1
|
Tanskanen A, Malone J, MacAulay C, Lane P. Multipath artifacts enable angular contrast in multimodal endoscopic optical coherence tomography. OPTICS EXPRESS 2023; 31:44224-44245. [PMID: 38178499 DOI: 10.1364/oe.504854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Multipath artifacts are inherent to double-clad fiber based optical coherence tomography (OCT), appearing as ghost images blurred in the A-line direction. They result from the excitation of higher-order inner-cladding modes in the OCT sample arm which cross-couple into the fundamental mode at discontinuities and thus are detected in single-mode fiber-based interferometers. Historically, multipath artifacts have been regarded as a drawback in single fiber endoscopic multimodal OCT systems as they degrade OCT quality. In this work, we reveal that multipath artifacts can be projected into high-quality two-dimensional en face images which encode high angle backscattering features. Using a combination of experiment and simulation, we characterize the coupling of Mie-range scatterers into the fundamental image (LP01 mode) and higher-order image (multipath artifact). This is validated experimentally through imaging of microspheres with an endoscopic multimodal OCT system. The angular dependence of the fundamental image and higher order image generated by the multipath artifact lays the basis for multipath contrast, a ratiometric measurement of differential coupling which provides information regarding the angular diversity of a sample. Multipath contrast images can be generated from OCT data where multipath artifacts are present, meaning that a wealth of clinical data can be retrospectively examined.
Collapse
|
2
|
Long H, Ji J, Chen L, Feng J, Liao J, Yang Y. EB-OCT: a potential strategy on early diagnosis and treatment for lung cancer. Front Oncol 2023; 13:1156218. [PMID: 37182131 PMCID: PMC10168178 DOI: 10.3389/fonc.2023.1156218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death in China and the world, mainly attributed to delayed diagnosis, given that currently available early screening strategies exhibit limited value. Endobronchial optical coherence tomography (EB-OCT) has the characteristics of non-invasiveness, accuracy, and repeatability. Importantly, the combination of EB-OCT with existing technologies represents a potential approach for early screening and diagnosis. In this review, we introduce the structure and strengths of EB-OCT. Furthermore, we provide a comprehensive overview of the application of EB-OCT on early screening and diagnosis of lung cancer from in vivo experiments to clinical studies, including differential diagnosis of airway lesions, early screening for lung cancer, lung nodules, lymph node biopsy and localization and palliative treatment of lung cancer. Moreover, the bottlenecks and difficulties in developing and popularizing EB-OCT for diagnosis and treatment during clinical practice are analyzed. The characteristics of OCT images of normal and cancerous lung tissues were in good agreement with the results of pathology, which could be used to judge the nature of lung lesions in real time. In addition, EB-OCT can be used as an assistant to biopsy of pulmonary nodules and improve the success rate of biopsy. EB-OCT also plays an auxiliary role in the treatment of lung cancer. In conclusion, EB-OCT is non-invasive, safe and accurate in real-time. It is of great significance in the diagnosis of lung cancer and suitable for clinical application and is expected to become an important diagnostic method for lung cancer in the future.
Collapse
Affiliation(s)
- Hang Long
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jiaqi Ji
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Lijuan Chen
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jiayue Feng
- Department of Cardiology, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jie Liao
- Department of Cardiology, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Herath S. Using cryobiopsy with Radial EBUS in high-bleeding-risk, peripheral pulmonary lesions (PPL): description of cases and technique. Respirol Case Rep 2023; 11:e01125. [PMID: 36935897 PMCID: PMC10014523 DOI: 10.1002/rcr2.1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Cryobiopsy is an emerging tool in the diagnosis of peripheral pulmonary lesions (PPL) and becoming an important tool in the toolbox. Anecdotally the data on cryobiopsy use in the lung was extrapolated from the use of transbronchial cryobiopsy (TBCB) in Interstitial Lung disease (ILD). Similar to ILD data, cryobiopsy in PPL also provided larger tissue compared to forceps biopsies. Yet, unlike TBCB in ILD, the safety profile for cryobiopsy in PPL seems much more favourable, yet the number of publications on cryobiopsy in PPL remains sparse. Some PPL, both malignant and non-malignant are considered to be of a high bleeding risk due to vascularity of the tumour and/or inflammation of the blood vessels and surrounding tissue. The use of cryobiopsy and the risk of bleeding in this type of PPL have not been described. This paper describes four patients with PPL, undergoing cryobiopsy with radial EBUS for suspected lung cancer, and later diagnosed to have a PPL, deemed to be of a high bleeding risk. The use of cryobiopsy with radial ultrasonic examination for the vasculature of the PPL, bronchial blocker use, and airway protection as well as an expert team preserved the safety of the procedure.
