1
|
Kurz B, Lange T, Voelker M, Hart ML, Rolauffs B. Articular Cartilage-From Basic Science Structural Imaging to Non-Invasive Clinical Quantitative Molecular Functional Information for AI Classification and Prediction. Int J Mol Sci 2023; 24:14974. [PMID: 37834422 PMCID: PMC10573252 DOI: 10.3390/ijms241914974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
This review presents the changes that the imaging of articular cartilage has undergone throughout the last decades. It highlights that the expectation is no longer to image the structure and associated functions of articular cartilage but, instead, to devise methods for generating non-invasive, function-depicting images with quantitative information that is useful for detecting the early, pre-clinical stage of diseases such as primary or post-traumatic osteoarthritis (OA/PTOA). In this context, this review summarizes (a) the structure and function of articular cartilage as a molecular imaging target, (b) quantitative MRI for non-invasive assessment of articular cartilage composition, microstructure, and function with the current state of medical diagnostic imaging, (c), non-destructive imaging methods, (c) non-destructive quantitative articular cartilage live-imaging methods, (d) artificial intelligence (AI) classification of degeneration and prediction of OA progression, and (e) our contribution to this field, which is an AI-supported, non-destructive quantitative optical biopsy for early disease detection that operates on a digital tissue architectural fingerprint. Collectively, this review shows that articular cartilage imaging has undergone profound changes in the purpose and expectations for which cartilage imaging is used; the image is becoming an AI-usable biomarker with non-invasive quantitative functional information. This may aid in the development of translational diagnostic applications and preventive or early therapeutic interventions that are yet beyond our reach.
Collapse
Affiliation(s)
- Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Thomas Lange
- Medical Physics Department of Radiology, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany;
| | - Marita Voelker
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.V.); (M.L.H.)
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.V.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.V.); (M.L.H.)
| |
Collapse
|
2
|
Radmilović MD, Drvenica IT, Rabasović MD, Ilić VL, Pavlović D, Oasa S, Vukojević V, Perić M, Nikolić SN, Krmpot AJ. Interactions of ultrashort laser pulses with hemoglobin: Photophysical aspects and potential applications. Int J Biol Macromol 2023:125312. [PMID: 37302636 DOI: 10.1016/j.ijbiomac.2023.125312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Hemoglobin (Hb), a life-sustaining and highly abundant erythrocyte protein, is not readily fluorescent. A few studies have already reported Two-Photon Excited Fluorescence (TPEF) of Hb, however, the mechanisms through which Hb becomes fluorescent upon interaction with ultrashort laser pulses are not completely understood. Here, we characterized photophysically this interaction on Hb thin film and erythrocytes using fluorescence spectroscopy upon single-photon/two-photon absorption, and UV-VIS single-photon absorption spectroscopy. A gradual increase of the fluorescence intensity, ending up with saturation, is observed upon prolonged exposure of Hb thin layer and erythrocytes to ultrashort laser pulses at 730 nm. When compared to protoporphyrin IX (PpIX) and oxidized Hb by H2O2, TPEF spectra from a thin Hb film and erythrocytes showed good mutual agreement, broad peaking at 550 nm, supporting hemoglobin undergoes degradation and that same fluorescent specie(s) originating from the heme moiety are generated. The uniform square shaped patterns of the fluorescent photoproduct exhibited the same level of the fluorescence intensity even after 12 weeks from the formation, indicating high photoproduct stability. We finally demonstrated the full potential of the formed Hb photoproduct with TPEF scanning microscopy towards spatiotemporally controlled micropatterning in HTF and single human erythrocyte labelling and tracking in the whole blood.
