1
|
Watson JJ, Hecht R, Tao YK. Optimization of handheld spectrally encoded coherence tomography and reflectometry for point-of-care ophthalmic diagnostic imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:076006. [PMID: 39050778 PMCID: PMC11267400 DOI: 10.1117/1.jbo.29.7.076006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Significance Handheld optical coherence tomography (HH-OCT) systems enable point-of-care ophthalmic imaging in bedridden, uncooperative, and pediatric patients. Handheld spectrally encoded coherence tomography and reflectometry (HH-SECTR) combines OCT and spectrally encoded reflectometry (SER) to address critical clinical challenges in HH-OCT imaging with real-time en face retinal aiming for OCT volume alignment and volumetric correction of motion artifacts that occur during HH-OCT imaging. Aim We aim to enable robust clinical translation of HH-SECTR and improve clinical ergonomics during point-of-care OCT imaging for ophthalmic diagnostics. Approach HH-SECTR is redesigned with (1) optimized SER optical imaging for en face retinal aiming and retinal tracking for motion correction, (2) a modular aluminum form factor for sustained alignment and probe stability for longitudinal clinical studies, and (3) one-handed photographer-ergonomic motorized focus adjustment. Results We demonstrate an HH-SECTR imaging probe with micron-scale optical-optomechanical stability and use it for in vivo human retinal imaging and volumetric motion correction. Conclusions This research will benefit the clinical translation of HH-SECTR for point-of-care ophthalmic diagnostics.
Collapse
Affiliation(s)
- Jacob J. Watson
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Rachel Hecht
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Yuankai K. Tao
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Wei F, Hagan K, Viehland C, Tao YK, Kuo AN, Izatt JA, Dhalla AH. Hybrid spiral scanning in a double-clad fiber-based handheld confocal scanning light ophthalmoscope. BIOMEDICAL OPTICS EXPRESS 2023; 14:5162-5181. [PMID: 37854550 PMCID: PMC10581785 DOI: 10.1364/boe.500608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023]
Abstract
High-speed, accessible, and robust in vivo imaging of the human retina is critical for screening of retinal pathologies, such as diabetic retinopathy, age-related macular degeneration, and others. Scanning light ophthalmoscopy (SLO) is a retinal imaging modality that produces digital, en face images of the human retina with superior image gradability rates when compared to the current standard of care in screening for these diseases, namely the flood-illumination handheld fundus camera (HFC). However, current-generation commercial SLO systems are mostly tabletop devices, limiting their accessibility and utility in screening applications. Moreover, most existing SLO systems use raster scan patterns, which are both inefficient and lead to undesired subject gaze drift when used with visible or pseudo-visible illumination. Non-raster scan patterns, especially spiral scanning as described herein, promise advantages in both scan efficiency and reduced subject eye motion. In this work, we introduce a novel "hybrid spiral" scan pattern and the associated hardware design and real-time image reconstruction techniques necessary for its implementation in an SLO system. Building upon this core hybrid spiral scanning SLO (HSS-SLO) technology, we go on to present a complete handheld HSS-SLO system, featuring a fiber-coupled portable patient interface which leverages a dual-clad fiber (DCF) to form a single-path optical topology, thus ensuring mechanically robust co-alignment of illumination and collection apertures, a necessity for a handheld system. The feasibility of HSS-SLO for handheld, in vivo imaging is demonstrated by imaging eight human volunteers.
