1
|
Song S, Hormel TT, Jia Y. Visible-light optical coherence tomography and its applications. NEUROPHOTONICS 2025; 12:020601. [PMID: 40206421 PMCID: PMC11981582 DOI: 10.1117/1.nph.12.2.020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025]
Abstract
Visible-light optical coherence tomography (vis-OCT) is an emerging OCT technology that uses visible rather than near-infrared illumination and is useful for pre-clinical and clinical imaging. It provides one-micron level axial resolution and distinct scattering and absorption contrast that enables oximetry but requires additional considerations in system implementation and practical settings. We review the development of vis-OCT and demonstrated applications. We also provide insights into prospects and possible technological improvements that may address current challenges.
Collapse
Affiliation(s)
- Siyu Song
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| | - Tristan T. Hormel
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
| | - Yali Jia
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| |
Collapse
|
2
|
Xu G, Smart TJ, Durech E, Sarunic MV. Image metric-based multi-observation single-step deep deterministic policy gradient for sensorless adaptive optics. BIOMEDICAL OPTICS EXPRESS 2024; 15:4795-4814. [PMID: 39346980 PMCID: PMC11427189 DOI: 10.1364/boe.528579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Sensorless adaptive optics (SAO) has been widely used across diverse fields such as astronomy, microscopy, and ophthalmology. Recent advances have proved the feasibility of using the deep deterministic policy gradient (DDPG) for image metric-based SAO, achieving fast correction speeds compared to the coordinate search Zernike mode hill climbing (ZMHC) method. In this work, we present a multi-observation single-step DDPG (MOSS-DDPG) optimization framework for SAO on a confocal scanning laser ophthalmoscope (SLO) system with particular consideration for applications in preclinical retinal imaging. MOSS-DDPG optimizes N target Zernike coefficients in a single-step manner based on 2N + 1 observations of the image sharpness metric values. Through in silico simulations, MOSS-DDPG has demonstrated the capability to quickly achieve diffraction-limited resolution performance with long short-term memory (LSTM) network implementation. In situ tests suggest that knowledge learned through simulation adapts swiftly to imperfections in the real system by transfer learning, exhibiting comparable in situ performance to the ZMHC method with a greater than tenfold reduction in the required number of iterations.
Collapse
Affiliation(s)
- Guozheng Xu
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Thomas J Smart
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| | - Eduard Durech
- School of Engineering Science, Simon Fraser University, Burnaby BC V5A 1S6, Canada
| | - Marinko V Sarunic
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
- School of Engineering Science, Simon Fraser University, Burnaby BC V5A 1S6, Canada
| |
Collapse
|
3
|
Zhang Q, Yang Y, Cao KJ, Chen W, Paidi S, Xia CH, Kramer RH, Gong X, Ji N. Retinal microvascular and neuronal pathologies probed in vivo by adaptive optical two-photon fluorescence microscopy. eLife 2023; 12:84853. [PMID: 37039777 PMCID: PMC10089658 DOI: 10.7554/elife.84853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/19/2023] [Indexed: 04/12/2023] Open
Abstract
The retina, behind the transparent optics of the eye, is the only neural tissue whose physiology and pathology can be non-invasively probed by optical microscopy. The aberrations intrinsic to the mouse eye, however, prevent high-resolution investigation of retinal structure and function in vivo. Optimizing the design of a two-photon fluorescence microscope (2PFM) and sample preparation procedure, we found that adaptive optics (AO), by measuring and correcting ocular aberrations, is essential for resolving putative synaptic structures and achieving three-dimensional cellular resolution in the mouse retina in vivo. Applying AO-2PFM to longitudinal retinal imaging in transgenic models of retinal pathology, we characterized microvascular lesions with sub-capillary details in a proliferative vascular retinopathy model, and found Lidocaine to effectively suppress retinal ganglion cell hyperactivity in a retinal degeneration model. Tracking structural and functional changes at high-resolution longitudinally, AO-2PFM enables microscopic investigations of retinal pathology and pharmacology for disease diagnosis and treatment in vivo.