Collapse
Affiliation(s)
- Samantha Herath
- Department of Respiratory MedicineNothern Beaches HospitalSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Endoscopic Technologies for Peripheral Pulmonary Lesions: From Diagnosis to Therapy. Life (Basel) 2023; 13:life13020254. [PMID: 36836612 PMCID: PMC9959751 DOI: 10.3390/life13020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Peripheral pulmonary lesions (PPLs) are frequent incidental findings in subjects when performing chest radiographs or chest computed tomography (CT) scans. When a PPL is identified, it is necessary to proceed with a risk stratification based on the patient profile and the characteristics found on chest CT. In order to proceed with a diagnostic procedure, the first-line examination is often a bronchoscopy with tissue sampling. Many guidance technologies have recently been developed to facilitate PPLs sampling. Through bronchoscopy, it is currently possible to ascertain the PPL's benign or malignant nature, delaying the therapy's second phase with radical, supportive, or palliative intent. In this review, we describe all the new tools available: from the innovation of bronchoscopic instrumentation (e.g., ultrathin bronchoscopy and robotic bronchoscopy) to the advances in navigation technology (e.g., radial-probe endobronchial ultrasound, virtual navigation, electromagnetic navigation, shape-sensing navigation, cone-beam computed tomography). In addition, we summarize all the PPLs ablation techniques currently under experimentation. Interventional pulmonology may be a discipline aiming at adopting increasingly innovative and disruptive technologies.
Collapse
|
5
|
Wang C, Reynolds JC, Calle P, Ladymon AD, Yan F, Yan Y, Ton S, Fung KM, Patel SG, Yu Z, Pan C, Tang Q. Computer-aided Veress needle guidance using endoscopic optical coherence tomography and convolutional neural networks. JOURNAL OF BIOPHOTONICS 2022; 15:e202100347. [PMID: 35103420 PMCID: PMC9097560 DOI: 10.1002/jbio.202100347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 05/03/2023]
Abstract
During laparoscopic surgery, the Veress needle is commonly used in pneumoperitoneum establishment. Precise placement of the Veress needle is still a challenge for the surgeon. In this study, a computer-aided endoscopic optical coherence tomography (OCT) system was developed to effectively and safely guide Veress needle insertion. This endoscopic system was tested by imaging subcutaneous fat, muscle, abdominal space, and the small intestine from swine samples to simulate the surgical process, including the situation with small intestine injury. Each tissue layer was visualized in OCT images with unique features and subsequently used to develop a system for automatic localization of the Veress needle tip by identifying tissue layers (or spaces) and estimating the needle-to-tissue distance. We used convolutional neural networks (CNNs) in automatic tissue classification and distance estimation. The average testing accuracy in tissue classification was 98.53 ± 0.39%, and the average testing relative error in distance estimation reached 4.42 ± 0.56% (36.09 ± 4.92 μm).
