1
|
Brunner E, Kunze L, Drexler W, Pollreisz A, Pircher M. Image Quality in Adaptive Optics Optical Coherence Tomography of Diabetic Patients. Diagnostics (Basel) 2025; 15:429. [PMID: 40002580 PMCID: PMC11854792 DOI: 10.3390/diagnostics15040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: An assessment of the retinal image quality in adaptive optics optical coherence tomography (AO-OCT) is challenging. Many factors influence AO-OCT imaging performance, leading to greatly varying imaging results, even in the same subject. The aim of this study is to introduce quantitative means for an assessment of AO-OCT image quality and to compare these with parameters retrieved from the pyramid wavefront sensor of the system. Methods: We used a spectral domain AO-OCT instrument to repetitively image six patients suffering from diabetic retinopathy over a time span of one year. The data evaluation consists of two volume acquisitions with a focus on the photoreceptor layer, each at five different retinal locations per visit; 7-8 visits per patient are included in this data analysis, resulting in a total of ~420 volumes. Results: A large variability in AO-OCT image quality is observed between subjects and between visits of the same subject. On average, the image quality does not depend on the measurement location. The data show a moderate correlation between the axial position of the volume recording and image quality. The correlation between pupil size and AO-OCT image quality is not linear. A weak correlation is found between the signal-to-noise ratio of the wavefront sensor image and the image quality. Conclusions: The introduced AO-OCT image quality metric gives useful insights into the performance of such a system. A longitudinal assessment of this metric, together with wavefront sensor data, is essential to identify factors influencing image quality and, in the next step, to optimize the performance of AO-OCT systems.
Collapse
Affiliation(s)
- Elisabeth Brunner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (E.B.); (W.D.)
| | - Laura Kunze
- Department of Ophthalmology and Optometry, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (L.K.); (A.P.)
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (E.B.); (W.D.)
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (L.K.); (A.P.)
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (E.B.); (W.D.)
| |
Collapse
|
2
|
Brunner E, Kunze L, Laidlaw V, Jodlbauer D, Drexler W, Ramlau R, Pollreisz A, Pircher M. Improvements on speed, stability and field of view in adaptive optics OCT for anterior retinal imaging using a pyramid wavefront sensor. BIOMEDICAL OPTICS EXPRESS 2024; 15:6098-6116. [PMID: 39421790 PMCID: PMC11482182 DOI: 10.1364/boe.533451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024]
Abstract
We present improvements on the adaptive optics (AO) correction method using a pyramid wavefront sensor (P-WFS) and introduce a novel approach for closed-loop focus shifting in retinal imaging. The method's efficacy is validated through in vivo adaptive optics optical coherence tomography (AO-OCT) imaging in both, healthy individuals and patients with diabetic retinopathy. In both study groups, a stable focusing on the anterior retinal layers is achieved. We further report on an improvement in AO loop speed that can be used to expand the imaging area of AO-OCT in the slow scanning direction, largely independent of the eye's isoplanatic patch. Our representative AO-OCT data reveal microstructural details of the neurosensory retina such as vessel walls and microglia cells that are visualized in single volume data and over an extended field of view. The excellent performance of the P-WFS based AO-OCT imaging in patients suggests good clinical applicability of this technology.
Collapse
Affiliation(s)
- Elisabeth Brunner
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria
| | - Laura Kunze
- Department of Ophthalmology and Optometry, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria
| | - Victoria Laidlaw
- Johannes Kepler University Linz, Industrial Mathematics Institute, Altenbergerstraße 69, A-4040 Linz, Austria
| | - Daniel Jodlbauer
- Johann Radon Institute for Computational and Applied Mathematics, Altenbergerstraße 69, A-4040 Linz, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria
| | - Ronny Ramlau
- Johannes Kepler University Linz, Industrial Mathematics Institute, Altenbergerstraße 69, A-4040 Linz, Austria
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria
| |
Collapse
|
3
|
Zhang F, Kovalick K, Raghavendra A, Soltanian-Zadeh S, Farsiu S, Hammer DX, Liu Z. In vivo imaging of human retinal ganglion cells using optical coherence tomography without adaptive optics. BIOMEDICAL OPTICS EXPRESS 2024; 15:4675-4688. [PMID: 39346995 PMCID: PMC11427184 DOI: 10.1364/boe.533249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024]
Abstract
Retinal ganglion cells play an important role in human vision, and their degeneration results in glaucoma and other neurodegenerative diseases. Imaging these cells in the living human retina can greatly improve the diagnosis and treatment of glaucoma. However, owing to their translucent soma and tight packing arrangement within the ganglion cell layer (GCL), successful imaging has only been achieved with sophisticated research-grade adaptive optics (AO) systems. For the first time we demonstrate that GCL somas can be resolved and cell morphology can be quantified using non-AO optical coherence tomography (OCT) devices with optimal parameter configuration and post-processing.