Collapse
Affiliation(s)
- Qinrong Zhang
- Department of Physics, University of California, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Yuhan Yang
- Department of Physics, University of California, Berkeley, United States
| | - Kevin J Cao
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States
| | - Wei Chen
- Department of Physics, University of California, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Santosh Paidi
- School of Optometry, University of California, Berkeley, United States
| | - Chun-Hong Xia
- School of Optometry, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
| | - Xiaohua Gong
- School of Optometry, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
| | - Na Ji
- Department of Physics, University of California, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
4
|
Zhang P, Wahl DJ, Mocci J, Miller EB, Bonora S, Sarunic MV, Zawadzki RJ. Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for in vivo mouse retina imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:299-314. [PMID: 36698677 PMCID: PMC9841993 DOI: 10.1364/boe.473447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 05/02/2023]
Abstract
Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are imaging technologies invented in the 1980s that have revolutionized the field of in vivo retinal diagnostics and are now commonly used in ophthalmology clinics as well as in vision science research. Adaptive optics (AO) technology enables high-fidelity correction of ocular aberrations, resulting in improved resolution and sensitivity for both SLO and OCT systems. The potential of gathering multi-modal cellular-resolution information in a single instrument is of great interest to the ophthalmic imaging community. Although similar instruments have been developed for imaging the human retina, developing such a system for mice will benefit basic science research and should help with further dissemination of AO technology. Here, we present our work integrating OCT into an existing mouse retinal AO-SLO system, resulting in a multi-modal AO-enhanced imaging system of the living mouse eye. The new system allows either independent or simultaneous data acquisition of AO-SLO and AO-OCT, depending on the requirements of specific scientific experiments. The system allows a data acquisition speed of 200 kHz A-scans/pixel rate for OCT and SLO, respectively. It offers ∼6 µm axial resolution for AO-OCT and a ∼1 µm lateral resolution for AO-SLO-OCT imaging.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Jacopo Mocci
- Dynamic Optics srl, Piazza Zanellato 5, 35131, Padova, Italy
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Marinko V. Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
- Medical Physics and Biomedical Engineering, University College London, United Kingdom
- Institute of Ophthalmology, University College London, United Kingdom
| | - Robert J. Zawadzki
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
- UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
| |
Collapse
|
5
|
Hussain SA, Kubo T, Hall N, Gala D, Hampson K, Parton R, Phillips MA, Wincott M, Fujita K, Davis I, Dobbie I, Booth MJ. Wavefront-sensorless adaptive optics with a laser-free spinning disk confocal microscope. J Microsc 2022; 288:106-116. [PMID: 33128278 PMCID: PMC7613844 DOI: 10.1111/jmi.12976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
Abstract
Adaptive optics is being applied widely to a range of microscopies in order to improve imaging quality in the presence of specimen-induced aberrations. We present here the first implementation of wavefront-sensorless adaptive optics for a laser-free, aperture correlation, spinning disk microscope. This widefield method provides confocal-like optical sectioning through use of a patterned disk in the illumination and detection paths. Like other high-resolution microscopes, its operation is compromised by aberrations due to refractive index mismatch and variations within the specimen. Correction of such aberrations shows improved signal level, contrast and resolution.
Collapse
Affiliation(s)
| | - Toshiki Kubo
- Department of Applied PhysicsOsaka UniversityOsakaJapan
| | - Nicholas Hall
- Micron Advanced Bioimaging Unit, Department of BiochemistryUniversity of OxfordOxfordUK
| | - Dalia Gala
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Karen Hampson
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | | | - Mick A. Phillips
- Micron Advanced Bioimaging Unit, Department of BiochemistryUniversity of OxfordOxfordUK
| | - Matthew Wincott
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | | | - Ilan Davis
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Ian Dobbie
- Micron Advanced Bioimaging Unit, Department of BiochemistryUniversity of OxfordOxfordUK
| | - Martin J. Booth
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Wei X, Hormel TT, Pi S, Wang B, Morrison JC, Jia Y. Wide-field sensorless adaptive optics swept-source optical coherence tomographic angiography in rodents. OPTICS LETTERS 2022; 47:5060-5063. [PMID: 36181186 DOI: 10.1364/ol.472387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
In this study, we present a sensorless adaptive optics swept-source optical coherence tomographic angiography (sAO-SS-OCTA) imaging system for mice. Real-time graphics processing unit (GPU)-based OCTA image acquisition and processing software were applied to guide wavefront correction using a deformable mirror based on signal strength index (SSI) from both OCT and OCTA images. High-resolution OCTA images with aberrations corrected and contrast enhanced were successfully acquired. Fifty-degree field of view high-resolution montaged OCTA images were also acquired.
Collapse
|
7
|
Nizam NI, Ochoa M, Smith JT, Intes X. 3D k-space reflectance fluorescence tomography via deep learning. OPTICS LETTERS 2022; 47:1533-1536. [PMID: 35290357 PMCID: PMC9335514 DOI: 10.1364/ol.450935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
We report on the potential to perform image reconstruction in 3D k-space reflectance fluorescence tomography (FT) using deep learning (DL). Herein, we adopt a modified AUTOMAP architecture and develop a training methodology that leverages an open-source Monte-Carlo-based simulator to generate a large dataset. Using an enhanced EMNIST (EEMNIST) dataset as an embedded contrast function allows us to train the network efficiently. The optical strategy utilizes k-space illumination in a reflectance configuration to probe tissue in the mesoscopic regime with high sensitivity and resolution. The proposed DL model training and validation is performed with both in silico data and a phantom experiment. Overall, our results indicate that the approach can correctly reconstruct both single and multiple fluorescent embedding(s) in a 3D volume. Furthermore, the presented technique is shown to outperform the traditional approaches [least-squares (LSQ) and total-variation minimization (TVAL)], especially at higher depths. We, therefore, expect the proposed computational technique to have future implications in preclinical studies.