Collapse
Affiliation(s)
| | - Ivana T Drvenica
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Vesna Lj Ilić
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danica Pavlović
- Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
| | - Sho Oasa
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mina Perić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia; Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Stanko N Nikolić
- Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia; Division of Arts and Sciences, Texas A&M University at Qatar, Doha, Qatar
| | - Aleksandar J Krmpot
- Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia; Division of Arts and Sciences, Texas A&M University at Qatar, Doha, Qatar.
| |
Collapse
|
3
|
Li J, Yan P, Li Y, Han M, Zeng Q, Li J, Yu Z, Zhang D, Chen X. Harnessing the power of Raman spectroscopic imaging for ophthalmology. Front Chem 2023; 11:1211121. [PMID: 37252371 PMCID: PMC10213270 DOI: 10.3389/fchem.2023.1211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Eye diseases can cause great inconvenience to people's daily life; therefore, it is necessary to study the causes of ocular diseases and related physiological processes. Raman spectroscopic imaging (RSI) is a non-destructive, non-contact detection technique with the advantages of label-free, non-invasive and highly specific. Compared with other mature imaging technologies, RSI can provide real-time molecular information and high-resolution imaging at relatively low cost, making it very suitable for quantitative detection of biological molecules. RSI can reflect the overall situation of the sample, revealing the content distribution of the same substance in different areas of the sample. This review focuses on the recent advances in ophthalmology, with particular emphasis on the powerful use of RSI techniques, as well as its combination with other imaging techniques. Finally, we prospect the wider application and future potential of RSI approaches in ophthalmology.
Collapse
Affiliation(s)
- Jing Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Peirao Yan
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Yong Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Ming Han
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Qi Zeng
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Juan Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Zhe Yu
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Dongjie Zhang
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Xueli Chen
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Walters S, Feeks JA, Huynh KT, Hunter JJ. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of photoreceptors and retinal pigment epithelium in the living non-human primate eye. BIOMEDICAL OPTICS EXPRESS 2022; 13:389-407. [PMID: 35154879 PMCID: PMC8803039 DOI: 10.1364/boe.444550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 05/18/2023]
Abstract
Fluorescence lifetime imaging has demonstrated promise as a quantitative measure of cell health. Adaptive optics two-photon excited fluorescence (TPEF) ophthalmoscopy enables excitation of intrinsic retinal fluorophores involved in cellular metabolism and the visual cycle, providing in vivo visualization of retinal structure and function at the cellular scale. Combining these technologies revealed that macaque cones had a significantly longer mean TPEF lifetime than rods at 730 nm excitation. At 900 nm excitation, macaque photoreceptors had a significantly longer mean TPEF lifetime than the retinal pigment epithelium layer. AOFLIO can measure the fluorescence lifetime of intrinsic retinal fluorophores on a cellular scale, revealing differences in lifetime between retinal cell classes.
Collapse
Affiliation(s)
- Sarah Walters
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Currently with IDEX Health & Science, West Henrietta, NY 14586, USA
- These authors contributed equally
| | - James A. Feeks
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Currently with IDEX Health & Science, West Henrietta, NY 14586, USA
- These authors contributed equally
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Jennifer J. Hunter
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
5
|
Boguslawski J, Palczewska G, Tomczewski S, Milkiewicz J, Kasprzycki P, Stachowiak D, Komar K, Marzejon MJ, Sikorski BL, Hudzikowski A, Głuszek A, Łaszczych Z, Karnowski K, Soboń G, Palczewski K, Wojtkowski M. In vivo imaging of the human eye using a two-photon excited fluorescence scanning laser ophthalmoscope. J Clin Invest 2021; 132:154218. [PMID: 34847075 PMCID: PMC8759795 DOI: 10.1172/jci154218] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Noninvasive assessment of metabolic processes that sustain regeneration of human retinal visual pigments (visual cycle) is essential to improve ophthalmic diagnostics and to accelerate development of new treatments to counter retinal diseases. Fluorescent vitamin A derivatives, which are the chemical intermediates of these processes, are highly sensitive to UV light; thus, safe analyses of these processes in humans are currently beyond the reach of even the most modern ocular imaging modalities. METHODS We present a compact fluorescence scanning laser ophthalmoscope (TPEF-SLO) and spectrally resolved images of the human retina based on two-photon excitation (TPE) with near-infrared (IR) light. A custom Er:fiber laser with integrated pulse selection, along with intelligent post-processing of data, enables excitation with low laser power and precise measurement of weak signals. RESULTS We demonstrate spectrally resolved TPE fundus images of human subjects. Comparison of TPE data between human and mouse models of retinal diseases revealed similarity with mouse models that rapidly accumulate bisretinoid condensation products. Thus, visual cycle intermediates and toxic byproducts of this metabolic pathway can be measured and quantified by TPE imaging. CONCLUSION Our work establishes a TPE instrument and measurement method for noninvasive metabolic assessment of the human retina. This approach opens the possibility for monitoring eye diseases in the earliest stages before structural damage to the retina occurs. FUNDING NIH, Research to Prevent Blindness, Foundation for Polish Science, European Regional Development Fund, Polish National Agency for Academic Exchange and Polish Ministry of Science and Higher Education.
