1
|
Detrez N, Burhan S, Rewerts K, Kren J, Buschschluter S, Theisen-Kunde D, Bonsanto MM, Huber R, Brinkmann R. Flow-Controlled Air-Jet for In Vivo Quasi Steady-State and Dynamic Elastography With MHz Optical Coherence Tomography. IEEE Trans Biomed Eng 2025; 72:1008-1020. [PMID: 39437292 DOI: 10.1109/tbme.2024.3484676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Optical coherence elastography (OCE) has been introduced for several medical applications to determine tissue mechanical parameters. However, in order to measure sensitive healthy tissue like brain in vivo, the excitation force needs to be carefully controlled and as low as possible (under 100 µN). Preferably, the excitation should be applied in a non-contact manner. METHODS In this work, an air-jet excitation source for this specific purpose has been developed and characterized. The design focus was set on the exact measurement and control of the generated excitation force to better comply with in vivo medical safety requirements during surgery. RESULTS Therefore, an excitation force control and measurement system based on the applied gas flow was developed. CONCLUSION This system can generate short, high dynamic air-puffs lasting fewer than 5 ms, as well as quasi-static excitation forces lasting 700 ms. The force range covers 1µN to 40 mN with a force error margin between 0.1% and 16% in the relevant range. The excitation source, in conjunction with a 3.2 MHz optical coherence system, enables phase-based, dynamic, and quasi steady-state elastography, as well as robust non-contact classical indentation measurements. SIGNIFICANCE The presented system is a preliminary prototype intended for further development into a clinical version to be used in situ during brain tumor surgery.
Collapse
|
2
|
Schmidt G, Bouma BE, Uribe-Patarroyo N. Asynchronous, semi-reverberant elastography. OPTICA 2024; 11:1285-1294. [PMID: 40109673 PMCID: PMC11922557 DOI: 10.1364/optica.528507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/12/2024] [Indexed: 03/22/2025]
Abstract
Optical coherence elastography measures elasticity-a property correlated with pathologies such as tumors due to fibrosis, atherosclerosis due to heterogeneous plaque composition, and ocular diseases such as keratoconus and glaucoma. Wave-based elastography, including reverberant elastography, leverages the properties of shear waves traveling through tissue primarily to infer shear modulus. These methods have already seen significant development over the past decade. However, existing implementations in OCT require robust synchronization of shear wave excitation with imaging, complicating widespread clinical adoption. We present a method for complete recovery of the harmonic shear wave field in an asynchronous, conventional frame-rate, raster-scanning OCT system by modeling raster-scanning as an amplitude modulation of the displacement field. This technique recovers the entire spatially and temporally coherent complex valued shear wave field from just two B-scans, while reducing the time scale for sensitivity to motion from minutes to tens of milliseconds. To the best of our knowledge, this work represents the first successful demonstration of reverberant elastography on a human subject in vivo with a conventional frame-rate, raster-scanning OCT system, greatly expanding opportunity for widespread translation.
Collapse
Affiliation(s)
- Ginger Schmidt
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts 02139, USA
| | - Brett E Bouma
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts 02139, USA
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
3
|
Liu J, Shi Y, Gong Z, Zhang Y, Wang RK. Adaptive contour-tracking to aid wide-field swept-source optical coherence tomography imaging of large objects with uneven surface topology. BIOMEDICAL OPTICS EXPRESS 2024; 15:4891-4908. [PMID: 39347000 PMCID: PMC11427217 DOI: 10.1364/boe.533399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 10/01/2024]
Abstract
High-speed and wide-field optical coherence tomography (OCT) imaging is increasingly essential for clinical applications yet faces challenges due to its inherent sensitivity roll-off and limited depth of focus, particularly when imaging samples with significant variations in surface contour. Here, we propose one innovative solution of adaptive contour tracking and scanning methods to address these challenges. The strategy integrates an electrically tunable lens and adjustable optical delay line control with real-time surface contour information, enabling dynamic optimization of imaging protocols. It rapidly pre-scans the sample surface to acquire a comprehensive contour map. Using this map, it generates a tailored scanning protocol by partitioning the entire system ranging distance into depth-resolved segments determined by the optical Raleigh length of the objective lens, ensuring optimal imaging at each segment. Employing short-range imaging mode along the sample contour minimizes data storage and post-processing requirements, while adaptive adjustment of focal length and reference optical delay line maintains high imaging quality throughout. Experimental demonstrations show the effectiveness of the adaptive contour tracking OCT in maintaining high contrast and signal-to-noise ratio across the entire field of view, even in samples with significantly uneven surface curvatures. Notably, this approach achieves these results with reduced data volume compared to traditional OCT methods. This advancement holds promise for enhancing OCT imaging in clinical settings, particularly in applications requiring rapid, wide-field imaging of tissue structures and blood flow.
