1
|
Alizadeh M, Krouglov S, Barzda V. Polarimetric second-harmonic generation microscopy of partially oriented fibers I: Digital modeling. Biophys J 2023; 122:3924-3936. [PMID: 37608550 PMCID: PMC10560684 DOI: 10.1016/j.bpj.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 08/18/2023] [Indexed: 08/24/2023] Open
Abstract
Second-harmonic generation (SHG) in biological tissues originates predominantly from noncentrosymmetric fibrillar structures partially oriented within a focal volume (voxel) of a multiphoton excitation microscope. This study is aimed to elucidate fibrillar organization factors influencing SHG intensity, as well as achiral, R, and chiral, C, nonlinear susceptibility tensor component ratios. SHG response is calculated for various configurations of fibrils in a voxel using the digital nonlinear microscope. The R and C ratios are calculated using linear incident and outgoing polarization states that simulate polarization-in polarization-out polarimetric measurements. The investigation shows strong SHG intensity dependence on parallel/antiparallel fiber organization. The R and C ratios are strongly influenced by the fiber chirality, tilting of the fibers out of the image plane, and crossing of the fibers. The computational modeling provides the basis for the interpretation of polarimetric SHG microscopy images in terms of the ultrastructural organization of fibers in each voxel of the samples. The modeling results are employed in the accompanying paper to investigate the ultrastructures with parallel/antiparallel fibers and two-dimensional and tree-dimensional crossing fibers in biological and biomimetic structures.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Serguei Krouglov
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Virginijus Barzda
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Alizadeh M, Habach F, Maciulis M, Kontenis L, Bagdonas S, Krouglov S, Baranauskas V, Bulotiene D, Karabanovas V, Rotomskis R, Akens MK, Barzda V. Polarimetric second harmonic generation microscopy of partially oriented fibers II: Imaging study. Biophys J 2023; 122:3937-3949. [PMID: 37621088 PMCID: PMC10560685 DOI: 10.1016/j.bpj.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Polarimetric second harmonic generation (SHG) microscopy imaging is employed to investigate the ultrastructural organization of biological and biomimetic partially oriented fibrillar structures. The linear polarization-in polarization-out SHG microscopy measurements are conducted with rat tail tendon, rabbit cornea, pig cartilage, and biomimetic meso-tetra(4-sulfonatophenyl)porphine (TPPS4) cylindrical aggregates, which represent different two- and three-dimensional (2D and 3D) configurations of C6 symmetry fibril structures in the focal volume (voxel) of the microscope. The polarization-in polarization-out imaging of rat tail tendon reveals that SHG intensity is affected by parallel/antiparallel arrangements of the fibers, and achiral (R) and chiral (C) susceptibility component ratio values change by tilting the tendon fibers out of image plane. The R ratio changes for the 2D crossing fibers observed in cornea tissue. The 3D crossing of fibers also affects R ratio in cartilage tissue. The distinctly different dependence of R on crossing and tilting of fibers is demonstrated in collagen and TPPS4 aggregates, due to the achiral molecular susceptibility ratio having values below and above 3, respectively. The polarimetric microscopy results correspond well with the analytical expressions of amplitude and R and C ratios dependence on the crossing angle of the fibers. The experimentally measured SHG intensity and R and C ratio maps are consistent with the computational modeling of various fiber configurations presented in the preceding article. The demonstrated SHG intensity and R and C ratio dependencies on fibril configurations provide the basis for interpreting polarimetric SHG microscopy images in terms of 3D ultrastructural organization of fibers in each voxel of the samples.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada; Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | - Fayez Habach
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Mykolas Maciulis
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | - Lukas Kontenis
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania; Light Conversion, Vilnius, Lithuania
| | - Saulius Bagdonas
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | - Serguei Krouglov
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Vytautas Baranauskas