Collapse
Affiliation(s)
- Jakub Boguslawski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Palczewska
- Department of Medical Devices, Polgenix, Inc., Cleveland, United States of America
| | - Slawomir Tomczewski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Jadwiga Milkiewicz
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kasprzycki
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Stachowiak
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Komar
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin J Marzejon
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz L Sikorski
- Department of Ophthalmology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Arkadiusz Hudzikowski
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Aleksander Głuszek
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Zbigniew Łaszczych
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Karol Karnowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Soboń
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| | - Maciej Wojtkowski
- Physical Chemistry of Biological Systems, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Bueno JM, Cruz-Castillo R, Avilés-Trigueros M, Bautista-Elivar N. Arrangement of the photoreceptor mosaic in a diabetic rat model imaged with multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4901-4914. [PMID: 33014589 PMCID: PMC7510868 DOI: 10.1364/boe.399835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Diabetic retinopathy (DR) is defined as a microvascular pathology. However, some data have suggested that the retinal photoreceptors (PRs) might be important in the pathogenesis of this ocular disease. In this study the organization of the PRs in control and diabetic-induced rats was compared using multiphoton microscopy. The PR mosaic was imaged at different locations in non-stained retinas. The density of PRs was directly quantified from cell counting. The spatially resolved density presents a double-slope pattern (from the central retina towards the periphery) in both healthy and pathological samples, although the values for the latter were significantly lower all across the retina. Moreover, Voronoi analysis was performed to explore changes in PR topography. In control specimens a hexagonally packed structure was dominant. However, despite the non-controlled effects of the disease in retinal structures, this PR regularity was fairly maintained in diabetic retinas.
Collapse
Affiliation(s)
- Juan M. Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Murcia, Spain
| | - Ricardo Cruz-Castillo
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, “Campus Mare Nostrum” de Excelencia International, Murcia, Spain
| | - Nazario Bautista-Elivar
- Departamento de Ingeniería Eléctrica, Tecnológico Nacional de México, Instituto Tecnológico de Pachuca, Hidalgo, Mexico
| |
Collapse
|
7
|
Qin Z, He S, Yang C, Yung JSY, Chen C, Leung CKS, Liu K, Qu JY. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo. LIGHT, SCIENCE & APPLICATIONS 2020; 9:79. [PMID: 32411364 PMCID: PMC7203252 DOI: 10.1038/s41377-020-0317-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 05/08/2023]
Abstract
In vivo fundus imaging offers non-invasive access to neuron structures and biochemical processes in the retina. However, optical aberrations of the eye degrade the imaging resolution and prevent visualization of subcellular retinal structures. We developed an adaptive optics two-photon excitation fluorescence microscopy (AO-TPEFM) system to correct ocular aberrations based on a nonlinear fluorescent guide star and achieved subcellular resolution for in vivo fluorescence imaging of the mouse retina. With accurate wavefront sensing and rapid aberration correction, AO-TPEFM permits structural and functional imaging of the mouse retina with submicron resolution. Specifically, simultaneous functional calcium imaging of neuronal somas and dendrites was demonstrated. Moreover, the time-lapse morphological alteration and dynamics of microglia were characterized in a mouse model of retinal disorder. In addition, precise laser axotomy was achieved, and degeneration of retinal nerve fibres was studied. This high-resolution AO-TPEFM is a promising tool for non-invasive retinal imaging and can facilitate the understanding of a variety of eye diseases as well as neurodegenerative disorders in the central nervous system.