Collapse
Affiliation(s)
- Franklin Wei
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Kristen Hagan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Christian Viehland
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yuankai K. Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Anthony N. Kuo
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27708, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27708, USA
| | - Al-Hafeez Dhalla
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
3
|
Cho J, Nouizi F, Kim CS, Gulsen G. Monitoring Distribution of the Therapeutic Agent Dimethyl Sulfoxide via Solvatochromic Shift of Albumin-Bound Indocyanine Green. SENSORS (BASEL, SWITZERLAND) 2023; 23:7728. [PMID: 37765785 PMCID: PMC10535274 DOI: 10.3390/s23187728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
We recently developed a novel hyperspectral excitation-resolved near-infrared fluorescence imaging system (HER-NIRF) based on a continuous-wave wavelength-swept laser. In this study, this technique is applied to measure the distribution of the therapeutic agent dimethyl sulfoxide (DMSO) by utilizing solvatochromic shift in the spectral profile of albumin-bound Indocyanine green (ICG). Using wide-field imaging in turbid media, complex dynamics of albumin-bound ICG are measured in mixtures of dimethyl sulfoxide (DMSO) and water. Phantom experiments are conducted to evaluate the performance of the HER-NIRF system. The results show that the distribution of DMSO can be visualized in the wide-field reflection geometry. One of the main purposes of the DMSO is to act as a carrier for other drugs, enhancing their effects by facilitating skin penetration. Understanding the solubility and permeability of drugs in vivo is very important in drug discovery and development. Hence, this HER-NIRF technique has great potential to advance the utilization of the therapeutic agent DMSO by mapping its distribution via the solvatochromic shift of ICG. By customizing the operational wavelength range, this system can be applied to any other fluorophores in the near-infrared region and utilized for a wide variety of drug delivery studies.
Collapse
Affiliation(s)
- Jaedu Cho
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA 92697, USA (F.N.)
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 607-735, Republic of Korea;
| | - Farouk Nouizi
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA 92697, USA (F.N.)
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 607-735, Republic of Korea;
| | - Gultekin Gulsen
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA 92697, USA (F.N.)
| |
Collapse
|
4
|
Lee KS, Ravichandran NK, Yeo WJ, Hur H, Hyun S, Bae JY, Kim DU, Jong Kim I, Nam KH, Bog MG, Chang KS, Kim GH. Spectrally encoded dual-mode interferometry with orthogonal scanning. OPTICS EXPRESS 2023; 31:10500-10511. [PMID: 37157595 DOI: 10.1364/oe.480261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technique. Here, we present a method to integrate optical coherence tomography (OCT) and SECM for complementary imaging by adding orthogonal scanning to the SECM configuration. The co-registration of SECM and OCT is automatic, as all system components are shared in the same order, eliminating the need for additional optical alignment. The proposed multimode imaging system is compact and cost-effective while providing the benefits of imaging aiming and guidance. Furthermore, speckle noise can be suppressed by averaging the speckles generated by shifting the spectral-encoded field in the direction of dispersion. Using a near infrared (NIR) card and a biological sample, we demonstrated the capability of the proposed system by showing SECM imaging at depths of interest guided by the OCT in real time and speckle noise reduction. Interfaced multimodal imaging of SECM and OCT was implemented at a speed of approximately 7 frames/s using fast-switching technology and GPU processing.