- Institute of Biochemistry, Life Science Center, Vilnius University, Vilnius, Lithuania
| | - Danute Bulotiene
- Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania
| | - Vitalijus Karabanovas
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania; Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Ricardas Rotomskis
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania; Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania
| | - Margarete K Akens
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Techna Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Virginijus Barzda
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada; Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
3
|
Castanha N, Challois S, Grenier D, Le-Bail P, Dubreil L, Lucas T. Multiphoton microscopy is a nondestructive label-free approach to investigate the 3D structure of gas cell walls in bread dough. Sci Rep 2023; 13:13971. [PMID: 37634004 PMCID: PMC10460382 DOI: 10.1038/s41598-023-39797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023] Open
Abstract
During the different steps of bread-making, changes in the microstructure of the dough, particularly in the gas cell walls (GCW), have a major influence on the final bread crumb texture. Investigation of the spatial conformation of GCWs is still a challenge because it requires both high resolutions and 3D depth imaging. The originality of the present work lies in the use of label-free non-destructive multiphoton microscopy (NLOM) to image the 3D structure of GCWs, shedding light on their behavior and organization in wheat bread dough. We demonstrated that second and third harmonic generation (SHG, THG) allow imaging, respectively, of starch granules and interfaces in bread dough, while the gluten matrix was detected via two-photon excitation fluorescence (TPEF). Last, a distinction between the gluten network and starch granules was achieved using gluten endogenous fluorescence (EF) imaging, while the position, size, and 3D orientation of starch granules in GCWs were determined from harmonic imaging, made possible by the acquisition of backward and forward SHG with linear polarization. These innovative experiments highlight the strengths of NLOM for a label-free characterization of bread dough microstructure for the first time, in order to understand the role of starch granules in dough stabilization.
Collapse
Affiliation(s)
| | | | | | - Patricia Le-Bail
- INRAE, UR1268 Biopolymers Interactions Assemblies, BP 71627, 44316, Nantes, France
| | | | | |
Collapse
|
4
|
Chen MC, Govindaraju I, Wang WH, Chen WL, Mumbrekar KD, Mal SS, Sarmah B, Baruah VJ, Srisungsitthisunti P, Karunakara N, Mazumder N, Zhuo GY. Revealing the Structural Organization of Gamma-irradiated Starch Granules Using Polarization-resolved Second Harmonic Generation Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1450-1459. [PMID: 37488816 DOI: 10.1093/micmic/ozad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023]
Abstract
Starch is a semi-crystalline macromolecule with the presence of amorphous and crystalline components. The amorphous amylose and crystalline amylopectin regions in starch granules are susceptible to certain physical modifications, such as gamma irradiation. Polarization-resolved second harmonic generation (P-SHG) microscopy in conjunction with SHG-circular dichroism (CD) was used to assess the three-dimensional molecular order and inherent chirality of starch granules and their reaction to different dosages of gamma irradiation. For the first time, the relationship between starch achirality (χ21/χ16 and χ22/χ16) and chirality (χ14/χ16) determining susceptibility tensor ratios has been elucidated. The results showed that changes in the structure and orientation of long-chain amylopectin were supported by the decrease in the SHG anisotropy factor and the χ22/χ16 ratio. Furthermore, SHG-CD illustrated the molecular tilt angle by revealing the arrangement of amylopectin molecules pointing either upward or downward owing to molecular polarity.
Collapse
Affiliation(s)
- Ming-Chi Chen
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung 404333, Taiwan (R.O.C.)
| | - Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium complex, Udupi Dist., Manipal, Karnataka, India
| | - Wei-Hsun Wang
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung 404333, Taiwan (R.O.C.)
| | - Wei-Liang Chen
- Center for Condensed Matter Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei 106319, Taiwan (R.O.C.)