Collapse
Affiliation(s)
- Furu Zhang
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Katherine Kovalick
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Achyut Raghavendra
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
4
|
Furieri T, Bassi A, Bonora S. Large field of view aberrations correction with deformable lenses and multi conjugate adaptive optics. JOURNAL OF BIOPHOTONICS 2023; 16:e202300104. [PMID: 37556187 DOI: 10.1002/jbio.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
Optical microscopes can have limited resolution due to aberrations caused by samples and sample holders. Using deformable mirrors and wavefront sensorless optimization algorithms can correct these aberrations, but the correction is limited to a small area of the field of view. This study presents an adaptive optics method that uses a series of plug-and-play deformable lenses for large field of view wavefront correction. A direct wavefront measurement method using the spinning sub-pupil aberration measurement technique is combined with correction based on the deformable lenses. Experimental results using fluorescence microscopy with a wide field and a light sheet fluorescence microscope show that the proposed method can achieve detection and correction over an extended field of view with a compact transmissive module placed in the detection path of the microscope. This method could improve the resolution and accuracy of imaging in a variety of fields, including biology and materials science.
Collapse
Affiliation(s)
- T Furieri
- Institute of Photonics and Nanotechnology, National Council of Research of Italy, Padova, Italy
- Department of Information Engineering, University of Padova, Padova, Italy
| | - A Bassi
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - S Bonora
- Institute of Photonics and Nanotechnology, National Council of Research of Italy, Padova, Italy
| |
Collapse
|
5
|
Williams DR, Burns SA, Miller DT, Roorda A. Evolution of adaptive optics retinal imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:1307-1338. [PMID: 36950228 PMCID: PMC10026580 DOI: 10.1364/boe.485371] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 05/02/2023]
Abstract
This review describes the progress that has been achieved since adaptive optics (AO) was incorporated into the ophthalmoscope a quarter of a century ago, transforming our ability to image the retina at a cellular spatial scale inside the living eye. The review starts with a comprehensive tabulation of AO papers in the field and then describes the technological advances that have occurred, notably through combining AO with other imaging modalities including confocal, fluorescence, phase contrast, and optical coherence tomography. These advances have made possible many scientific discoveries from the first maps of the topography of the trichromatic cone mosaic to exquisitely sensitive measures of optical and structural changes in photoreceptors in response to light. The future evolution of this technology is poised to offer an increasing array of tools to measure and monitor in vivo retinal structure and function with improved resolution and control.
Collapse
Affiliation(s)
- David R. Williams
- The Institute of Optics and the Center for
Visual Science, University of Rochester,
Rochester NY, USA
| | - Stephen A. Burns
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Donald T. Miller
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and
Vision Science, University of California at Berkeley, Berkeley CA, USA
| |
Collapse
|
6
|
Liu Z, Zhang F, Zucca K, Agrawal A, Hammer DX. Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina. BIOMEDICAL OPTICS EXPRESS 2022; 13:5860-5878. [PMID: 36733751 PMCID: PMC9872887 DOI: 10.1364/boe.462594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 05/02/2023]
Abstract
We describe the design and performance of a multimodal and multifunctional adaptive optics (AO) system that combines scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) for simultaneous retinal imaging at 13.4 Hz. The high-speed AO-OCT channel uses a 3.4 MHz Fourier-domain mode-locked (FDML) swept source. The system achieves exquisite resolution and sensitivity for pan-macular and transretinal visualization of retinal cells and structures while providing a functional assessment of the cone photoreceptors. The ultra-high speed also enables wide-field scans for clinical usability and angiography for vascular visualization. The FDA FDML-AO system is a powerful platform for studying various retinal and neurological diseases for vision science research, retina physiology investigation, and biomarker development.