Collapse
Affiliation(s)
- Navid Ibtehaj Nizam
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Marien Ochoa
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jason T. Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
8
|
Durech E, Newberry W, Franke J, Sarunic MV. Wavefront sensor-less adaptive optics using deep reinforcement learning. BIOMEDICAL OPTICS EXPRESS 2021; 12:5423-5438. [PMID: 34692192 PMCID: PMC8515990 DOI: 10.1364/boe.427970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 05/02/2023]
Abstract
Image degradation due to wavefront aberrations can be corrected with adaptive optics (AO). In a typical AO configuration, the aberrations are measured directly using a Shack-Hartmann wavefront sensor and corrected with a deformable mirror in order to attain diffraction limited performance for the main imaging system. Wavefront sensor-less adaptive optics (SAO) uses the image information directly to determine the aberrations and provide guidance for shaping the deformable mirror, often iteratively. In this report, we present a Deep Reinforcement Learning (DRL) approach for SAO correction using a custom-built fluorescence confocal scanning laser microscope. The experimental results demonstrate the improved performance of the DRL approach relative to a Zernike Mode Hill Climbing algorithm for SAO.
Collapse
Affiliation(s)
- Eduard Durech
- School of Engineering Science, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - William Newberry
- School of Engineering Science, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Jonas Franke
- Institute of Biomedical Optics, University of Lübeck, 23562 Luebeck, Germany
| | - Marinko V Sarunic
- Institute of Biomedical Optics, University of Lübeck, 23562 Luebeck, Germany
| |
Collapse
|
9
|
Hsu D, Kwon JH, Ng R, Makita S, Yasuno Y, Sarunic MV, Ju MJ. Quantitative multi-contrast in vivo mouse imaging with polarization diversity optical coherence tomography and angiography. BIOMEDICAL OPTICS EXPRESS 2020; 11:6945-6961. [PMID: 33408972 PMCID: PMC7747897 DOI: 10.1364/boe.403209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/15/2020] [Accepted: 10/31/2020] [Indexed: 05/02/2023]
Abstract
Retinal microvasculature and the retinal pigment epithelium (RPE) play vital roles in maintaining the health and metabolic activity of the eye. Visualization of these retina structures is essential for pre-clinical studies of vision-robbing diseases, such as age-related macular degeneration (AMD). We have developed a quantitative multi-contrast polarization diversity OCT and angiography (QMC-PD-OCTA) system for imaging and visualizing pigment in the RPE using degree of polarization uniformity (DOPU), along with flow in the retinal capillaries using OCT angiography (OCTA). An adaptive DOPU averaging kernel was developed to increase quantifiable values from visual data, and QMC en face images permit simultaneous visualization of vessel location, depth, melanin region thickness, and mean DOPU values, allowing rapid identification and differentiation of disease symptoms. The retina of five different mice strains were measured in vivo, with results demonstrating potential for pre-clinical studies of retinal disorders.
Collapse
Affiliation(s)
- Destiny Hsu
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
- co-first author
| | - Ji Hoon Kwon
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
- co-first author
| | - Ringo Ng
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
| | - Shuichi Makita
- University of Tsukuba, Computational Optics Group, Institute of Applied Physics, Japan
| | - Yoshiaki Yasuno
- University of Tsukuba, Computational Optics Group, Institute of Applied Physics, Japan
| | - Marinko V. Sarunic
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
| | - Myeong Jin Ju
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
- University of British Columbia, Department of Ophthalmology and Visual Sciences, Vancouver, British Columbia, Canada
- University of British Columbia, School of Biomedical Engineering, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Gopal AA, Kazarine A, Dubach JM, Wiseman PW. Recent advances in nonlinear microscopy: Deep insights and polarized revelations. Int J Biochem Cell Biol 2020; 130:105896. [PMID: 33253831 DOI: 10.1016/j.biocel.2020.105896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
Nonlinear microscopy is a technique that utilizes nonlinear interactions between light and matter to image fluorescence and scattering phenomena in biological tissues. Very high peak intensities from focused short pulsed lasers are required for nonlinear excitation due to the extremely low probability of the simultaneous arrival of multiple photons of lower energy to excite fluorophores or interact with selective structures for harmonic generation. Combined with reduced scattering from the utilization of longer wavelengths, the inherent spatial confinement associated with achieving simultaneous arrival of photons within the focal volume enables deep imaging with low out-of-focus background for nonlinear imaging. This review provides an introduction to the different contrast mechanisms available with nonlinear imaging and instrumentation commonly used in nonlinear microscopy. Furthermore, we discuss some recent advances in nonlinear microscopy to extend the imaging penetration depth, conduct histopathological investigations on fresh tissues and examine the molecular order and orientation of molecules using polarization nonlinear microscopy.