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium complex, Udupi Dist., Manipal, Karnataka, India
| | - Sib Sankar Mal
- Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore Dist., Karnataka, 575025, India
| | - Bhaswati Sarmah
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam 785013, India
| | - Vishwa Jyoti Baruah
- Department of Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Pornsak Srisungsitthisunti
- Department of Production Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Naregundi Karunakara
- Centre for Application of Radioisotopes and Radiation Technology (CARRT), Mangalore University, Mangalore 574199, India
- Center for Advanced Research in Environmental Radioactivity (CARER), Mangalore University, Mangalore 574199, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium complex, Udupi Dist., Manipal, Karnataka, India
| | - Guan-Yu Zhuo
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung 404333, Taiwan (R.O.C.)
| |
Collapse
|
5
|
Bennett E, Harvey M, Cisek R, Tokarz D. Investigation into the structure of crystalline maltodextrin particles by second harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:1027-1040. [PMID: 36950239 PMCID: PMC10026584 DOI: 10.1364/boe.481689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Crystalline maltodextrin particles (CMPs) were investigated using polarization-sensitive second harmonic generation (PSHG) microscopy to determine changes in their crystalline organization due to crystal type (A- and B-type) and hydration for application as starch model systems. Optimization of their synthesis resulted in intense SHG emission, exceeding maize starch granules. PSHG data showed that CMPs have a radial macrostructure with respect to their nucleation regions, fitted ρ values of 2-6, and some similar hydration variations, mimicking starch granules and validating that CMPs may be used as a model system for improved understanding of the SHG properties and applications of starch granules.
Collapse
|
6
|
Aghigh A, Bancelin S, Rivard M, Pinsard M, Ibrahim H, Légaré F. Second harmonic generation microscopy: a powerful tool for bio-imaging. Biophys Rev 2023; 15:43-70. [PMID: 36909955 PMCID: PMC9995455 DOI: 10.1007/s12551-022-01041-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Second harmonic generation (SHG) microscopy is an important optical imaging technique in a variety of applications. This article describes the history and physical principles of SHG microscopy and its more advanced variants, as well as their strengths and weaknesses in biomedical applications. It also provides an overview of SHG and advanced SHG imaging in neuroscience and microtubule imaging and how these methods can aid in understanding microtubule formation, structuration, and involvement in neuronal function. Finally, we offer a perspective on the future of these methods and how technological advancements can help make SHG microscopy a more widely adopted imaging technique.
Collapse
Affiliation(s)
- Arash Aghigh
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| | | | - Maxime Rivard
- National Research Council Canada, Boucherville, QC Canada
| | - Maxime Pinsard
- Institut National de Recherche en Sciences Et Technologies Pour L’environnement Et L’agriculture, Paris, France
| | - Heide Ibrahim
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| | - François Légaré
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| |
Collapse
|
7
|
Liao JN, Chen WL, Lo CY, Lai MH, Tsai HL, Chang YM. Nondestructive circadian profiling of starch content in fresh intact Arabidopsis leaf with two-photon fluorescence and second-harmonic generation imaging. Sci Rep 2022; 12:16525. [PMID: 36192622 PMCID: PMC9530172 DOI: 10.1038/s41598-022-20618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Plant chloroplasts conduct photosynthesis to convert solar energy into sugars for the carbon source essential for cell living and growth during the day. One fraction of photosynthetic products is stored in chloroplasts by forming starch granules to continue the provision of carbon energy during the night. Currently, profiling the starch temporal pattern requires either: (i) sacrificing the leaves, or (ii) generating transgenic plants at the risk of changing the metabolisms by incorporating a genetically modified granule-bound starch synthase (GBSS). In this paper, we demonstrated a nondestructive method using two-photon fluorescence (TPF) and second-harmonic generation (SHG) imaging to quantify starch granules within chloroplasts of fresh intact leaves across a day-night cycle. We did so using two Arabidopsis lines having normal and excess starch contents: wild-type (Columbia-0) and starch excess 1 (sex1). The starch granules were visualized by SHG imaging, while the chloroplasts in mesophyll cells were visualized by TPF imaging. Our results provided micron scale spatial resolution of starch distribution within leaves and showed starch circadian patterns consistent with those profiled by enzymatic assays in previous studies. We demonstrated that TPF-SHG imaging is a potential tool for revealing the real-time heterogeneity of starch circadian rhythm in leaf cells, without the need for destructive sample preparation.