Collapse
Affiliation(s)
- Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | | | - Paul Calle
- School of Computer Science, University of Oklahoma, Norman, OK 73019
| | - Avery D. Ladymon
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Yuyang Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Sam Ton
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Kar-ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Sanjay G. Patel
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Zhongxin Yu
- Children’s Hospital, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Chongle Pan
- School of Computer Science, University of Oklahoma, Norman, OK 73019
- ,
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
- ,
| |
Collapse
|
6
|
Ding M, Pan SY, Huang J, Yuan C, Zhang Q, Zhu XL, Cai Y. Optical coherence tomography for identification of malignant pulmonary nodules based on random forest machine learning algorithm. PLoS One 2021; 16:e0260600. [PMID: 34971557 PMCID: PMC8719667 DOI: 10.1371/journal.pone.0260600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/14/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To explore the feasibility of using random forest (RF) machine learning algorithm in assessing normal and malignant peripheral pulmonary nodules based on in vivo endobronchial optical coherence tomography (EB-OCT). METHODS A total of 31 patients with pulmonary nodules were admitted to Department of Respiratory Medicine, Zhongda Hospital, Southeast University, and underwent chest CT, EB-OCT and biopsy. Attenuation coefficient and up to 56 different image features were extracted from A-line and B-scan of 1703 EB-OCT images. Attenuation coefficient and 29 image features with significant p-values were used to analyze the differences between normal and malignant samples. A RF classifier was trained using 70% images as training set, while 30% images were included in the testing set. The accuracy of the automated classification was validated by clinically proven pathological results. RESULTS Attenuation coefficient and 29 image features were found to present different properties with significant p-values between normal and malignant EB-OCT images. The RF algorithm successfully classified the malignant pulmonary nodules with sensitivity, specificity, and accuracy of 90.41%, 77.87% and 83.51% respectively. CONCLUSION It is clinically practical to distinguish the nature of pulmonary nodules by integrating EB-OCT imaging with automated machine learning algorithm. Diagnosis of malignant pulmonary nodules by analyzing quantitative features from EB-OCT images could be a potentially powerful way for early detection of lung cancer.
Collapse
Affiliation(s)
- Ming Ding
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Shi-yu Pan
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Cheng Yuan
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Qiang Zhang
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Xiao-li Zhu
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Yan Cai
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Si P, Honkala A, de la Zerda A, Smith BR. Optical Microscopy and Coherence Tomography of Cancer in Living Subjects. Trends Cancer 2020; 6:205-222. [PMID: 32101724 DOI: 10.1016/j.trecan.2020.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Intravital microscopy (IVM) and optical coherency tomography (OCT) are two powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. Recent advances in labeling and label-free techniques empower IVM and OCT for a wide range of preclinical and clinical cancer imaging, providing profound insights into the complex physiological, cellular, and molecular behaviors of tumors. Preclinical IVM and OCT have elucidated many otherwise inscrutable aspects of cancer biology, while clinical applications of IVM and OCT are revolutionizing cancer diagnosis and therapies. We review important progress in the fields of IVM and OCT for cancer imaging in living subjects, highlighting key technological developments and their emerging applications in fundamental cancer biology research and clinical oncology investigation.
Collapse
Affiliation(s)
- Peng Si
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Alexander Honkala
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; The Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Bryan Ronain Smith
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
8
|
Bec J, Li C, Marcu L. Broadband, freeform focusing micro-optics for a side-viewing imaging catheter. OPTICS LETTERS 2019; 44:4961-4964. [PMID: 31613239 PMCID: PMC9010228 DOI: 10.1364/ol.44.004961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/30/2019] [Indexed: 05/28/2023]
Abstract
Successful implementation of a catheter-based imaging system relies on the integration of high-performance miniaturized distal end optics. Typically, compensation of chromatic dispersion, as well as astigmatism introduced by the device's sheath, can be addressed only by combining multiple optical elements, adversely impacting size and manufacturability. Here, we present a 300×300×800 μm3 monolithic optic that provides high optical performances over an extended wavelength range (near UV-visible-IR) with minimal chromatic aberrations. The design of the optic, fully optimized using standard optical simulation tools, provides the ability to freely determine aperture and working distance. Manufacturing is cost effective and suited for prototyping and production alike. The experimental characterization of the optic demonstrates a good match with simulation results and performances well suited to both optical coherence tomography and fluorescence imaging, thus paving the way for high-performance multimodal endoscopy systems.