Collapse
Affiliation(s)
- A A Gopal
- Center for Systems Biology and Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - A Kazarine
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - J M Dubach
- Center for Systems Biology and Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - P W Wiseman
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; Department of Physics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Ye S, Yin Y, Yao J, Nie J, Song Y, Gao Y, Yu J, Li H, Fei P, Zheng W. Axial resolution improvement of two-photon microscopy by multi-frame reconstruction and adaptive optics. BIOMEDICAL OPTICS EXPRESS 2020; 11:6634-6648. [PMID: 33282513 PMCID: PMC7687969 DOI: 10.1364/boe.409651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Two-photon microscopy (TPM) has been widely used in biological imaging owing to its intrinsic optical sectioning and deep penetration abilities. However, the conventional TPM suffers from poor axial resolution, which makes it difficult to recognize some three-dimensional fine features. We present multi-frame reconstruction two-photon microscopy (MR-TPM) using a liquid lens as a fast axial scanning engine. A sensorless adaptive optics (AO) approach is adopted to correct the aberrations caused by both the liquid lens and the optical system. By overcoming the effect of optical aberrations, inadequate sampling, and poor focusing capability of a conventional TPM, the axial resolution can be improved by a factor of 3 with a high signal-to-noise ratio. The proposed technology is compatible with the conventional TPM and requires no optical post-processing. We demonstrate the proposed method by imaging fluorescent beads, in vitro imaging of the neural circuit of mouse brain slice, and in vivo time-lapse imaging of the morphological changes of microglial cells in septic mice model. The results suggest that the axon of the neural circuit and the process of microglia along the axial direction, which cannot be resolved using conventional TPM, become distinguishable using the proposed AO MR-TPM.
Collapse
Affiliation(s)
- Shiwei Ye
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yixuan Yin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Yao
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jun Nie
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuchen Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yufeng Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jia Yu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui Li
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
12
|
Qin Z, He S, Yang C, Yung JSY, Chen C, Leung CKS, Liu K, Qu JY. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo. LIGHT, SCIENCE & APPLICATIONS 2020; 9:79. [PMID: 32411364 PMCID: PMC7203252 DOI: 10.1038/s41377-020-0317-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 05/08/2023]
Abstract
In vivo fundus imaging offers non-invasive access to neuron structures and biochemical processes in the retina. However, optical aberrations of the eye degrade the imaging resolution and prevent visualization of subcellular retinal structures. We developed an adaptive optics two-photon excitation fluorescence microscopy (AO-TPEFM) system to correct ocular aberrations based on a nonlinear fluorescent guide star and achieved subcellular resolution for in vivo fluorescence imaging of the mouse retina. With accurate wavefront sensing and rapid aberration correction, AO-TPEFM permits structural and functional imaging of the mouse retina with submicron resolution. Specifically, simultaneous functional calcium imaging of neuronal somas and dendrites was demonstrated. Moreover, the time-lapse morphological alteration and dynamics of microglia were characterized in a mouse model of retinal disorder. In addition, precise laser axotomy was achieved, and degeneration of retinal nerve fibres was studied. This high-resolution AO-TPEFM is a promising tool for non-invasive retinal imaging and can facilitate the understanding of a variety of eye diseases as well as neurodegenerative disorders in the central nervous system.
Collapse
Affiliation(s)
- Zhongya Qin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sicong He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chao Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jasmine Sum-Yee Yung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Congping Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | - Kai Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianan Y. Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
13
|
Wahl DJ, Ju MJ, Jian Y, Sarunic MV. Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence. BIOMEDICAL OPTICS EXPRESS 2019; 10:4859-4873. [PMID: 31565530 PMCID: PMC6757458 DOI: 10.1364/boe.10.004859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 05/02/2023]
Abstract
Two-photon excited fluorescence (TPEF) imaging of the retina is a developing technique that provides non-invasive compound-specific measurements from the retina. In this report, we demonstrate high-resolution TPEF imaging of the mouse retina using sensorless adaptive optics (SAO) and optical coherence tomography (OCT). A single near-infrared light source was used for simultaneous multi-modal imaging with OCT and TPEF. The image-based SAO could be performed using the en face OCT or the TPEF for aberration correction. Our results demonstrate OCT and TPEF for angiography. Also, we demonstrate non-invasive cellular-resolution imaging of fluorescently labelled cells and the Retinal Pigment Epithelium (RPE) mosaic.
Collapse
Affiliation(s)
- Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Myeong Jin Ju
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yifan Jian
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
14
|
Wahl DJ, Zhang P, Mocci J, Quintavalla M, Muradore R, Jian Y, Bonora S, Sarunic MV, Zawadzki RJ. Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction. BIOMEDICAL OPTICS EXPRESS 2019; 10:4757-4774. [PMID: 31565523 PMCID: PMC6757457 DOI: 10.1364/boe.10.004757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 05/18/2023]
Abstract
Adaptive Optics (AO) is required to achieve diffraction limited resolution in many real-life imaging applications in biology and medicine. AO is essential to guarantee high fidelity visualization of cellular structures for retinal imaging by correcting ocular aberrations. Aberration correction for mouse retinal imaging by direct wavefront measurement has been demonstrated with great success. However, for mouse eyes, the performance of the wavefront sensor (WFS) based AO can be limited by several factors including non-common path errors, wavefront reconstruction errors, and an ill-defined reference plane. Image-based AO can avoid these issues at the cost of algorithmic execution time. Furthermore, image-based approaches can provide improvements to compactness, accessibility, and even the performance of AO systems. Here, we demonstrate the ability of image-based AO to provide comparable aberration correction and image resolution to the conventional Shack-Hartmann WFS-based AO approach. The residual wavefront error of the mouse eye was monitored during a wavefront sensorless optimization to allow comparison with classical AO. This also allowed us to improve the performance of our AO system for small animal retinal imaging.