Collapse
Affiliation(s)
- Juo-Nang Liao
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan.,Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Liang Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Chao-Yuan Lo
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Man-Hong Lai
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Huang-Lung Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan.
| | - Yu-Ming Chang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
8
|
Brittain K, Harvey M, Cisek R, Pillai S, Christie SD, Tokarz D. Second harmonic generation microscopy of otoconia. BIOMEDICAL OPTICS EXPRESS 2022; 13:3593-3600. [PMID: 35781949 PMCID: PMC9208607 DOI: 10.1364/boe.457967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 05/30/2023]
Abstract
The origin of second harmonic generation (SHG) signal in otoconia was investigated. SHG signal intensity from otoconia was compared to pure calcite crystals, given calcite is the primary component of otoconia and is known to emit surface SHG. The SHG intensity from calcite was found to be ∼41× weaker than the SHG intensity from otoconia signifying that the SHG signal from otoconia is likely generated from the organic matrix. Furthermore, the SHG intensity from otoconia increased when treated with a chelating agent known to dissolve calcite which confirms that calcite is not the source of SHG. Additionally, polarization-resolved SHG microscopy imaging revealed that the arrangement of the SHG emitters is radial and can form highly ordered domains.
Collapse
Affiliation(s)
- Kennedy Brittain
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - MacAulay Harvey
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Richard Cisek
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Saranyan Pillai
- Department of Surgery (Neurosurgery), Dalhousie University, #3814-1796 Summer Street, Halifax, Nova Scotia, B3H 3A7, Canada
| | - Sean D Christie
- Department of Surgery (Neurosurgery), Dalhousie University, #3814-1796 Summer Street, Halifax, Nova Scotia, B3H 3A7, Canada
| | - Danielle Tokarz
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
9
|
Murakami Y, Masaki M, Miyazaki S, Oketani R, Hayashi Y, Yanagisawa M, Honjoh S, Kano H. Spectroscopic second and third harmonic generation microscopy using a femtosecond laser source in the third near-infrared (NIR-III) optical window. BIOMEDICAL OPTICS EXPRESS 2022; 13:694-708. [PMID: 35284173 PMCID: PMC8884214 DOI: 10.1364/boe.446273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
In this study, second harmonic generation (SHG) and third harmonic generation (THG) spectroscopic imaging were performed on biological samples using a femtosecond laser source in the third near-infrared (NIR) optical window (NIR-III). Using a visible-NIR spectrometer, the SHG and THG signals were simultaneously detected and were extracted using spectral analysis. Visualization of biological samples such as cultured cells (HEK293 T), mouse brain slices, and the nematode Caenorhabditis elegans was performed in a label-free manner. In particular, in an SHG image of an entire coronal brain section (8 × 6 mm2), we observed mesh-like and filamentous structures in the arachnoid mater and wall of the cerebral ventricle, probably corresponding to the collagen fibers, cilia, and rootlet. Moreover, the THG images clearly depicted the densely packed axons in the white matter and cell nuclei at the cortex of the mouse brain slice sample and lipid-rich granules such as lipid droplets inside the nematode. The observations and conclusions drawn from this technique confirm that it can be utilized for various biological applications, including in vivo label-free imaging of living animals.