Collapse
Affiliation(s)
- Julien Bec
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
| | - Cai Li
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| |
Collapse
|
9
|
Feroldi F, Willemse J, Davidoiu V, Gräfe MGO, van Iperen DJ, Goorsenberg AWM, Annema JT, Daniels JMA, Bonta PI, de Boer JF. In vivo multifunctional optical coherence tomography at the periphery of the lungs. BIOMEDICAL OPTICS EXPRESS 2019; 10:3070-3091. [PMID: 31259075 PMCID: PMC6583343 DOI: 10.1364/boe.10.003070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 05/04/2023]
Abstract
Remodeling of tissue, such as airway smooth muscle (ASM) and extracellular matrix, is considered a key feature of airways disease. No clinically accepted diagnostic method is currently available to assess airway remodeling or the effect of treatment modalities such as bronchial thermoplasty in asthma, other than invasive airway biopsies. Optical coherence tomography (OCT) generates cross-sectional, near-histological images of airway segments and enables identification and quantification of airway wall layers based on light scattering properties only. In this study, we used a custom motorized OCT probe that combines standard and polarization sensitive OCT (PS-OCT) to visualize birefringent tissue in vivo in the airway wall of a patient with severe asthma in a minimally invasive manner. We used optic axis uniformity (OAxU) to highlight the presence of uniformly arranged fiber-like tissue, helping visualizing the abundance of ASM and connective tissue structures. Attenuation coefficient images of the airways are presented for the first time, showing superior architectural contrast compared to standard OCT images. A novel segmentation algorithm was developed to detect the surface of the endoscope sheath and the surface of the tissue. PS-OCT is an innovative imaging technique that holds promise to assess airway remodeling including ASM and connective tissue in a minimally invasive, real-time manner.
Collapse
Affiliation(s)
- Fabio Feroldi
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| | - Joy Willemse
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
- These authors contributed equally
| | - Valentina Davidoiu
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
- These authors contributed equally
| | - Maximilian G. O. Gräfe
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| | - Dirck J. van Iperen
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| | - Annika W. M. Goorsenberg
- Amsterdam University Medical Center, Department of Pulmonology, University of Amsterdam, Amsterdam, the Netherlands
| | - Jouke T. Annema
- Amsterdam University Medical Center, Department of Pulmonology, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes M. A. Daniels
- Amsterdam University Medical Center, Department of Pulmonology, VUmc Location, Amsterdam, the Netherlands
| | - Peter I. Bonta
- Amsterdam University Medical Center, Department of Pulmonology, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes F. de Boer
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Abstract
INTRODUCTION The field of interventional pulmonology (IP) is a rapidly maturing subspecialty of pulmonary medicine, which emphasizes advanced diagnostic and therapeutic bronchoscopy for the evaluation and management of central airway obstruction, mediastinal/hilar adenopathy and lung nodules/masses, as well as minimally invasive diagnostic and therapeutic pleural procedures. Areas covered: This review describes advances in diagnostic and therapeutic bronchoscopic techniques. Expert commentary: In the past decade, there has been a remarkable growth in available technology and equipment, as well as clinical and translational research efforts focused on patient-centered outcomes. Furthermore, the recent establishment of a uniform accreditation standard for all IP fellowship programs in the United States was an important step in the continued evolution of this subspecialty of pulmonary medicine.
Collapse
Affiliation(s)
- Diana H Yu
- a School of Medicine, Division of Pulmonary/Critical Care Medicine, Section of Interventional Pulmonology , Johns Hopkins University , Baltimore , USA
| | - David Feller-Kopman
- a School of Medicine, Division of Pulmonary/Critical Care Medicine, Section of Interventional Pulmonology , Johns Hopkins University , Baltimore , USA
| |
Collapse
|
11
|
Abouei E, Lee AMD, Pahlevaninezhad H, Hohert G, Cua M, Lane P, Lam S, MacAulay C. Correction of motion artifacts in endoscopic optical coherence tomography and autofluorescence images based on azimuthal en face image registration. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-13. [PMID: 29302954 DOI: 10.1117/1.jbo.23.1.016004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/12/2017] [Indexed: 05/23/2023]
Abstract
We present a method for the correction of motion artifacts present in two- and three-dimensional in vivo endoscopic images produced by rotary-pullback catheters. This method can correct for cardiac/breathing-based motion artifacts and catheter-based motion artifacts such as nonuniform rotational distortion (NURD). This method assumes that en face tissue imaging contains slowly varying structures that are roughly parallel to the pullback axis. The method reduces motion artifacts using a dynamic time warping solution through a cost matrix that measures similarities between adjacent frames in en face images. We optimize and demonstrate the suitability of this method using a real and simulated NURD phantom and in vivo endoscopic pulmonary optical coherence tomography and autofluorescence images. Qualitative and quantitative evaluations of the method show an enhancement of the image quality.