Collapse
Affiliation(s)
- Daniel J Wahl
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- These authors contributed equally
| | - Pengfei Zhang
- Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
- These authors contributed equally
| | - Jacopo Mocci
- Department of Computer Science, University of Verona, Italy
| | | | | | - Yifan Jian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Padova, Italy
| | | | - Robert J Zawadzki
- Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
15
|
Ranawat H, Pal S, Mazumder N. Recent trends in two-photon auto-fluorescence lifetime imaging (2P-FLIM) and its biomedical applications. Biomed Eng Lett 2019; 9:293-310. [PMID: 31456890 PMCID: PMC6694381 DOI: 10.1007/s13534-019-00119-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/30/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023] Open
Abstract
Two photon fluorescence microscopy and the numerous technical advances to it have served as valuable tools in biomedical research. The fluorophores (exogenous or endogenous) absorb light and emit lower energy photons than the absorption energy and the emission (fluorescence) signal is measured using a fluorescence decay graph. Additionally, high spatial resolution images can be acquired in two photon fluorescence lifetime imaging (2P-FLIM) with improved penetration depth which helps in detection of fluorescence signal in vivo. 2P-FLIM is a non-invasive imaging technique in order to visualize cellular metabolic, by tracking intrinsic fluorophores present in it, such as nicotinamide adenine dinucleotide, flavin adenine dinucleotide and tryptophan etc. 2P-FLIM of these molecules enable the visualization of metabolic alterations, non-invasively. This comprehensive review discusses the numerous applications of 2P-FLIM towards cancer, neuro-degenerative, infectious diseases, and wound healing.
Collapse
Affiliation(s)
- Harsh Ranawat
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sagnik Pal
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
16
|
Liu J, Zhao W, Liu C, Kong C, Zhao Y, Ding X, Tan J. Accurate aberration correction in confocal microscopy based on modal sensorless method. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:053703. [PMID: 31153250 DOI: 10.1063/1.5088102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
Confocal microscopy has the advantages of high resolution and optical sectioning ability over conventional microscopy. However, aberration induced by the optical system can compromise these advantages and considerably reduce the energy reaching the pointlike detector. We propose an accurate aberration correction method with a liquid-crystal spatial light modulator (LCSLM) in the confocal system. Each coefficient of Zernike aberration modes is calculated by directly measuring the variance of the images with different bias aberration modes. Large-coefficient (>0.7 rad) aberration is compensated first by LCSLM, following which aberrations with small coefficients are measured precisely, minimizing the cross talk between different kinds of aberrations. With this predistortion strategy, the aberration correction is much more accurate, and maximum image intensity in the normal and nonconjugated systems is improved by 2.5 times and 4 times compared to the normal correction method, respectively, demonstrating the effectiveness of our method.
Collapse
Affiliation(s)
- Jian Liu
- Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, No. 2, Yikuang Str., Nangang District, Harbin 150080, China
| | - Weisong Zhao
- Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, No. 2, Yikuang Str., Nangang District, Harbin 150080, China
| | - Chenguang Liu
- Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, No. 2, Yikuang Str., Nangang District, Harbin 150080, China
| | - Chenqi Kong
- Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, No. 2, Yikuang Str., Nangang District, Harbin 150080, China
| | - Yixuan Zhao
- Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, No. 2, Yikuang Str., Nangang District, Harbin 150080, China
| | - Xiangyan Ding
- National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jiubin Tan
- Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, No. 2, Yikuang Str., Nangang District, Harbin 150080, China
| |
Collapse
|
17
|
Wahl DJ, Ng R, Ju MJ, Jian Y, Sarunic MV. Sensorless adaptive optics multimodal en-face small animal retinal imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:252-267. [PMID: 30775098 PMCID: PMC6363194 DOI: 10.1364/boe.10.000252] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
Vision researchers often use small animals due to the availability of many transgenic strains that model human diseases or express biomarkers. Adaptive optics (AO) enables non-invasive single-cell imaging in a living animal but often results in high system complexity. Sensorless AO (SAO) can provide depth-resolved aberration correction with low system complexity. We present a multi-modal sensorless AO en face retina imaging system that includes optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy (SLO), and fluorescence detection. We present a compact lens-based imaging system design that allows for a 50-degree maximum field of view (FOV), which can be reduced to the region of interest to perform SAO with the modality of choice. The system performance was demonstrated on wild type mice (C57BL/6J), and transgenic mice with GFP labeled cells. SAO SLO was used for imaging microglia (Cx3cr1-GFP) over ~1 hour, where dynamics of the microglia branches were clearly observed. Our results also include volumetric cellular imaging of microglia throughout the inner retina.
Collapse
Affiliation(s)
- Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Ringo Ng
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Myeong Jin Ju
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yifan Jian
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
18
|
Ju MJ, Huang C, Wahl DJ, Jian Y, Sarunic MV. Visible light sensorless adaptive optics for retinal structure and fluorescence imaging. OPTICS LETTERS 2018; 43:5162-5165. [PMID: 30320845 DOI: 10.1364/ol.43.005162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Optical coherence tomography (OCT) has emerged as a powerful imaging instrument and technology in biomedicine. OCT imaging is predominantly performed using wavelengths in the near infrared; however, visible light (VIS) has been recently employed in OCT systems with encouraging results for high-resolution retinal imaging. Using a broadband supercontinuum VIS source, we present a sensorless adaptive optics (SAO) multimodal imaging system driven by VIS-OCT for volumetric retinal structural imaging, followed by the acquisition of fluorescence emission. The coherence-gated, depth-resolved VIS-OCT images used for image-guided SAO aberration correction enable high-resolution structural and fluorescence imaging.