Collapse
Affiliation(s)
- Yusuke Murakami
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Minori Masaki
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Miyazaki
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryosuke Oketani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hayashi
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 603-8363, Japan
| | - Masashi Yanagisawa
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Sakiko Honjoh
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideaki Kano
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Govindaraju I, Zhuo GY, Chakraborty I, Melanthota SK, Mal SS, Sarmah B, Baruah VJ, Mahato KK, Mazumder N. Investigation of structural and physico-chemical properties of rice starch with varied amylose content: A combined microscopy, spectroscopy, and thermal study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107093] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Govindaraju I, Pallen S, Umashankar S, Mal SS, Kaniyala Melanthota S, Mahato DR, Zhuo GY, Mahato KK, Mazumder N. Microscopic and spectroscopic characterization of rice and corn starch. Microsc Res Tech 2020; 83:490-498. [PMID: 32319189 DOI: 10.1002/jemt.23437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 11/09/2022]
Abstract
Starch granules from rice and corn were isolated, and their molecular mechanism on interaction with α-amylase was characterized through biochemical test, microscopic imaging, and spectroscopic measurements. The micro-scale structure of starch granules were observed under an optical microscope and their average size was in the range 1-100 μm. The surface topological structures of starch with micro-holes due to the effect of α- amylase were also visualized under scanning electron microscope. The crystallinity was confirmed by X-ray diffraction patterns as well as second-harmonic generation microscopy. The change in chemical bonds before and after hydrolysis of the starch granules by α- amylase was determined by Fourier transform infrared spectroscopy. Combination of microscopy and spectroscopy techniques relates structural and chemical features that explain starch enzymatic hydrolysis which will provide a valid basis for future studies in food science and insights into the energy transformation dynamics.
Collapse
Affiliation(s)
- Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sparsha Pallen
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Suchitta Umashankar
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sib Sankar Mal
- Materials and Catalytic Laboratory, Department of Chemistry, NITK, Mangalore, India
| | - Sindhoora Kaniyala Melanthota
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
12
|
Chouët A, Chevallier S, Fleurisson R, Loisel C, Dubreil L. Label-Free Fried Starchy Matrix: Investigation by Harmonic Generation Microscopy. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19092024. [PMID: 31052170 PMCID: PMC6540293 DOI: 10.3390/s19092024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
An innovative methodology based on non-destructive observation by using harmonic generation microscopy is proposed for detection and location of starch granules and oil in a fried starchy matrix and topography analysis of food products. Specific fluorescent probes were used to label the main biochemical components of the starchy fried matrix, namely starch and oil. Fluorescence of starch and oil respectively stained with Safranin O and Nile red was observed from non-linear microscopy. By using sequential scanning and specific emission filters, it was possible to merge fluorescence and harmonic generation signals. Second harmonic generation (SHG) generated by starch granules was superposed with safranin fluorescence, whereas third harmonic generation (THG), not restricted to the superposition with Nile red fluorescent signal, was used to investigate the topography of the fried product. By these experiments, starch granule mapping and topography of the starchy fried product were obtained without any destructive preparation of the sample. This label-free approach using harmonic generation microscopy is a very promising methodology for microstructure investigation of a large panel of starchy food products.
Collapse
Affiliation(s)
- Agathe Chouët
- Oniris, Univ Nantes, CNRS, GEPEA, UMR 6144, F-44000 Nantes, France.
| | | | - Romain Fleurisson
- PAnTher, Oniris, INRA, Université Bretagne Loire, F-44307 Nantes, France.
| | - Catherine Loisel
- Oniris, Univ Nantes, CNRS, GEPEA, UMR 6144, F-44000 Nantes, France.
| | - Laurence Dubreil
- PAnTher, Oniris, INRA, Université Bretagne Loire, F-44307 Nantes, France.
| |
Collapse
|
13
|
Zhao Y, Takahashi S, Li Y, Hien KTT, Matsubara A, Mizutani G, Nakamura Y. Ungerminated Rice Grains Observed by Femtosecond Pulse Laser Second-Harmonic Generation Microscopy. J Phys Chem B 2018; 122:7855-7861. [PMID: 30040415 DOI: 10.1021/acs.jpcb.8b04610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a demonstration that second-order nonlinear optical microscopy is a powerful tool for rice grain science, we observed second-harmonic generation (SHG) images of amylose-free glutinous rice and amylose-containing nonglutinous rice grains. The images obtained from SHG microscopy and photographs of the iodine-stained starch granules indicate that the distribution of starch types in the embryo-facing endosperm region (EFR) depends on the type of rice and suggests that glucose, maltose, or both are localized on the testa side of the embryo. In the testa side of the embryo, crystallized glucose or maltose are judged to be detected by SHG. These monosaccharides and disaccharides play an important role, as they trigger energy in the initial stage of germination. These results confirm SHG microscopy is a good method to monitor the distribution of such sugars and amylopectin in the embryo and its neighboring regions of rice grains.