Collapse
Affiliation(s)
- Zhongya Qin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sicong He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chao Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jasmine Sum-Yee Yung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Congping Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | - Kai Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianan Y. Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
8
|
He S, Wei X, Qin Z, Chen C, Wu Z, Qu JY. In vivo study of metabolic dynamics and heterogeneity in brown and beige fat by label-free multiphoton redox and fluorescence lifetime microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960057. [PMID: 31626372 DOI: 10.1002/jbio.201960057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
In this work, the metabolic characteristics of adipose tissues in live mouse model were investigated using a multiphoton redox ratio and fluorescence lifetime imaging technology. By analyzing the intrinsic fluorescence of metabolic coenzymes, we measured the optical redox ratios of adipocytes in vivo and studied their responses to thermogenesis. The fluorescence lifetime imaging further revealed changes in protein bindings of metabolic coenzymes in the adipocytes during thermogenesis. Our study uncovered significant heterogeneity in the cellular structures and metabolic characteristics of thermogenic adipocytes in brown and beige fat. Subgroups of brown and beige adipocytes were identified based on the distinct lipid size distributions, redox ratios, fluorescence lifetimes and thermogenic capacities. The results of our study show that this label-free imaging technique can shed new light on in vivo study of metabolic dynamics and heterogeneity of adipose tissues in live organisms.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Xiuqing Wei
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Division of Life Science, Center for Stem Cell Research, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Zhongya Qin
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Congping Chen
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Zhenguo Wu
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Division of Life Science, Center for Stem Cell Research, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| |
Collapse
|
9
|
Wahl DJ, Ju MJ, Jian Y, Sarunic MV. Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence. BIOMEDICAL OPTICS EXPRESS 2019; 10:4859-4873. [PMID: 31565530 PMCID: PMC6757458 DOI: 10.1364/boe.10.004859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 05/02/2023]
Abstract
Two-photon excited fluorescence (TPEF) imaging of the retina is a developing technique that provides non-invasive compound-specific measurements from the retina. In this report, we demonstrate high-resolution TPEF imaging of the mouse retina using sensorless adaptive optics (SAO) and optical coherence tomography (OCT). A single near-infrared light source was used for simultaneous multi-modal imaging with OCT and TPEF. The image-based SAO could be performed using the en face OCT or the TPEF for aberration correction. Our results demonstrate OCT and TPEF for angiography. Also, we demonstrate non-invasive cellular-resolution imaging of fluorescently labelled cells and the Retinal Pigment Epithelium (RPE) mosaic.
Collapse
Affiliation(s)
- Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Myeong Jin Ju
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yifan Jian
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
10
|
den Haan J, Csinscik L, Parker T, Paterson RW, Slattery CF, Foulkes A, Bouwman FH, Verbraak FD, Scheltens P, Peto T, Lengyel I, Schott JM, Crutch SJ, Shakespeare TJ, Yong KXX. Retinal thickness as potential biomarker in posterior cortical atrophy and typical Alzheimer's disease. Alzheimers Res Ther 2019; 11:62. [PMID: 31319885 PMCID: PMC6639972 DOI: 10.1186/s13195-019-0516-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Retinal thickness can be measured non-invasively with optical coherence tomography (OCT) and may offer compelling potential as a biomarker for Alzheimer's disease (AD). Retinal thinning is hypothesized to be a result of retrograde atrophy and/or parallel neurodegenerative processes. Changes in the visual pathway are of particular interest in posterior cortical atrophy (PCA), the most common atypical AD phenotype predominantly affecting the parietal-occipital cortices. We therefore evaluated retinal thickness as non-invasive biomarker of neurodegeneration in well-characterized participants with posterior cortical atrophy (PCA) and typical Alzheimer's disease (tAD). METHODS Retinal thickness measures were acquired from 48 patient participants (N = 25 PCA; N = 23 tAD) fulfilling consensus diagnostic criteria and 70 age-matched controls. Participants were recruited between 2014 and 2016. All participants underwent optical coherence tomography (OCT) imaging, including measurement of peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular thickness (mRT). Participants did not show evidence of any significant ophthalmological conditions. Subgroup analyses were performed in participants with available MRI and CSF measures, providing evidence of neurodegeneration and underlying AD pathology respectively. RESULTS There was no evidence of overall between-group differences in pRNFL thickness (mean PCA 98.7 ± 12.2; tAD 99.9 ± 8.7; controls 99.6 ± 10.0 μm, one-way analysis of variance (ANOVA) p = 0.92) or total mRT (mean PCA 266.9 ± 16.3; tAD 267.8 ± 13.6; controls 269.3 ± 13.6 μm, one-way ANOVA p = 0.75). Similarly, subgroup analysis with MRI biomarkers (PCA = 18, tAD = 17, controls = 31) showing neurodegeneration, and CSF biomarkers (PCA = 18, tAD = 14, controls = 13) supporting underlying AD pathology did not provide evidence of overall between-group differences in pRNFL or mRT measures (all p > 0.3). CONCLUSIONS Retinal thickness did not discriminate tAD and PCA from controls or from one another despite unequivocal differences on standard clinical, neuro-imaging and CSF measures. Findings from this well-characterized sample, including cases with PCA, do not support the hypothesis that retinal neurodegeneration, measured using conventional OCT, is a useful biomarker for AD or PCA.