Collapse
|
19
|
Kazasidis O, Verpoort S, Soloviev O, Vdovin G, Verhaegen M, Wittrock U. Extended-image-based correction of aberrations using a deformable mirror with hysteresis. OPTICS EXPRESS 2018; 26:27161-27178. [PMID: 30469790 DOI: 10.1364/oe.26.027161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
With a view to the next generation of large space telescopes, we investigate guide-star-free, image-based aberration correction using a unimorph deformable mirror in a plane conjugate to the primary mirror. We designed and built a high-resolution imaging testbed to evaluate control algorithms. In this paper we use an algorithm based on the heuristic hill climbing technique and compare the correction in three different domains, namely the voltage domain, the domain of the Zernike modes, and the domain of the singular modes of the deformable mirror. Through our systematic experimental study, we found that successive control in two domains effectively counteracts uncompensated hysteresis of the deformable mirror.
Collapse
|
20
|
Vohnsen B, Carmichael Martins A, Qaysi S, Sharmin N. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device. APPLIED OPTICS 2018; 57:E199-E204. [PMID: 30117885 DOI: 10.1364/ao.57.00e199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/29/2018] [Indexed: 05/22/2023]
Abstract
The common Hartmann-Shack wavefront sensor makes use of a lenslet array to sample in-parallel optical wavefronts. Here, we introduce a Hartmann-Shack wavefront sensor that employs a digital micromirror device in combination with a single lens for serial sampling by scanning. Sensing is analyzed numerically and validated experimentally using a deformable mirror operated in closed-loop adaptive optics with a conventional Hartmann-Shack wavefront sensor, as well as with a set of ophthalmic trial lenses, to generate controllable amounts of monochromatic aberrations. The new sensor is free of crosstalk and can potentially operate at kilohertz speed. It offers a reconfigurable aperture that can exclude unwanted parts of the wavefront.
Collapse
|
21
|
Zhang P, Mocci J, Wahl DJ, Meleppat RK, Manna SK, Quintavalla M, Muradore R, Sarunic MV, Bonora S, Pugh EN, Zawadzki RJ. Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations. Exp Eye Res 2018; 172:86-93. [PMID: 29604280 PMCID: PMC6417837 DOI: 10.1016/j.exer.2018.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/26/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023]
Abstract
For in vivo mouse retinal imaging, especially with Adaptive Optics instruments, application of a contact lens is desirable, as it allows maintenance of cornea hydration and helps to prevent cataract formation during lengthy imaging sessions. However, since the refractive elements of the eye (cornea and lens) serve as the objective for most in vivo retinal imaging systems, the use of a contact lens, even with 0 Dpt. refractive power, can alter the system’s optical properties. In this investigation we examined the effective focal length change and the aberrations that arise from use of a contact lens. First, focal length changes were simulated with a Zemax mouse eye model. Then ocular aberrations with and without a 0 Dpt. contact lens were measured with a Shack-Hartmann wavefront sensor (SHWS) in a customized AO-SLO system. Total RMS wavefront errors were measured for two groups of mice (14-month, and 2.5-month-old), decomposed into 66 Zernike aberration terms, and compared. These data revealed that vertical coma and spherical aberrations were increased with use of a contact lens in our system. Based on the ocular wavefront data we evaluated the effect of the contact lens on the imaging system performance as a function of the pupil size. Both RMS error and Strehl ratios were quantified for the two groups of mice, with and without contact lenses, and for different input beam sizes. These results provide information for determining optimum pupil size for retinal imaging without adaptive optics, and raise critical issues for design of mouse optical imaging systems that incorporate contact lenses.
Collapse
Affiliation(s)
- Pengfei Zhang
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States
| | - Jacopo Mocci
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Daniel J Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Ratheesh Kumar Meleppat
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States
| | - Suman K Manna
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States
| | - Martino Quintavalla
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | | | - Marinko V Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Edward N Pugh
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States; UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, United States
| | - Robert J Zawadzki
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States; UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, United States.
| |
Collapse
|
22
|
Feeks JA, Hunter JJ. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice. BIOMEDICAL OPTICS EXPRESS 2017; 8:2483-2495. [PMID: 28663886 PMCID: PMC5480493 DOI: 10.1364/boe.8.002483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 05/05/2023]
Abstract
In vivo cellular scale fluorescence lifetime imaging of the mouse retina has the potential to be a sensitive marker of retinal cell health. In this study, we demonstrate fluorescence lifetime imaging of extrinsic fluorophores using adaptive optics fluorescence lifetime imaging ophthalmoscopy (AOFLIO). We recorded AOFLIO images of inner retinal cells labeled with enhanced green fluorescent protein (EGFP) and capillaries labeled with fluorescein. We demonstrate that AOFLIO can be used to differentiate spectrally overlapping fluorophores in the retina. With further refinements, AOFLIO could be used to assess retinal health in early stages of degeneration by utilizing lifetime-based sensors or even fluorophores native to the retina.