Collapse
Affiliation(s)
- Elham Abouei
- University of British Columbia, Department of Physics and Astronomy, Vancouver, British Columbia, Canada
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Anthony M D Lee
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Hamid Pahlevaninezhad
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Geoffrey Hohert
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Michelle Cua
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Pierre Lane
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Stephen Lam
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Calum MacAulay
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| |
Collapse
|
12
|
Tsai TH, Leggett CL, Trindade AJ, Sethi A, Swager AF, Joshi V, Bergman JJ, Mashimo H, Nishioka NS, Namati E. Optical coherence tomography in gastroenterology: a review and future outlook. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-17. [PMID: 29260538 DOI: 10.1117/1.jbo.22.12.121716] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) is an imaging technique optically analogous to ultrasound that can generate depth-resolved images with micrometer-scale resolution. Advances in fiber optics and miniaturized actuation technologies allow OCT imaging of the human body and further expand OCT utilization in applications including but not limited to cardiology and gastroenterology. This review article provides an overview of current OCT development and its clinical utility in the gastrointestinal tract, including disease detection/differentiation and endoscopic therapy guidance, as well as a discussion of its future applications.
Collapse
Affiliation(s)
- Tsung-Han Tsai
- NinePoint Medical, Inc., Bedford, Massachusetts, United States
| | - Cadman L Leggett
- Mayo Clinics, Division of Gastroenterology and Hepatology, Rochester, Minnesota, United States
| | - Arvind J Trindade
- North Shore University Hospital and Hofstra Northwell School of Medicine, Division of Gastroenterolo, United States
| | - Amrita Sethi
- Columbia University Medical Center, Department of Gastroenterology, New York City, New York, United States
| | - Anne-Fré Swager
- Spaarne Gasthuis and Free University Medical Center, Amsterdam, The Netherlands
| | - Virendra Joshi
- Ochsner Clinic Foundation, Department of Gastroenterology, New Orleans, Louisiana, United States
| | - Jacques J Bergman
- Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam, The Netherlands
| | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System and Harvard Medical School, Department of Gastroenterology, United States
| | - Norman S Nishioka
- Massachusetts General Hospital, Gastrointestinal Unit, Boston, Massachusetts, United States
| | - Eman Namati
- NinePoint Medical, Inc., Bedford, Massachusetts, United States
| |
Collapse
|
13
|
Minami D, Ando C, Sato K, Moriwaki K, Sugahara F, Nakasuka T, Iwamoto Y, Fujiwara K, Shibayama T, Yonei T, Sato T. Multiple Mucosa-associated Lymphoid Tissue Lymphoma of the Trachea. Intern Med 2017; 56:2907-2911. [PMID: 28943536 PMCID: PMC5709637 DOI: 10.2169/internalmedicine.8269-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mucosa-associated lymphoid tissue lymphoma is a common type of primary pulmonary carcinoma, but the presence of polypoid nodules is extremely rare. We herein report two cases with multiple nodules in the trachea. One case involved polypoid nodules and airway stenosis mimicking asthma; the other case had concurrent nontuberculous mycobacterial infection. The diagnosis of both cases was confirmed by bronchoscopy. The two cases were sensitive to radiotherapy and chemotherapy, respectively.