Collapse
Affiliation(s)
- Jurre den Haan
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Mailbox 7057, 1007 MB Amsterdam, The Netherlands
| | - Lajos Csinscik
- Centre for Experimental Medicine, Queen’s University, Belfast, UK
- Institute of Ophthalmology UCL, London, UK
| | - Tom Parker
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Ross W. Paterson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | | - Alexander Foulkes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Femke H. Bouwman
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Mailbox 7057, 1007 MB Amsterdam, The Netherlands
| | - Frank D. Verbraak
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Mailbox 7057, 1007 MB Amsterdam, The Netherlands
| | - Tunde Peto
- Centre for Experimental Medicine, Queen’s University, Belfast, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL, London, UK
| | - Imre Lengyel
- Centre for Experimental Medicine, Queen’s University, Belfast, UK
- Institute of Ophthalmology UCL, London, UK
| | - Jonathan M. Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Sebastian J. Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | | - Keir X. X. Yong
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
11
|
Lin M, Liu Q, Liu C, Qiao X, Shao C, Su X. Label-free light-sheet microfluidic cytometry for the automatic identification of senescent cells. BIOMEDICAL OPTICS EXPRESS 2018; 9:1692-1703. [PMID: 29675311 PMCID: PMC5905915 DOI: 10.1364/boe.9.001692] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/03/2018] [Accepted: 03/03/2018] [Indexed: 05/08/2023]
Abstract
Label-free microfluidic cytometry is of increasing interest for single cell analysis due to its advantages of high-throughput, miniaturization, as well as noninvasive detection. Here we develop a next generation label-free light-sheet microfluidic cytometer for single cell analysis by two-dimensional (2D) light scattering measurements. Our cytometer integrates light sheet illumination with a disposable hydrodynamic focusing unit, which can achieve 3D hydrodynamic focusing of a sample fluid to a diameter of 19 micrometer without microfabrication. This integration also improves the signal to noise ratio (SNR) for the acquisition of 2D light scattering patterns from label-free cells. Particle sizing with submicron resolution is achieved by our light-sheet flow cytometer, where Euclidean distance-based similarity measures are performed. Label-free, automatic classification of senescent and normal cells is achieved with a high accuracy rate by incorporating our light-sheet flow cytometry with support vector machine (SVM) algorithms. Our light-sheet microfluidic cytometry with a microfabrication-free hydrodynamic focusing unit may find wide applications for automatic and label-free clinical diagnosis.