Collapse
|
5
|
Zhang P, Wahl DJ, Mocci J, Miller EB, Bonora S, Sarunic MV, Zawadzki RJ. Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for in vivo mouse retina imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:299-314. [PMID: 36698677 PMCID: PMC9841993 DOI: 10.1364/boe.473447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 05/02/2023]
Abstract
Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are imaging technologies invented in the 1980s that have revolutionized the field of in vivo retinal diagnostics and are now commonly used in ophthalmology clinics as well as in vision science research. Adaptive optics (AO) technology enables high-fidelity correction of ocular aberrations, resulting in improved resolution and sensitivity for both SLO and OCT systems. The potential of gathering multi-modal cellular-resolution information in a single instrument is of great interest to the ophthalmic imaging community. Although similar instruments have been developed for imaging the human retina, developing such a system for mice will benefit basic science research and should help with further dissemination of AO technology. Here, we present our work integrating OCT into an existing mouse retinal AO-SLO system, resulting in a multi-modal AO-enhanced imaging system of the living mouse eye. The new system allows either independent or simultaneous data acquisition of AO-SLO and AO-OCT, depending on the requirements of specific scientific experiments. The system allows a data acquisition speed of 200 kHz A-scans/pixel rate for OCT and SLO, respectively. It offers ∼6 µm axial resolution for AO-OCT and a ∼1 µm lateral resolution for AO-SLO-OCT imaging.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Jacopo Mocci
- Dynamic Optics srl, Piazza Zanellato 5, 35131, Padova, Italy
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Marinko V. Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
- Medical Physics and Biomedical Engineering, University College London, United Kingdom
- Institute of Ophthalmology, University College London, United Kingdom
| | - Robert J. Zawadzki
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
- UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
| |
Collapse
|
6
|
Duan Z, Huang K, Luo Z, Ma K, Wang G, Hu X, Zhang J, Luo X, Huang Y, Liu G, Ding X, Xiao P, Yuan J. Portable boom-type ultrahigh-resolution OCT with an integrated imaging probe for supine position retinal imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:3295-3310. [PMID: 35781965 PMCID: PMC9208590 DOI: 10.1364/boe.456435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
To expand the clinical applications and improve the ease of use of ultrahigh-resolution optical coherence tomography (UHR-OCT), we developed a portable boom-type ophthalmic UHR-OCT operating in supine position that can be used for pediatric subjects, bedridden patients and perioperative conditions. By integrating the OCT sample arm probe with real-time iris display and automatic focusing electric lens for easy alignment, coupling the probe on a self-locking multi-directional manipulator to reduce motion artifacts and operator fatigue, and installing the OCT module on a moveable cart for system mobility, our customized portable boom-type UHR-OCT enables non-contact, high-resolution and high-stability retinal examinations to be performed on subjects in supine position. The spectral-domain UHR-OCT operates at a wavelength of 845 nm with 130 nm FWHM (full width at half maximum) bandwidth, achieving an axial resolution of ≈2.3µm in tissue with an A-line acquisition rate up to 128 kHz. A high-definition two-dimensional (2D) raster protocol was used for high-quality cross-sectional imaging while a cube volume three-dimensional (3D) scan was used for three-dimensional imaging and en-face reconstruction, resolving major layer structures of the retina. The feasibility of the system was demonstrated by performing supine position 2D/3D retinal imaging on healthy human subjects, sedated infants, and non-sedated awake neonates.
Collapse
Affiliation(s)
- Zhengyu Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
- the authors contributed equally to this paper
| | - Kai Huang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhongzhou Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Ke Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Gengyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaodong Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jinze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoling Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuancong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Gangjun Liu
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- the authors contributed equally to this paper
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
7
|
Ahronovich EZ, Simaan N, Joos KM. A Review of Robotic and OCT-Aided Systems for Vitreoretinal Surgery. Adv Ther 2021; 38:2114-2129. [PMID: 33813718 PMCID: PMC8107166 DOI: 10.1007/s12325-021-01692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023]
Abstract
The introduction of the intraocular vitrectomy instrument by Machemer et al. has led to remarkable advancements in vitreoretinal surgery enabling the limitations of human physiologic capabilities to be reached. To overcome the barriers of perception, tremor, and dexterity, robotic technologies have been investigated with current advancements nearing the feasibility for clinical use. There are four categories of robotic systems that have emerged through the research: (1) handheld instruments with intrinsic robotic assistance, (2) hand-on-hand robotic systems, (3) teleoperated robotic systems, and (4) magnetic guidance robots. This review covers the improvements and the remaining needs for safe, cost-effective clinical deployment of robotic systems in vitreoretinal surgery.