Collapse
Affiliation(s)
- Jian Liu
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Zhaoyu Gong
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Yi Zhang
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
4
|
Shi Y, Liu J, Wang RK. High-speed, long-range and wide-field OCT for in vivo 3D imaging of the oral cavity achieved by a 600 kHz swept source laser. BIOMEDICAL OPTICS EXPRESS 2024; 15:4365-4380. [PMID: 39022551 PMCID: PMC11249692 DOI: 10.1364/boe.528287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 07/20/2024]
Abstract
We report a high-speed, long-range, and wide-field swept-source optical coherence tomography (SS-OCT) system aimed for imaging microstructures and microcirculations in the oral cavity. This system operates at a scan speed of 600 kHz, delivering a wide imaging field of view at 42 × 42 mm2 and a ranging distance of 36 mm. To simultaneously meet the requirements of high speed and long range, it is necessary for the k-clock trigger signal to be generated at its maximum speed, which may induce non-linear phase response in electronic devices due to the excessive k-clock frequency bandwidth, leading to phase errors. To address this challenge, we introduced a concept of electrical dispersion and a global k-clock compensation approach to improve overall performance of the imaging system. Additionally, image distortion in the wide-field imaging mode is also corrected using a method based on distortion vector maps. With this system, we demonstrate comprehensive structural and blood flow imaging of the anterior oral cavity in healthy individuals. The high-speed, long-range, and wide-field SS-OCT system opens new opportunities for comprehensive oral cavity examinations and holds promise as a reliable tool for assessing oral health conditions.
Collapse
Affiliation(s)
- Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jian Liu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Gong Z, Bojikian KD, Chen A, Chen PP, Rezaei KA, Olmos LC, Mudumbai RC, Li J, Schwartz DM, Wang RK. In-vivo characterization of scleral rigidity in myopic eyes using fundus-pulsation optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3426-3440. [PMID: 38855699 PMCID: PMC11161338 DOI: 10.1364/boe.523835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 06/11/2024]
Abstract
The sclera plays an important role in the structural integrity of the eye. However, as myopia progresses, the elongation of the eyeball exerts stretching forces on the posterior sclera, which typically happens in conjunction with scleral remodeling that causes rigidity loss. These biomechanical alterations can cause localized eyeball deformation and vision impairment. Therefore, monitoring scleral rigidity is clinically important for the management and risk assessment of myopia. In this study, we propose fundus pulsation optical coherence elastography (FP-OCE) to characterize posterior scleral rigidity in living humans. This methodology is based on a choroidal pulsation model, where the scleral rigidity is inversely associated with the choroidal max strain obtained through phase-sensitive optical coherence tomography (PhS-OCT) measurement of choroidal deformation and thickness. Using FP-OCE, we conducted a pilot clinical study to explore the relationship between choroidal strain and myopia severity. The results revealed a significant increase in choroidal max strain in pathologic myopia, indicating a critical threshold beyond which scleral rigidity decreases significantly. Our findings offer a potential new method for monitoring myopia progression and evaluating therapies that alter scleral mechanical properties.
Collapse
Affiliation(s)
- Zhaoyu Gong
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Andrew Chen
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Philip P. Chen
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Kasra A. Rezaei
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Lisa C. Olmos
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Raghu C. Mudumbai
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Jonathan Li
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Daniel M. Schwartz
- Department of Ophthalmology, University of California, San Francisco, CA, USA
- Merkin Institute for Translational Research, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Kren J, Skambath I, Kuppler P, Buschschlüter S, Detrez N, Burhan S, Huber R, Brinkmann R, Bonsanto MM. Mechanical characteristics of glioblastoma and peritumoral tumor-free human brain tissue. Acta Neurochir (Wien) 2024; 166:102. [PMID: 38396016 PMCID: PMC10891200 DOI: 10.1007/s00701-024-06009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The diagnosis of brain tumor is a serious event for the affected patient. Surgical resection is a crucial part in the treatment of brain tumors. However, the distinction between tumor and brain tissue can be difficult, even for experienced neurosurgeons. This is especially true in the case of gliomas. In this project we examined whether the biomechanical parameters elasticity and stress relaxation behavior are suitable as additional differentiation criteria between tumorous (glioblastoma multiforme; glioblastoma, IDH-wildtype; GBM) and non-tumorous, peritumoral tissue. METHODS Indentation measurements were used to examine non-tumorous human brain tissue and GBM samples for the biomechanical properties of elasticity and stress-relaxation behavior. The results of these measurements were then used in a classification algorithm (Logistic Regression) to distinguish between tumor and non-tumor. RESULTS Differences could be found in elasticity spread and relaxation behavior between tumorous and non-tumorous tissue. Classification was successful with a sensitivity/recall of 83% (sd = 12%) and a precision of 85% (sd = 9%) for detecting tumorous tissue. CONCLUSION The findings imply that the data on mechanical characteristics, with particular attention to stress relaxation behavior, can serve as an extra element in differentiating tumorous brain tissue from non-tumorous brain tissue.
Collapse
Affiliation(s)
- Jessica Kren
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Luebeck, Germany.
| | - Isabelle Skambath
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Patrick Kuppler
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Luebeck, Germany
| | | | - Nicolas Detrez
- Medizinisches Laserzentrum Lübeck GmbH, Luebeck, Germany
| | - Sazgar Burhan
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
| | - Robert Huber
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
| | - Ralf Brinkmann
- Medizinisches Laserzentrum Lübeck GmbH, Luebeck, Germany
| | - Matteo Mario Bonsanto
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|