Collapse
Affiliation(s)
- Meiai Lin
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Qiao Liu
- Department of Molecular Medicine and Genetics, School of Basic Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Experimental Teratology (Ministry of Education), Shandong University, Jinan, Shandong, 250012, China
| | - Chao Liu
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Xu Qiao
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Changshun Shao
- Department of Molecular Medicine and Genetics, School of Basic Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Experimental Teratology (Ministry of Education), Shandong University, Jinan, Shandong, 250012, China
| | - Xuantao Su
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
12
|
In vivo two-photon imaging of retina in rabbits and rats. Exp Eye Res 2018; 166:40-48. [DOI: 10.1016/j.exer.2017.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/21/2022]
|
13
|
Mahbub SB, Plöschner M, Gosnell ME, Anwer AG, Goldys EM. Statistically strong label-free quantitative identification of native fluorophores in a biological sample. Sci Rep 2017; 7:15792. [PMID: 29150629 PMCID: PMC5693869 DOI: 10.1038/s41598-017-15952-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022] Open
Abstract
Bioimaging using endogenous cell fluorescence, without any external biomarkers makes it possible to explore cells and tissues in their original native state, also in vivo. In order to be informative, this label-free method requires careful multispectral or hyperspectral recording of autofluorescence images followed by unsupervised extraction (unmixing) of biochemical signatures. The unmixing is difficult due to the scarcity of biochemically pure regions in cells and also because autofluorescence is weak compared with signals from labelled cells, typically leading to low signal to noise ratio. Here, we solve the problem of unsupervised hyperspectral unmixing of cellular autofluorescence by introducing the Robust Dependent Component Analysis (RoDECA). This approach provides sophisticated and statistically robust quantitative biochemical analysis of cellular autofluorescence images. We validate our method on artificial images, where the addition of varying known level of noise has allowed us to quantify the accuracy of our RoDECA analysis in a way that can be applied to real biological datasets. The same unsupervised statistical minimisation is then applied to imaging of mouse retinal photoreceptor cells where we establish the identity of key endogenous fluorophores (free NADH, FAD and lipofuscin) and derive the corresponding molecular abundance maps. The pre-processing methodology of image datasets is also presented, which is essential for the spectral unmixing analysis, but mostly overlooked in the previous studies.
Collapse
Affiliation(s)
- Saabah B Mahbub
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, 2109, NSW, Australia.
| | - Martin Plöschner
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, 2109, NSW, Australia
| | - Martin E Gosnell
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, 2109, NSW, Australia
- Quantitative Pty Ltd, ABN 17165684186, 116-118 Great Western Highway, Mt. Victoria, NSW, 2786, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, 2109, NSW, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, 2109, NSW, Australia.
| |
Collapse
|
14
|
Murashova GA, Mancuso CA, Canfield JL, Sakami S, Palczewski K, Palczewska G, Dantus M. Multimodal nonlinear optical imaging of unstained retinas in the epi-direction with a sub-40 fs Yb-fiber laser. BIOMEDICAL OPTICS EXPRESS 2017; 8:5228-5242. [PMID: 29188116 PMCID: PMC5695966 DOI: 10.1364/boe.8.005228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 05/09/2023]
Abstract
Ultrafast lasers have potential use in ophthalmology for diagnoses through non-invasive imaging as well as for surgical therapies or for evaluating pharmacological therapies. New ultrafast laser sources, operating at 1.07 μm and sub-40 fs pulse durations, offer exciting possibilities in multiphoton imagining of the retina as the bulk of the eye is relatively transparent to this wavelength, three-photon excitation is not absorbed by DNA, and this wavelength has a greater penetration depth compared to the commonly used 800 nm Ti:Sapphire laser. In this work, we present the first epi-direction detected cross-section and depth-resolved images of unstained isolated retinas obtained using multiphoton microscopy with an ultrafast fiber laser centered at 1.07 μm and a ~38 fs pulse duration. Spectral and temporal characterization of the autofluorescence signals show two distinct regions; the first one from the nerve fiber layer to the inner receptor layer, and the second being the retinal pigmented epithelium and choroid.