Collapse
Affiliation(s)
- James A. Feeks
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, NY 14627, USA
| |
Collapse
|
23
|
Salmon AE, Cooper RF, Langlo CS, Baghaie A, Dubra A, Carroll J. An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy. Transl Vis Sci Technol 2017; 6:9. [PMID: 28392976 PMCID: PMC5381332 DOI: 10.1167/tvst.6.2.9] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/28/2017] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To develop an automated reference frame selection (ARFS) algorithm to replace the subjective approach of manually selecting reference frames for processing adaptive optics scanning light ophthalmoscope (AOSLO) videos of cone photoreceptors. METHODS Relative distortion was measured within individual frames before conducting image-based motion tracking and sorting of frames into distinct spatial clusters. AOSLO images from nine healthy subjects were processed using ARFS and human-derived reference frames, then aligned to undistorted AO-flood images by nonlinear registration and the registration transformations were compared. The frequency at which humans selected reference frames that were rejected by ARFS was calculated in 35 datasets from healthy subjects, and subjects with achromatopsia, albinism, or retinitis pigmentosa. The level of distortion in this set of human-derived reference frames was assessed. RESULTS The average transformation vector magnitude required for registration of AOSLO images to AO-flood images was significantly reduced from 3.33 ± 1.61 pixels when using manual reference frame selection to 2.75 ± 1.60 pixels (mean ± SD) when using ARFS (P = 0.0016). Between 5.16% and 39.22% of human-derived frames were rejected by ARFS. Only 2.71% to 7.73% of human-derived frames were ranked in the top 5% of least distorted frames. CONCLUSION ARFS outperforms expert observers in selecting minimally distorted reference frames in AOSLO image sequences. The low success rate in human frame choice illustrates the difficulty in subjectively assessing image distortion. TRANSLATIONAL RELEVANCE Manual reference frame selection represented a significant barrier to a fully automated image-processing pipeline (including montaging, cone identification, and metric extraction). The approach presented here will aid in the clinical translation of AOSLO imaging.
Collapse
Affiliation(s)
- Alexander E Salmon
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert F Cooper
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA ; Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher S Langlo
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ahmadreza Baghaie
- Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Alfredo Dubra
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA ; Current affiliation: Department of Ophthalmology, Stanford University, 2452 Watson Court, Palo Alto, CA, USA
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
24
|
Verstraete HRGW, Heisler M, Ju MJ, Wahl D, Bliek L, Kalkman J, Bonora S, Jian Y, Verhaegen M, Sarunic MV. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2261-2275. [PMID: 28736670 PMCID: PMC5516811 DOI: 10.1364/boe.8.002261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/07/2017] [Accepted: 03/12/2017] [Indexed: 05/05/2023]
Abstract
In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented.
Collapse
Affiliation(s)
- Hans R. G. W. Verstraete
- Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The
Netherlands
| | - Morgan Heisler
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6,
Canada
| | - Myeong Jin Ju
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6,
Canada
| | - Daniel Wahl
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6,
Canada
| | - Laurens Bliek
- Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The
Netherlands
| | - Jeroen Kalkman
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The
Netherlands
| | - Stefano Bonora
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The
Netherlands
| | - Yifan Jian
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6,
Canada
- These authors contributed equally
| | - Michel Verhaegen
- Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The
Netherlands
- These authors contributed equally
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6,
Canada
- These authors contributed equally
| |
Collapse
|
25
|
Wahl DJ, Huang C, Bonora S, Jian Y, Sarunic MV. Pupil segmentation adaptive optics for invivo mouse retinal fluorescence imaging. OPTICS LETTERS 2017; 42:1365-1368. [PMID: 28362770 DOI: 10.1364/ol.42.001365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adaptive Optics (AO) for scanning laser ophthalmoscopy enables high-resolution retinal imaging that can be used for preclinical research of diseases causing vision loss. Pupil Segmentation (PS) is an approach to wavefront-sensorless AO that acquires images within subregions across the imaging pupil to measure the wavefront slopes at the corresponding locations of the beam. We present PS-AO as an approach to correct ocular aberrations in ∼7 s, implemented to minimize respiratory motion from an anesthetized mouse. We demonstrated an improvement in resolution and an image intensity increase of ∼25% across all results using PS-AO for in vivo fluorescence retinal imaging in mice using a MEMS-based segmented deformable mirror.
Collapse
|
26
|
Image-based adaptive optics for in vivo imaging in the hippocampus. Sci Rep 2017; 7:42924. [PMID: 28220868 PMCID: PMC5318884 DOI: 10.1038/srep42924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/16/2017] [Indexed: 12/24/2022] Open
Abstract
Adaptive optics is a promising technique for the improvement of microscopy in tissues. A large palette of indirect and direct wavefront sensing methods has been proposed for in vivo imaging in experimental animal models. Application of most of these methods to complex samples suffers from either intrinsic and/or practical difficulties. Here we show a theoretically optimized wavefront correction method for inhomogeneously labeled biological samples. We demonstrate its performance at a depth of 200 μm in brain tissue within a sparsely labeled region such as the pyramidal cell layer of the hippocampus, with cells expressing GCamP6. This method is designed to be sample-independent thanks to an automatic axial locking on objects of interest through the use of an image-based metric that we designed. Using this method, we show an increase of in vivo imaging quality in the hippocampus.
