burned and normal tissues.
Collapse
Affiliation(s)
- Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University
, Foshan, Guangdong 528000, China
- Innovation and Entrepreneurship Teams Project of Guangdong Pearl River Talents Program, Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528051, China
| | - Mingtao Zhu
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, Guangdong 528000, China
| | - Peijun Tang
- College of Biophotonics, South China Normal University, Guangzhou 510006, China
| | - Junyun Li
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Shiyong Zhao
- Tianjin Hengyu Medical Technology Co., Ltd., Tianjin 300000, China
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University
, Foshan, Guangdong 528000, China
- Innovation and Entrepreneurship Teams Project of Guangdong Pearl River Talents Program, Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528051, China
| | - Haibo Jia
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bo Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
6
|
Grundmann J, Golde J, Steuer S, Tetschke F, Kirsten L, Walther J, Koch E, Hannig C. Visualization of carious lesions with polarized and depolarized light microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:3018-3036. [PMID: 38855694 PMCID: PMC11161379 DOI: 10.1364/boe.514904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 06/11/2024]
Abstract
Polarized light microscopy (PLM) is an established method in dental histology for investigating the ultrastructure and carious process of teeth. This study introduces a novel approach for measuring the degree of polarization (DOP) in a modified PLM setup and uses the DOP to assess the changes of the optical properties of enamel and dentin due to caries. The validation is provided by a comparison with complementary imaging methods, i.e. standard PLM and µCT. The results show that demineralization is reliably displayed by the DOP in accordance with the common imaging methods, and that this quantitative analysis of depolarization allows the characterization of the different pathohistological zones of caries.
Collapse
Affiliation(s)
- Julia Grundmann
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Policlinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Fetscherstrasse 74, 01307 Dresden, Germany
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Medical Physics and Biomedical Engineering, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Jonas Golde
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Medical Physics and Biomedical Engineering, Fetscherstrasse 74, 01307 Dresden, Germany
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Fetscherstrasse 74, 01307 Dresden, Germany
- Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstrasse 28, 01277 Dresden, Germany
| | - Svea Steuer
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Florian Tetschke
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Policlinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Fetscherstrasse 74, 01307 Dresden, Germany
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Fetscherstrasse 74, 01307 Dresden, Germany
- Current address: Sonovum GmbH, Deutscher Platz 4, 04103 Leipzig, Germany
| | - Lars Kirsten
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Medical Physics and Biomedical Engineering, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Julia Walther
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Medical Physics and Biomedical Engineering, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Edmund Koch
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Christian Hannig
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Policlinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
7
|
Tang P, Wang RK, Chao Q. Digital calibration method to enable depth-resolved all-fiber polarization sensitive optical coherence tomography with an arbitrary input polarization state. BIOMEDICAL OPTICS EXPRESS 2024; 15:3329-3343. [PMID: 38855689 PMCID: PMC11161387 DOI: 10.1364/boe.517826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
We present a fully integrated depth-resolved all fiber-based polarization sensitive optical coherence tomography (PSOCT). In contrast to conventional fiber-based PSOCT systems, which require additional modules to generate two or more input polarization states, or a pre-adjustment procedure to generate a circularly polarized light, the proposed all-fiber PSOCT system can provide depth-resolved birefringent imaging using an arbitrary single input polarization state. Utilizing the discrete differential geometry (DDG)-based polarization state tracing (PST) method, combined with several geometric rotations and transformations in the Stokes space, two problems induced by the optical fibers can be mitigated: 1) The change in the polarization state introduced by the optical fibers can be effectively compensated using a calibration target at the distal end of the probe, and the computations of the local axis orientation and local phase retardation can be achieved with a single arbitrary input polarization state, eliminating the need for a pre-defined input polarization state, allowing a flexible system design and user-friendly experimental procedure; 2) The polarization mode dispersion (PMD) induced by the optical fibers can be compensated digitally without the requirement of additional input polarization states, providing an accurate PSOCT imaging result. To demonstrate the performance of the proposed method, the depth resolved PSOCT results of a plastic phantom and in vivo skin imaging are obtained using the proposed all-fiber PSOCT system.