Collapse
Affiliation(s)
| | | | - Jacob L Canfield
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Sanae Sakami
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
He S, Xue W, Duan Z, Sun Q, Li X, Gan H, Huang J, Qu JY. Multimodal nonlinear optical microscopy reveals critical role of kinesin-1 in cartilage development. BIOMEDICAL OPTICS EXPRESS 2017; 8:1771-1782. [PMID: 28663865 PMCID: PMC5480580 DOI: 10.1364/boe.8.001771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
We developed a multimodal nonlinear optical (NLO) microscope system by integrating stimulated Raman scattering (SRS), second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) imaging. The system was used to study the morphological and biochemical characteristics of tibial cartilage in a kinesin-1 (Kif5b) knockout mouse model. The detailed structure of fibrillar collagen in the extracellular matrix of cartilage was visualized by the forward and backward SHG signals, while high resolution imaging of chondrocytes was achieved by capturing endogenous TPEF and SRS signals of the cells. The results demonstrate that collagen fibrils in the superficial surface of the articular cartilage decreased significantly in the absence of Kif5b. The distorted morphology along with accumulated intracellular collagen was observed in the Kif5b-deficient chondrocytes, indicating the critical roles of kinesin-1 in the chondrocyte morphogenesis and collagen secretion. The study shows that multimodal NLO imaging method is an effective approach to investigate early development of cartilage.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- These authors contributed equally to this work
| | - Wenqian Xue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- These authors contributed equally to this work
| | - Zhigang Duan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Qiqi Sun
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuesong Li
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Huiyan Gan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
- Shenzhen Institute of Advanced Technologies, Shenzhen, Guangdong, China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
16
|
Murashova GA, Mancuso CA, Sakami S, Palczewski K, Palczewska G, Dantus M. Epi-direction detected multimodal imaging of an unstained mouse retina with a Yb-fiber laser. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10069:100692K. [PMID: 28989217 PMCID: PMC5627661 DOI: 10.1117/12.2252457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we present all epi-direction detected images of an unstained mouse retina using multiphoton microscopy with a sub-50 fs Yb-fiber laser centered at 1.07 μm. This wavelength is particularly interesting as the fundamental wavelength is transparent to the anterior segment of the eye and the higher harmonics are above DNA-damaging UV wavelengths. We present a characterization of the multimodal signals emitted from the different retinal layers, as well as from the choroid and the sclera. By characterizing native multiphoton signals from the retina, we move closer to having Yb-fiber considered for in vivo diagnosis of retinal disease through multiphoton microscopy as well as for corrective therapies.
Collapse
Affiliation(s)
| | | | - Sanae Sakami
- Department of Pharmacology, Case Western Reserve University, Cleveland OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland OH 44106, USA
| | | | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
17
|
Bukara K, Jovanic S, Drvenica IT, Stancic A, Ilic V, Rabasovic MD, Pantelic D, Jelenkovic B, Bugarski B, Krmpot AJ. Mapping of hemoglobin in erythrocytes and erythrocyte ghosts using two photon excitation fluorescence microscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:26003. [PMID: 28301654 DOI: 10.1117/1.jbo.22.2.026003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/24/2017] [Indexed: 05/27/2023]
Abstract
The present study describes utilization of two photon excitation fluorescence (2PE) microscopy for visualization of the hemoglobin in human and porcine erythrocytes and their empty membranes (i.e., ghosts). High-quality, label- and fixation-free visualization of hemoglobin was achieved at excitation wavelength 730 nm by detecting visible autofluorescence. Localization in the suspension and spatial distribution (i.e., mapping) of residual hemoglobin in erythrocyte ghosts has been resolved by 2PE. Prior to the 2PE mapping, the presence of residual hemoglobin in the bulk suspension of erythrocyte ghosts was confirmed by cyanmethemoglobin assay. 2PE analysis revealed that the distribution of hemoglobin in intact erythrocytes follows the cells’ shape. Two types of erythrocytes, human and porcine, characterized with discocyte and echinocyte morphology, respectively, showed significant differences in hemoglobin distribution. The 2PE images have revealed that despite an extensive washing out procedure after gradual hypotonic hemolysis, a certain amount of hemoglobin localized on the intracellular side always remains bound to the membrane and cannot be eliminated. The obtained results open the possibility to use 2PE microscopy to examine hemoglobin distribution in erythrocytes and estimate the purity level of erythrocyte ghosts in biotechnological processes.