Collapse
Affiliation(s)
- Yue Zhao
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Shogo Takahashi
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Yanrong Li
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Khuat Thi Thu Hien
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Akira Matsubara
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Goro Mizutani
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Yasunori Nakamura
- Faculty of Bioresource Sciences , Akita Prefectural University , 241-438 Kaidobata-Nishi Nakano Shimoshinjo , Akita City , Akita 010-0195 , Japan
| |
Collapse
|
14
|
Nessi V, Rolland-Sabaté A, Lourdin D, Jamme F, Chevigny C, Kansou K. Multi-scale characterization of thermoplastic starch structure using Second Harmonic Generation imaging and NMR. Carbohydr Polym 2018; 194:80-88. [PMID: 29801861 DOI: 10.1016/j.carbpol.2018.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
Starch granules can be extruded to obtain a thermoplastic material. Thermoplastic starch (TPS) usually requires a significant break down of the starch granular organization to form a continuous polysaccharide matrix. In this work, we extrude potato starch with and without a plasticizer and store samples at high humidity to generate recrystallization. A multi-scale investigation of the microstructure is performed by combining different techniques: WAXS and solid-state NMR to describe macromolecule organization and Second Harmonic Generation (SHG) imaging to provide spatial information. Finally, the ability of the material to swell and remain sound in water is assessed. Glycerol-plasticized samples swell the least despite many granules with native-like structure embedded in the starch matrix. Glycerol limits the fragmentation and melting of the granules and crystallites during extrusion but also reduces the proportion of starch molecules in constrained conformations, enabling the formation of a polymer network that can sustain the penetration of water.
Collapse
Affiliation(s)
- Veronica Nessi
- UR1268 Biopolymères Interactions Assemblages, INRA, 44300 Nantes, France.
| | - Agnès Rolland-Sabaté
- UR1268 Biopolymères Interactions Assemblages, INRA, 44300 Nantes, France; UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université Avignon, 84000 Avignon, France.
| | - Denis Lourdin
- UR1268 Biopolymères Interactions Assemblages, INRA, 44300 Nantes, France.
| | - Frédéric Jamme
- Synchrotron SOLEIL, L'orme des merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France.
| | - Chloé Chevigny
- UR1268 Biopolymères Interactions Assemblages, INRA, 44300 Nantes, France.
| | - Kamal Kansou
- UR1268 Biopolymères Interactions Assemblages, INRA, 44300 Nantes, France.
| |
Collapse
|
15
|
Ding C, Ulcickas JRW, Deng F, Simpson GJ. Second Harmonic Generation of Unpolarized Light. PHYSICAL REVIEW LETTERS 2017; 119:193901. [PMID: 29219514 PMCID: PMC5801736 DOI: 10.1103/physrevlett.119.193901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 06/07/2023]
Abstract
A Mueller tensor mathematical framework was applied for predicting and interpreting the second harmonic generation (SHG) produced with an unpolarized fundamental beam. In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete depolarization of the incident light complicates polarization analysis. The proposed framework has the distinct advantage of seamlessly merging the purely polarized theory based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor framework capable of handling partial depolarized fundamental and/or SHG produced. The predictions of the model are in excellent agreement with experimental measurements of z-cut quartz and mouse tail tendon obtained with polarized and depolarized incident light. The polarization-dependent SHG produced with unpolarized fundamental allowed determination of collagen fiber orientation in agreement with orthogonal methods based on image analysis. This method has the distinct advantage of being immune to birefringence or depolarization of the fundamental beam for structural analysis of tissues.