Collapse
Affiliation(s)
- Elan Z. Ahronovich
- Advanced Robotics and Mechanism Applications (ARMA) Laboratory, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Nabil Simaan
- Advanced Robotics and Mechanism Applications (ARMA) Laboratory, Department of Mechanical Engineering, Department of Computer Science, Vanderbilt University, Nashville, TN 37235 USA
| | - Karen M. Joos
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
8
|
Ringel MJ, Tang EM, Tao YK. Advances in multimodal imaging in ophthalmology. Ther Adv Ophthalmol 2021; 13:25158414211002400. [PMID: 35187398 PMCID: PMC8855415 DOI: 10.1177/25158414211002400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Multimodality ophthalmic imaging systems aim to enhance the contrast, resolution, and functionality of existing technologies to improve disease diagnostics and therapeutic guidance. These systems include advanced acquisition and post-processing methods using optical coherence tomography (OCT), combined scanning laser ophthalmoscopy and OCT systems, adaptive optics, surgical guidance, and photoacoustic technologies. Here, we provide an overview of these ophthalmic imaging systems and their clinical and basic science applications.
Collapse
Affiliation(s)
- Morgan J. Ringel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eric M. Tang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuankai K. Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
9
|
Multi-modal Anterior Eye Imager Combining Ultra-High Resolution OCT and Microvascular Imaging for Structural and Functional Evaluation of the Human Eye. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To establish complementary information for the diagnosis and evaluation of ocular surface diseases, we developed a multi-modal, non-invasive optical imaging platform by combining ultra-high resolution optical coherence tomography (UHR-OCT) with a microvascular imaging system based on slit-lamp biomicroscopy. Our customized UHR-OCT module achieves an axial resolution of ≈2.9 μm in corneal tissue with a broadband light source and an A-line acquisition rate of 24 kHz with a line array CCD camera. The microvascular imaging module has a lateral resolution of 3.5 μm under maximum magnification of ≈187.5× with an imaging rate of 60 frames/s, which is sufficient to image the conjunctival vessel network and record the movement trajectory of clusters of red blood cells. By combining the imaging optical paths of different modules, our customized multi-modal anterior eye imaging platform is capable of performing real-time cross-sectional UHR-OCT imaging of the anterior eye, conjunctival vessel network imaging, high-resolution conjunctival blood flow videography, fluorescein staining and traditional slit-lamp imaging on a single device. With self-developed software, a conjunctival vessel network image and blood flow videography were further analyzed to acquire quantitative morphological and hemodynamics parameters, including vessel fractal dimensions, blood flow velocity and vessel diameters. The ability of our multi-modal anterior eye imager to provide both structural and functional information for ophthalmic clinical applications was demonstrated on a healthy human subject and a keratitis patient.
Collapse
|
10
|
Malone JD, El-Haddad MT, Yerramreddy SS, Oguz I, Tao YK. Handheld spectrally encoded coherence tomography and reflectometry for motion-corrected ophthalmic optical coherence tomography and optical coherence tomography angiography. NEUROPHOTONICS 2019; 6:041102. [PMID: 32042852 PMCID: PMC6991137 DOI: 10.1117/1.nph.6.4.041102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/12/2019] [Indexed: 05/05/2023]
Abstract
Optical coherence tomography (OCT) is the gold standard for quantitative ophthalmic imaging. The majority of commercial and research systems require patients to fixate and be imaged in a seated upright position, which limits the ability to perform ophthalmic imaging in bedridden or pediatric patients. Handheld OCT devices overcome this limitation, but image quality often suffers due to a lack of real-time aiming and patient eye and photographer motion. We describe a handheld spectrally encoded coherence tomography and reflectometry (SECTR) system that enables simultaneous en face reflectance and cross-sectional OCT imaging. The handheld probe utilizes a custom double-pass scan