Collapse
|
27
|
Bitenc U. Software compensation method for achieving high stability of Alpao deformable mirrors. OPTICS EXPRESS 2017; 25:4368-4381. [PMID: 28241640 DOI: 10.1364/oe.25.004368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Deformable mirrors (DMs) are used in adaptive optics for correcting optical aberrations: the DM surface can be deformed to compensate for them. Recently we reported the results on investigation of the stability of Alpao DMs, i.e. how accurately a DM surface shape can be maintained over minutes and hours without any optical feed-back. We observed a creep behavior of the DM surface and we presented a proof-of-concept software compensation for it, showing that very high stability is achievable. In this paper we develop a generalized creep compensation method that covers a wide range of DM use-cases and compensates for 90% - 95% of the creep observed. Furthermore, we report an observation of a DM shape dependence on the magnitude of the DM steering commands over the last few minutes. This effect is likely due to the warming up of the structure supporting the DM surface. Similarly as for creep, we have developed a compensation in software which corrects for about 90% of this effect. Both compensation mechanisms are based solely on pre-calibration input and do not receive any optical feedback about the actual DM surface shape. With the application of these two compensation mechanisms, the Alpao DM exhibits excellent stability and is well suited for feed-forward operation, where high reliability of the DM surface is crucial for operation in the absence of an optical feedback.
Collapse
|
28
|
Ghasemi F, Parvin P, Motlagh NSH, Abachi S. LIF spectroscopy of stained malignant breast tissues. BIOMEDICAL OPTICS EXPRESS 2017; 8:512-523. [PMID: 28270964 PMCID: PMC5330572 DOI: 10.1364/boe.8.000512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/03/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
We employ laser induced fluorescence (LIF) spectroscopy to discriminate between normal and cancerous human breast (in-vitro) tissues. LIF signals are usually enhanced by the exogenous agents such as Rhodamine 6G (Rd6G) and Coumarin 7 (C7). Although we observe fluorescence emissions in both fluorophores, Rd6G-stained tissues give notable spectral red shift in practice. The latter is a function of dye concentration embedded in tissues. We find that such red shifts have a strong dependence on the dye concentration in bare, in stained healthy, and in malignant breast tissues, signifying variations in tubular abundances. In fact, the heterogeneity of cancerous tissues is more prominent mainly due to their notable tubular densities- which can provide numerous micro-cavities to house more dye molecules. We show that this can be used to discriminate between the healthy and unhealthy specimens in different biological scaffolds of ordered (healthy) and disordered (cancerous) tissues. It is demonstrated that the quenching process of fluorophore' molecules slows down in the neoplastic tumors according to the micro-partitioning, too.
Collapse
Affiliation(s)
- Fatemeh Ghasemi
- Physics Department, Amirkabir University of Technology, P.O. Box 15875–4413, Tehran, Iran
| | - Parviz Parvin
- Physics Department, Amirkabir University of Technology, P.O. Box 15875–4413, Tehran, Iran
| | | | - Shahriar Abachi
- Physics & Astronomy Department, California State University 90032, Los Angeles, California, USA
| |
Collapse
|
29
|
Cua M, Wahl DJ, Zhao Y, Lee S, Bonora S, Zawadzki RJ, Jian Y, Sarunic MV. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging. Sci Rep 2016; 6:32223. [PMID: 27599635 PMCID: PMC5013266 DOI: 10.1038/srep32223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/04/2016] [Indexed: 11/09/2022] Open
Abstract
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.
Collapse
Affiliation(s)
- Michelle Cua
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Daniel J Wahl
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Yuan Zhao
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Sujin Lee
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Robert J Zawadzki
- UC Davis RISE Small Animal Ocular Imaging Facility, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA.,Vision Science and Advanced Retinal Imaging laboratory (VSRI), Department of Ophthalmology &Vision Science, University of California Davis, Sacramento, CA 95817 USA
| | - Yifan Jian
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
30
|
Alexander NS, Palczewska G, Stremplewski P, Wojtkowski M, Kern TS, Palczewski K. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina. BIOMEDICAL OPTICS EXPRESS 2016; 7:2671-91. [PMID: 27446697 PMCID: PMC4948621 DOI: 10.1364/boe.7.002671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/11/2016] [Accepted: 06/11/2016] [Indexed: 05/18/2023]
Abstract
Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [Palczewska G., Nat Med.20, 785 (2014) Sharma R., Biomed. Opt. Express4, 1285 (2013)].
Collapse
Affiliation(s)
- Nathan S Alexander
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | | | - Patrycjusz Stremplewski
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Maciej Wojtkowski
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Timothy S Kern
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Polgenix Inc., 11000 Cedar Ave, Cleveland, Ohio 44106, USA;
| |
Collapse
|