Collapse
Affiliation(s)
- Peijun Tang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195,
USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195,
USA
- Department of Ophthalmology,
University of Washington, 750 Republican
St., Seattle, Washington 98195, USA
| | - Qing Chao
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195,
USA
| |
Collapse
|
8
|
Chen F, Yang T, Lin J, Li T, Liu P, Zhang Z, Tang Z, Tang P. Polarization state tomography technique based on coherent synthesis of polarization state and orthogonal polarization state separation method for comprehensive optical imaging. OPTICS EXPRESS 2024; 32:1231-1245. [PMID: 38297679 DOI: 10.1364/oe.506965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/25/2023] [Indexed: 02/02/2024]
Abstract
Comprehensive optical imaging of the intensity, phase, and birefringent information of the biological sample is important because important physical or pathological changes always accompany the changes in multiple optical parameters. Current studies lack such a metric that can present the comprehensive optical property of the sample in one figure. In this paper, a polarization state synthesis tomography (PoST) method, which is based on the principle of polarization state coherent synthesis and demodulation, is proposed to achieve full-field tomographic imaging of the comprehensive information (i.e., intensity, phase, and birefringence) of the biological sample. In this method, the synthesis of the polarization state is achieved by the time-domain full-field low coherence interferometer, where the polarization states of the sample beam and the reference beam are set to be orthogonal for the synthesis of the polarization state. The synthesis of the polarization state enables two functions of the PoST system: (1) Depth information of the sample can be encoded by the synthesized polarization state because only when the optical path length difference between the two arms is within the coherence length, a new polarization state can be synthesized; (2) Since the scattering coefficient, refractive index and the birefringent property of the sample can modulate the intensity and phase of the sample beam, the synthesized polarization state is sensitive to all these three parameters and can provide the comprehensive optical information of the sample. In this work, the depth-resolved ability and the comprehensive optical imaging metric have been demonstrated by the standard samples and the onion cells, demonstrating the potential application value of this method for further investigation of the important physical or pathological process of the biological tissues.
Collapse
|
9
|
Liu CJ, Ammon W, Jones RJ, Nolan JC, Gong D, Maffei C, Edlow BL, Augustinack JC, Magnain C, Yendiki A, Villiger M, Fischl B, Wang H. Quantitative imaging of three-dimensional fiber orientation in the human brain via two illumination angles using polarization-sensitive optical coherence tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563298. [PMID: 37961162 PMCID: PMC10634685 DOI: 10.1101/2023.10.20.563298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) provide important tools to directly quantify fiber orientation at micrometer resolution. However, brain imaging based on the optic axis by PS-OCT so far has been limited to two-dimensional in-plane orientation, preventing the comprehensive study of connectivity in 3D. In this work, we present a novel method to obtain the 3D fiber orientation in full angular space with only two illumination angles. We measure the optic axis orientation and the apparent birefringence by PS-OCT from a normal and a 15 deg tilted illumination, and then apply a computational method yielding the 3D optic axis orientation and true birefringence. We verify that our method accurately recovers a large range of through-plane orientations from -85 deg to 85 deg with a high angular precision. We further present 3D fiber orientation maps of entire coronal sections of human cerebrum and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that further development of our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain and other complex fibrous tissues at microscopic level.
Collapse
|
10
|
Besnard C, Marie A, Sasidharan S, Harper RA, Shelton RM, Landini G, Korsunsky AM. Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dent J (Basel) 2023; 11:98. [PMID: 37185477 PMCID: PMC10137518 DOI: 10.3390/dj11040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Ali Marie
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Sisini Sasidharan
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Robert A. Harper
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Gabriel Landini
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| |
Collapse
|
11
|
Shi Y, Lu J, Le N, Wang RK. Integrating a pressure sensor with an OCT handheld probe to facilitate imaging of microvascular information in skin tissue beds. BIOMEDICAL OPTICS EXPRESS 2022; 13:6153-6166. [PMID: 36733756 PMCID: PMC9872897 DOI: 10.1364/boe.473013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 05/05/2023]
Abstract
Optical coherence tomography (OCT) and OCT angiography (OCTA) have been increasingly applied in skin imaging applications in dermatology, where the imaging is often performed with the OCT probe in contact with the skin surface. However, this contact mode imaging can introduce uncontrollable mechanical stress applied to the skin, inevitably complicating the interpretation of OCT/OCTA imaging results. There remains a need for a strategy for assessing local pressure applied on the skin during imaging acquisition. This study reports a handheld scanning probe integrated with built-in pressure sensors, allowing the operator to control the mechanical stress applied to the skin in real-time. With real time feedback information, the operator can easily determine whether the pressure applied to the skin would affect the imaging quality so as to obtain repeatable and reliable OCTA images for a more accurate investigation of skin conditions. Using this probe, imaging of palm skin was used in this study to demonstrate how the OCTA imaging would have been affected by different mechanical pressures ranging from 0 to 69 kPa. The results showed that OCTA imaging is relatively stable when the pressure is less than 11 kPa, and within this range, the change of vascular area density calculated from the OCTA imaging is below 0.13%. In addition, the probe was used to augment the OCT monitoring of blood flow changes during a reactive hyperemia experiment, in which the operator could properly control the amount of pressure applied to the skin surface and achieve full release after compression stimulation.
Collapse
Affiliation(s)
- Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- These authors contributed equally to this study
| | - Jie Lu
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- These authors contributed equally to this study
| | - Nhan Le
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|