lens for fully telecentric OCT scanning with a compact optomechanical design and a rapid-prototyped enclosure to reduce the overall system size and weight. We also introduce a variable velocity scan waveform that allows for simultaneous acquisition of densely sampled OCT angiography (OCTA) volumes and widefield reflectance images, which enables high-resolution vascular imaging with precision motion-tracking for volumetric motion correction and multivolumetric mosaicking. Finally, we demonstrate in vivo human retinal OCT and OCT angiography (OCTA) imaging using handheld SECTR on a healthy volunteer. Clinical translation of handheld SECTR will allow for high-speed, motion-corrected widefield OCT and OCTA imaging in bedridden and pediatric patients who may benefit ophthalmic disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Joseph D. Malone
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Mohamed T. El-Haddad
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Suhaas S. Yerramreddy
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Ipek Oguz
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Yuankai K. Tao
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Address all correspondence to Yuankai K. Tao, E-mail:
| |
Collapse
|
11
|
Miao Y, Brenner M, Chen Z. Endoscopic Optical Coherence Tomography for Assessing Inhalation Airway Injury: A Technical Review. OTOLARYNGOLOGY (SUNNYVALE, CALIF.) 2019; 9:366. [PMID: 31497378 PMCID: PMC6731096 DOI: 10.4172/2161-119x.1000366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diagnosis of inhalation injury has been clinically challenging. Currently, assessment of inhalation injury relies on subjective clinical exams and bronchoscopy, which provides little understanding of tissue conditions and results in limited prognostics. Endoscopic Optical coherence tomography (OCT) technology has been recently utilized in the airway for direct assessment of respiratory tract disorders and injuries. Endoscopic OCT is capable of capturing high-resolution images of tissue morphology 1-3 mm beneath the surface as well as the complex 3D anatomical shape. Previous studies indicate that changes in airway histopathology can be found in the OCT image almost immediately after inhalation of smoke and other toxic chemicals, which correlates well with histology and pulmonary function tests. This review summarizes the recent development of endoscopic OCT technology for airway imaging, current uses of OCT for inhalation injury, and possible future directions.
Collapse
Affiliation(s)
- Yusi Miao
- Beckman Laser Institute, University of California, Irvine, CA, USA
| | - Matthew Brenner
- Beckman Laser Institute, University of California, Irvine, CA, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, CA, USA
| |
Collapse
|
12
|
Duan Y, Dong X, Zhang L, Li Y, Lei Z, Chen L, Zhou X, Zhang C, Zhang X. Ultrafast discrete swept source based on dual chirped combs for microscopic imaging. OPTICS EXPRESS 2019; 27:2621-2631. [PMID: 30732297 DOI: 10.1364/oe.27.002621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
An inertial-free, ultrafast frequency comb source based on two chirped optical frequency combs (OFCs) is proposed and experimentally demonstrated. The high linearity frequency sweeping is realized by the Vernier effect between the two OFCs rather than any mechanical motion component, so that good stability and reliability are ensured and no recalibration or resampling process is required. Swept rate up to 1 MHz is realized while keeping a narrow instantaneous linewidth of 0.03 nm, thanks to the extra-cavity frequency sweeping method. The wavelength step is proportional to the swept rate (3.8 pm at 10 kHz), and can be tuned by changing the repetition rate difference between the two OFCs. This swept source is applied for high-speed wavelength encoded imaging and achieves 4.4-μm spatial resolution at a 329-kHz frame rate. Compared with the traditional time-stretch microscopy, the signal acquisition bandwidth decreased from 3.8 GHz to below 90 MHz to achieve the same spatial resolution. Furthermore, the exposure time for a specific wavelength is much longer due to the discrete sweeping feature, which is a benefit for higher sensitivity. This discrete swept source provided a promising low-cost option for high-speed biomedical imaging systems and high-accuracy spectroscopy.