Collapse
Affiliation(s)
- Daisuke Minami
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Japan
| | - Chihiro Ando
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Japan
| | - Ken Sato
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Japan
| | - Kaori Moriwaki
- Department of Respiratory Medicine, Hiroshima City Asa Citizens Hospital, Japan
| | - Fumihiro Sugahara
- Department of Respiratory Medicine, Hiroshima City Asa Citizens Hospital, Japan
| | - Takamasa Nakasuka
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Japan
| | - Yoshitaka Iwamoto
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Japan
| | - Keiichi Fujiwara
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Japan
| | - Takuo Shibayama
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Japan
| | - Toshiro Yonei
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Japan
| | - Toshio Sato
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Japan
| |
Collapse
|
14
|
Abstract
Peripheral pulmonary lesions (PPLs) are generally considered as lesions in the peripheral one-third of the lung although a precise definition and radiographic anatomical landmarks separating central and peripheral lesion does not yet exist. The radiographic detection of such lesions has increased significantly with the adoption of lung cancer screening programs. These lesions are not directly visible by regular flexible bronchoscopes as they are usually distal to the lobar and segmental bronchi. Traditionally, depending on location and clinical stage at presentation, these lesions were typically sampled by computerized tomography (CT) guided needle or surgical biopsy although some centers also used ultrasound and fluoroscopy guided percutaneous needle biopsy. Due to lack of direct visualization, the yield for bronchoscopic guided sampling especially of the small <2 cm pulmonary nodules was very low. Therefore, sampling has been preferentially performed by percutaneous CT guidance, which had high yield of above 90% but it comes at the cost of higher risk complications like pneumothorax with reported rate of 15% to 28%. Directly proceeding to surgical resection is also considered in appropriate candidates with high suspicion of malignancy without any evidence of distant metastasis but the proportion of such cases of lung cancer is low. The manuscript discussed the various bronchoscopic diagnostic modalities for peripheral pulmonary lesions. It is important to note that most of the studies in this field are relatively small, not randomized, suffer from selection bias, have considerable heterogeneity in sampling methodology/instruments and usually have been performed in high volume institutions by dedicated highly experienced proceduralists. The prevalence of malignancy in most of the reported cohorts has also been high which may result in higher diagnostic yields. All these factors need to be kept in mind before generalizing the results to individual centers and practices.
Collapse
Affiliation(s)
- Samjot Singh Dhillon
- Division of Pulmonary Medicine and Interventional Pulmonology, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kassem Harris
- Division of Pulmonary and Critical Care Medicine, Section of Interventional Pulmonology, Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
15
|
Gora MJ, Suter MJ, Tearney GJ, Li X. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2405-2444. [PMID: 28663882 PMCID: PMC5480489 DOI: 10.1364/boe.8.002405] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed.
Collapse
Affiliation(s)
- Michalina J Gora
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- ICube Laboratory, CNRS, Strasbourg University, 1 Place de l'Hopital, Strasbourg 67091, France
| | - Melissa J Suter
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Xingde Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, and Department of Oncology, Johns Hopkins University, 720 Rutland Avenue, Traylor 710, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Liu X, Yang Z, Wang J, Liu J, Zhang K, Hu W. Patch-based denoising method using low-rank technique and targeted database for optical coherence tomography image. J Med Imaging (Bellingham) 2017; 4:014002. [PMID: 28180133 PMCID: PMC5286433 DOI: 10.1117/1.jmi.4.1.014002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/16/2017] [Indexed: 11/14/2022] Open
Abstract
Image denoising is a crucial step before performing segmentation or feature extraction on an image, which affects the final result in image processing. In recent years, utilizing the self-similarity characteristics of the images, many patch-based image denoising methods have been proposed, but most of them, named the internal denoising methods, utilized the noisy image only where the performances are constrained by the limited information they used. We proposed a patch-based method, which uses a low-rank technique and targeted database, to denoise the optical coherence tomography (OCT) image. When selecting the similar patches for the noisy patch, our method combined internal and external denoising, utilizing the other images relevant to the noisy image, in which our targeted database is made up of these two kinds of images and is an improvement compared with the previous methods. Next, we leverage the low-rank technique to denoise the group matrix consisting of the noisy patch and the corresponding similar patches, for the fact that a clean image can be seen as a low-rank matrix and rank of the noisy image is much larger than the clean image. After the first-step denoising is accomplished, we take advantage of Gabor transform, which considered the layer characteristic of the OCT retinal images, to construct a noisy image before the second step. Experimental results demonstrate that our method compares favorably with the existing state-of-the-art methods.