Collapse
Affiliation(s)
- Changqin Ding
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | - James R W Ulcickas
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | - Fengyuan Deng
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | - Garth J Simpson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| |
Collapse
|
16
|
Cisek R, Tokarz D, Kontenis L, Barzda V, Steup M. Polarimetric second harmonic generation microscopy: An analytical tool for starch bioengineering. STARCH-STARKE 2017. [DOI: 10.1002/star.201700031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Richard Cisek
- Department of Physics; University of Toronto; Toronto Ontario Canada
- Department of Chemical and Physical Sciences; University of Toronto Mississauga; Mississauga Ontario Canada
| | - Danielle Tokarz
- Wellman Center for Photomedicine, Massachusetts General Hospital; Harvard Medical School; Boston MA USA
| | - Lukas Kontenis
- Department of Physics; University of Toronto; Toronto Ontario Canada
- Department of Chemical and Physical Sciences; University of Toronto Mississauga; Mississauga Ontario Canada
| | - Virginijus Barzda
- Department of Physics; University of Toronto; Toronto Ontario Canada
- Department of Chemical and Physical Sciences; University of Toronto Mississauga; Mississauga Ontario Canada
| | - Martin Steup
- Department of Plant Physiology, Institute of Biochemistry and Biology; University of Potsdam; Potsdam Germany
| |
Collapse
|
17
|
Kontenis L, Samim M, Krouglov S, Barzda V. Third-harmonic generation Stokes-Mueller polarimetric microscopy. OPTICS EXPRESS 2017; 25:13174-13189. [PMID: 28788853 DOI: 10.1364/oe.25.013174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/27/2017] [Indexed: 05/28/2023]
Abstract
An experimental implementation of the nonlinear Stokes-Mueller polarimetric (NSMP) microscopy in third-harmonic generation modality is presented. The technique is able to extract all eight 2D-accessible χ(3) components for any sample from 64 polarization measurements, and can be applied to noninvasive ultrastructural characterization. The polarization signature of an isotropic glass coverslip is presented, and carotenoid crystallites in the root of orange carrot (Daucus carota) are investigated, showing complex χ(3) components with a significant chiral contribution.
Collapse
|
18
|
Mazumder N, Xiang LY, Qiu J, Kao FJ. Investigating starch gelatinization through Stokes vector resolved second harmonic generation microscopy. Sci Rep 2017; 7:45816. [PMID: 28383522 PMCID: PMC5382894 DOI: 10.1038/srep45816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/06/2017] [Indexed: 11/16/2022] Open
Abstract
The changes of the morphology during heating and the degree of crystallinity of dry and hydrated starch granules are investigated using second harmonic generation (SHG) based Stokes polarimetry. A spatial distribution of various polarization parameters, such as the degree of polarization (DOP), the degree of linear polarization (DOLP), and the degree of circular polarization (DOCP) are extracted and compared with the two dimensional second harmonic (SH) Stokes images of starch granules. The SH signal from hydrated and dry starch on heating differed significantly in DOLP and DOCP values, indicating that hydrated starch has a greater degree of ultrastructural amylopectin disorder. The detail of denaturation and the phase transition of hydrated starch demonstrate the significant influence of thermal processing.
Collapse
Affiliation(s)
- Nirmal Mazumder
- Institute of Biophotonics, National Yang-Ming University, Taipei, 11221, Taiwan. .,Department of Biophysics, School of Life Sciences, Manipal University, Manipal, 576104, India.
| | - Lu Yun Xiang
- Institute of Biophotonics, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Jianjun Qiu
- Institute of Biophotonics, National Yang-Ming University, Taipei, 11221, Taiwan.,Key Laboratory of Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Fu-Jen Kao
- Institute of Biophotonics, National Yang-Ming University, Taipei, 11221, Taiwan.