Collapse
|
13
|
El-Haddad MT, Bozic I, Tao YK. Spectrally encoded coherence tomography and reflectometry: Simultaneous en face and cross-sectional imaging at 2 gigapixels per second. JOURNAL OF BIOPHOTONICS 2018; 11:e201700268. [PMID: 29149542 PMCID: PMC5903931 DOI: 10.1002/jbio.201700268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/10/2017] [Indexed: 05/18/2023]
Abstract
Non-invasive biological imaging is crucial for understanding in vivo structure and function. Optical coherence tomography (OCT) and reflectance confocal microscopy are two of the most widely used optical modalities for exogenous contrast-free, high-resolution, three-dimensional imaging in non-fluorescent scattering tissues. However, sample motion remains a critical barrier to raster-scanned acquisition and reconstruction of wide-field anatomically accurate volumetric datasets. We introduce spectrally encoded coherence tomography and reflectometry (SECTR), a high-speed, multimodality system for simultaneous OCT and spectrally encoded reflectance (SER) imaging. SECTR utilizes a robust system design consisting of shared optical relays, scanning mirrors, swept laser and digitizer to achieve the fastest reported in vivo multimodal imaging rate of 2 gigapixels per second. Our optical design and acquisition scheme enable spatiotemporally co-registered acquisition of OCT cross-sections simultaneously with en face SER images for multivolumetric mosaicking. Complementary axial and lateral translation and rotation are extracted from OCT and SER data, respectively, for full volumetric estimation of sample motion with micron spatial and millisecond temporal resolution.
Collapse
Affiliation(s)
- Mohamed T. El-Haddad
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ivan Bozic
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Yuankai K. Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
14
|
El-Haddad MT, Bozic I, Tao YK. Spectrally encoded coherence tomography and reflectometry: Simultaneous en face and cross-sectional imaging at 2 gigapixels per second. JOURNAL OF BIOPHOTONICS 2018; 11:e201700268. [PMID: 29149542 DOI: 10.1002/jbio.2018.11.issue-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/10/2017] [Indexed: 05/22/2023]
Abstract
Non-invasive biological imaging is crucial for understanding in vivo structure and function. Optical coherence tomography (OCT) and reflectance confocal microscopy are two of the most widely used optical modalities for exogenous contrast-free, high-resolution, three-dimensional imaging in non-fluorescent scattering tissues. However, sample motion remains a critical barrier to raster-scanned acquisition and reconstruction of wide-field anatomically accurate volumetric datasets. We introduce spectrally encoded coherence tomography and reflectometry (SECTR), a high-speed, multimodality system for simultaneous OCT and spectrally encoded reflectance (SER) imaging. SECTR utilizes a robust system design consisting of shared optical relays, scanning mirrors, swept laser and digitizer to achieve the fastest reported in vivo multimodal imaging rate of 2 gigapixels per second. Our optical design and acquisition scheme enable spatiotemporally co-registered acquisition of OCT cross-sections simultaneously with en face SER images for multivolumetric mosaicking. Complementary axial and lateral translation and rotation are extracted from OCT and SER data, respectively, for full volumetric estimation of sample motion with micron spatial and millisecond temporal resolution.
Collapse
Affiliation(s)
- Mohamed T El-Haddad
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Ivan Bozic
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Yuankai K Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
15
|
Tan S, Yang L, Wei X, Li C, Chen N, Tsia KK, Wong KKY. High-speed wavelength-swept source at 2.0 μm and its application in imaging through a scattering medium. OPTICS LETTERS 2017; 42:1540-1543. [PMID: 28409792 DOI: 10.1364/ol.42.001540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a high-speed wavelength-swept source operating at 2.0 μm through advanced time-stretch technology. It sweeps over 30 nm at a speed of 3.3×109 nm/s and a repetition rate of ∼19 MHz. To the best of our knowledge, this is the first time that a megahertz-stable swept source has been implemented at such a long wavelength. A wide bandwidth is enabled by a simple mode-locked fiber laser that covers a wavelength range of ∼60 nm. The all-optical wavelength sweeping is realized by a chirped fiber Bragg grating (CFBG), which shows a superior temporal stability and power efficiency, compared with commonly used dispersive fibers, particularly in the 2.0 μm wavelength window. To showcase its specialties, here we employ it to perform high-speed spectrally-encoded microscopy (i.e., time-stretch imaging) through a scattering medium at a line-scan rate of up to ∼19 MHz. Better image quality is achieved, compared with a conventional imaging window at 1.0 μm. It is believed that the potential applications of this new high-speed swept source will benefit the transient diagnosis that requires deep penetration through a scattering medium.
Collapse
|