Collapse
Affiliation(s)
- Katarina Bukara
- University of Belgrade, Department of Chemical Engineering, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Svetlana Jovanic
- University of Belgrade, Institute of Physics Belgrade, Belgrade, Serbia
| | - Ivana T Drvenica
- University of Belgrade, Department of Chemical Engineering, Faculty of Technology and Metallurgy, Belgrade, SerbiacUniversity of Belgrade, Institute for Medical Research, Belgrade, Serbia
| | - Ana Stancic
- University of Belgrade, Institute for Medical Research, Belgrade, Serbia
| | - Vesna Ilic
- University of Belgrade, Institute for Medical Research, Belgrade, Serbia
| | | | - Dejan Pantelic
- University of Belgrade, Institute of Physics Belgrade, Belgrade, Serbia
| | | | - Branko Bugarski
- University of Belgrade, Department of Chemical Engineering, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Aleksandar J Krmpot
- University of Belgrade, Institute of Physics Belgrade, Belgrade, SerbiadTexas A&M University at Qatar, Science Program, Doha, Qatar
| |
Collapse
|
18
|
Bremer D, Pache F, Günther R, Hornow J, Andresen V, Leben R, Mothes R, Zimmermann H, Brandt AU, Paul F, Hauser AE, Radbruch H, Niesner R. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer. Front Immunol 2016; 7:642. [PMID: 28066446 PMCID: PMC5179567 DOI: 10.3389/fimmu.2016.00642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent tissue dysfunction is now possible. Hence, the new approach paves the way for deeper insights into the pathology of neuroinflammatory processes on a cellular basis, over the entire disease course.
Collapse
Affiliation(s)
- Daniel Bremer
- German Rheumatism Research Center , Berlin , Germany
| | - Florence Pache
- German Rheumatism Research Center, Berlin, Germany; NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - Ruth Leben
- German Rheumatism Research Center , Berlin , Germany
| | - Ronja Mothes
- German Rheumatism Research Center, Berlin, Germany; Department of Neuropathology, Charité - Universitätsmedizin, Berlin, Germany
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Anja E Hauser
- German Rheumatism Research Center, Berlin, Germany; Immundynamics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin , Berlin , Germany
| | | |
Collapse
|
19
|
Abstract
Stimulated Raman scattering (SRS) describes a family of techniques first discovered and developed in the 1960s. Whereas the nascent history of the technique is parallel to that of laser light sources, recent advances have spurred a resurgence in its use and development that has spanned across scientific fields and spatial scales. SRS is a nonlinear technique that probes the same vibrational modes of molecules that are seen in spontaneous Raman scattering. While spontaneous Raman scattering is an incoherent technique, SRS is a coherent process, and this fact provides several advantages over conventional Raman techniques, among which are much stronger signals and the ability to time-resolve the vibrational motions. Technological improvements in pulse generation and detection strategies have allowed SRS to probe increasingly smaller volumes and shorter time scales. This has enabled SRS research to move from its original domain, of probing bulk media, to imaging biological tissues and single cells at the micro scale, and, ultimately, to characterizing samples with subdiffraction resolution at the nanoscale. In this Review, we give an overview of the history of the technique, outline its basic properties, and present historical and current uses at multiple length scales to underline the utility of SRS to the molecular sciences.
Collapse
Affiliation(s)
- Richard C Prince
- Department of Biomedical Engineering, University of California, Irvine , 1436 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis , B-18, 139 Smith Hall, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine , 1107 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
20
|
Lin M, Qiao X, Liu Q, Shao C, Su X. Light-sheet-based 2D light scattering cytometry for label-free characterization of senescent cells. BIOMEDICAL OPTICS EXPRESS 2016; 7:5170-5181. [PMID: 28018733 PMCID: PMC5175560 DOI: 10.1364/boe.7.005170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 05/24/2023]
Abstract
A light-sheet-based 2D light scattering cytometer is developed for label-free characterization of senescent cells. The light-sheet provides an illumination beam with controlled thickness for single cell excitation, and 2D light scattering patterns are obtained by using a defocused imaging method. The principle of this cytometer is validated by distinguishing microspheres with submicron resolution. Automatic classification of senescent and normal cells is achieved at single cell level by using the support vector machine (SVM) algorithm, where a sensitivity of 89.1% and a specificity of 96.4% are obtained. Our results suggest that the light-sheet-based 2D light scattering label-free cytometry has the capability to perform size differentiation of beads with submicron resolution and to classify different groups of cells without fluorescent labeling, showing the potential for clinical diagnosis of senescence-related diseases.
Collapse
Affiliation(s)
- Meiai Lin
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Xu Qiao
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology (Ministry of Education); Department of Molecular Medicine and Genetics, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Changshun Shao
- Key Laboratory of Experimental Teratology (Ministry of Education); Department of Molecular Medicine and Genetics, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuantao Su
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|