| |
Collapse
|
19
|
Psilodimitrakopoulos S, Gavgiotaki E, Melessanaki K, Tsafas V, Filippidis G. Polarization Second Harmonic Generation Discriminates Between Fresh and Aged Starch-Based Adhesives Used in Cultural Heritage. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:1072-1083. [PMID: 27619334 DOI: 10.1017/s1431927616011570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In this work, we report that polarization second harmonic generation (PSHG) microscopy, commonly used in biomedical imaging, can quantitatively discriminate naturally aged from fresh starch-based glues used for conservation or restoration of paintings, works of art on paper, and books. Several samples of fresh and aged (7 years) flour and starch pastes were investigated by use of PSHG. In these types of adhesives, widely used in cultural heritage conservation, second harmonic generation (SHG) contrast originates primarily from the starch granules. It was found that in aged glues, the starch SHG effective orientation (SHG angle, θ) shifts to significantly higher values in comparison to the fresh granules. This shift is attributed to the different degree of granule hydration between fresh and aged adhesives. Thus noninvasive high-resolution nonlinear scattering can be employed to detect and quantify the degree of deterioration of restoration adhesives and to provide guidance toward future conservation treatments.
Collapse
Affiliation(s)
- Sotiris Psilodimitrakopoulos
- 1Institute of Electronic Structure and Laser (IESL),Foundation for Research and Technology Hellas (FORTH),100 N. Plastira Street,71110 Heraklion,Crete,Greece
| | - Evaggelia Gavgiotaki
- 1Institute of Electronic Structure and Laser (IESL),Foundation for Research and Technology Hellas (FORTH),100 N. Plastira Street,71110 Heraklion,Crete,Greece
| | - Kristallia Melessanaki
- 1Institute of Electronic Structure and Laser (IESL),Foundation for Research and Technology Hellas (FORTH),100 N. Plastira Street,71110 Heraklion,Crete,Greece
| | - Vassilis Tsafas
- 1Institute of Electronic Structure and Laser (IESL),Foundation for Research and Technology Hellas (FORTH),100 N. Plastira Street,71110 Heraklion,Crete,Greece
| | - George Filippidis
- 1Institute of Electronic Structure and Laser (IESL),Foundation for Research and Technology Hellas (FORTH),100 N. Plastira Street,71110 Heraklion,Crete,Greece
| |
Collapse
|
20
|
Goldstein A, Annor G, Putaux JL, Hebelstrup KH, Blennow A, Bertoft E. Impact of full range of amylose contents on the architecture of starch granules*. Int J Biol Macromol 2016; 89:305-18. [DOI: 10.1016/j.ijbiomac.2016.04.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/13/2016] [Accepted: 04/17/2016] [Indexed: 12/31/2022]
|
21
|
Simpson GJ. Connection of Jones and Mueller Tensors in Second Harmonic Generation and Multi-Photon Fluorescence Measurements. J Phys Chem B 2016; 120:3281-302. [PMID: 26918624 DOI: 10.1021/acs.jpcb.5b11841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the rapidly growing use of second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) microscopy, opportunities for relating polarization-dependent measurements back to local structure and molecular orientation are often confounded by losses in polarization purity. In this work, connections linking Mueller tensor and Jones tensor descriptions of polarization-dependent SHG and TPEF are shown to substantially simplify partially depolarized microscopy measurements. These connections were facilitated by the derivation of several new tensor identity relations, based on generalization of established transformations of matrices and vectors. Methods are described for integrating local-frame symmetry and azimuthal rotation angle for simplifying the Mueller tensor. Through simple expressions bridging the Mueller and Jones formalisms, mathematical models for partial depolarization can greatly simplify interpretation of SHG and TPEF measurements to reconstruct the more general Mueller tensors using the much more concise Jones descriptions for the purely polarized components. Integrating the Mueller architecture allows polarization-dependent SHG and TPEF measurements to be connected back to a relatively small set of free parameters related to local structure and orientation.
Collapse
Affiliation(s)
- Garth J Simpson
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47906, United States
| |
Collapse
|