Collapse
Affiliation(s)
- Xiaoming Liu
- Wuhan University of Science and Technology, College of Computer Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China
| | - Zhou Yang
- Wuhan University of Science and Technology, College of Computer Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China
| | - Jia Wang
- Wuhan University of Science and Technology, College of Computer Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China
| | - Jun Liu
- Wuhan University of Science and Technology, College of Computer Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China
| | - Kai Zhang
- Wuhan University of Science and Technology, College of Computer Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China
| | - Wei Hu
- Wuhan University of Science and Technology, College of Computer Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China
| |
Collapse
|
17
|
Andolfi M, Potenza R, Capozzi R, Liparulo V, Puma F, Yasufuku K. The role of bronchoscopy in the diagnosis of early lung cancer: a review. J Thorac Dis 2016; 8:3329-3337. [PMID: 28066614 PMCID: PMC5179455 DOI: 10.21037/jtd.2016.11.81] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide with an overall 5-year survival rate of 17% after diagnoses. Indeed many patients tend to have a very poor prognosis, due to being diagnosed at an advanced stage. Conversely patients who are diagnosed at an early stage have a 5-year survival >70%, indicating that early detection of lung cancer is crucial to improve survival. Although flexible bronchoscopy is a relatively non-invasive procedure for patients suspected of having lung cancer, only 29% of carcinoma in situ (CIS) and 69% of microinvasive tumors were detectable using white light bronchoscopy (WLB) alone. As a result, in the past two decades, new bronchoscopic techniques have been developed to increase the yield and diagnostic accuracy, such as autofluorescence bronchoscopy (AFB), narrow band imaging (NBI) and high magnification bronchovideoscopy (HMB). However, due to the low specificity and the limitation to detect only proximal bronchial tree, new probe-based technologies have been introduced: radial endobronchial ultrasound (R-EBUS), optical coherence tomography (OCT), confocal laser endomicroscopy (CLE) and laser Raman spectroscopy (LRS). To date, although tissue biopsy remains the gold standard for diagnosing malignant/premalignant airway disease and some techniques are still investigational, bronchoscopic technologies can be considered the safest and most accurate tools to evaluate both central and distal airway mucosa.
Collapse
Affiliation(s)
- Marco Andolfi
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Rossella Potenza
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Rosanna Capozzi
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Valeria Liparulo
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Francesco Puma
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Lung cancer is the leading cause of cancer deaths worldwide. Early detection is essential for long-term survival. Screening of high-risk individuals with low-dose computed tomography screening has proven to increase survival. However, current radiological imaging techniques have poor specificity for lung cancer detection and poor sensitivity for detection of mucosal or alveolar preinvasive malignant lesions. Bronchoscopy allows imaging and sampling of early lung cancer, with the highest safety profile and high diagnostic accuracy. RECENT FINDINGS Available technologies, such as autofluorescence bronchoscopy, narrow band imaging, and radial ultrasound bronchoscopy can significantly increase the yield and diagnostic accuracy of bronchoscopy for early cancer detection in the central airways. Newer technologies such as optical coherence tomography, confocal bronchoscopy, and Raman spectroscopy may significantly increase the diagnostic yield of both central and parenchymal early cancer lesions. SUMMARY Although some of these technologies are still investigational and are not readily available in most centers, they may identify early mucosal and alveolar cancer lesions accurately in the least invasive manner to provide appropriate therapy and prolong patient survival from lung cancer.
Collapse
|
19
|
Cutting Edge in Thyroid Surgery: Autofluorescence of Parathyroid Glands. J Am Coll Surg 2016; 223:374-80. [DOI: 10.1016/j.jamcollsurg.2016.04.049] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/30/2022]
|
20
|
Pahlevaninezhad H, Lee AMD, Hohert G, Lam S, Shaipanich T, Beaudoin EL, MacAulay C, Boudoux C, Lane P. Endoscopic high-resolution autofluorescence imaging and OCT of pulmonary vascular networks. OPTICS LETTERS 2016; 41:3209-12. [PMID: 27420497 DOI: 10.1364/ol.41.003209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High-resolution imaging from within airways may allow new methods for studying lung disease. In this work, we report an endoscopic imaging system capable of high-resolution autofluorescence imaging (AFI) and optical coherence tomography (OCT) in peripheral airways using a 0.9 mm diameter double-clad fiber (DCF) catheter. In this system, AFI excitation light is coupled into the core of the DCF, enabling tightly focused excitation light while maintaining efficient collection of autofluorescence emission through the large diameter inner cladding of the DCF. We demonstrate the ability of this imaging system to visualize pulmonary vasculature as small as 12 μm in vivo.
Collapse
|