Collapse
Affiliation(s)
- Zhuolin Liu
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Furu Zhang
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
- Co-first author
| | - Kelvy Zucca
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Anant Agrawal
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| |
Collapse
|
7
|
Multi-modal and multi-scale clinical retinal imaging system with pupil and retinal tracking. Sci Rep 2022; 12:9577. [PMID: 35688890 PMCID: PMC9187716 DOI: 10.1038/s41598-022-13631-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
We present a compact multi-modal and multi-scale retinal imaging instrument with an angiographic functional extension for clinical use. The system integrates scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT) and OCT angiography (OCTA) imaging modalities and provides multi-scale fields of view. For high resolution, and high lateral resolution in particular, cellular imaging correction of aberrations by adaptive optics (AO) is employed. The entire instrument has a compact design and the scanning head is mounted on motorized translation stages that enable 3D self-alignment with respect to the subject's eye by tracking the pupil position. Retinal tracking, based on the information provided by SLO, is incorporated in the instrument to compensate for retinal motion during OCT imaging. The imaging capabilities of the multi-modal and multi-scale instrument were tested by imaging healthy volunteers and patients.
Collapse
|
8
|
Shao W, Yi J. Non-interferometric volumetric imaging in living human retina by confocal oblique scanning laser ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3576-3592. [PMID: 35781976 PMCID: PMC9208584 DOI: 10.1364/boe.457408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional (3D) imaging of the human retina is instrumental in vision science and ophthalmology. While interferometric retinal imaging is well established by optical coherence tomography (OCT), non-interferometric volumetric imaging in the human retina has been challenging up to date. Here, we report confocal oblique scanning laser ophthalmoscopy (CoSLO) to fill that void and harness non-interferometric optical contrast in 3D. CoSLO decouples the illumination and detection by utilizing oblique laser scanning and oblique imaging to achieve ∼4x better axial resolution than conventional SLO. By combining remote focusing, CoSLO permits the acquisition of depth signals in parallel and over a large field of view. Confocal gating is introduced by a linear sensor array to improve the contrast and resolution. For the first time, we reported non-interferometric 3D human retinal imaging with >20° viewing angle, and revealed detailed features in the inner, outer retina, and choroid. CoSLO shows potential to be another useful technique by offering 3D non-interferometric contrasts.
Collapse
Affiliation(s)
- Wenjun Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, 21231, USA
| | - Ji Yi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, 21231, USA
| |
Collapse
|
9
|
Wang L, Fu R, Xu C, Xu M. Methods and applications of full-field optical coherence tomography: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220007VR. [PMID: 35596250 PMCID: PMC9122094 DOI: 10.1117/1.jbo.27.5.050901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 05/24/2023]
Abstract
SIGNIFICANCE Full-field optical coherence tomography (FF-OCT) enables en face views of scattering samples at a given depth with subcellular resolution, similar to biopsy without the need of sample slicing or other complex preparation. This noninvasive, high-resolution, three-dimensional (3D) imaging method has the potential to become a powerful tool in biomedical research, clinical applications, and other microscopic detection. AIM Our review provides an overview of the disruptive innovations and key technologies to further improve FF-OCT performance, promoting FF-OCT technology in biomedical and other application scenarios. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. Methods to improve performance of FF-OCT systems are reviewed, including advanced phase-shift approaches for imaging speed improvement, methods of denoising, artifact reduction, and aberration correction for imaging quality optimization, innovations for imaging flux expansion (field-of-view enlargement and imaging-depth-limit extension), new implementations for multimodality systems, and deep learning enhanced FF-OCT for information mining, etc. Finally, we summarize the application status and prospects of FF-OCT in the fields of biomedicine, materials science, security, and identification. RESULTS The most worth-expecting FF-OCT innovations include combining the technique of spatial modulation of optical field and computational optical imaging technology to obtain greater penetration depth, as well as exploiting endogenous contrast for functional imaging, e.g., dynamic FF-OCT, which enables noninvasive visualization of tissue dynamic properties or intracellular motility. Different dynamic imaging algorithms are compared using the same OCT data of the colorectal cancer organoid, which helps to understand the disadvantages and advantages of each. In addition, deep learning enhanced FF-OCT provides more valuable characteristic information, which is of great significance for auxiliary diagnosis and organoid detection. CONCLUSIONS FF-OCT has not been completely exploited and has substantial growth potential. By elaborating the key technologies, performance optimization methods, and application status of FF-OCT, we expect to accelerate the development of FF-OCT in both academic and industry fields. This renewed perspective on FF-OCT may also serve as a road map for future development of invasive 3D super-resolution imaging techniques to solve the problems of microscopic visualization detection.
Collapse
Affiliation(s)
- Ling Wang
- Hangzhou DianZi University, School of Automation, Hangzhou, China
- Key Laboratory of Medical Information and 3D Biological of Zhejiang Province, Hangzhou, China
| | - Rongzhen Fu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
| | - Chen Xu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
| | - Mingen Xu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
- Key Laboratory of Medical Information and 3D Biological of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Furieri T, Ancora D, Calisesi G, Morara S, Bassi A, Bonora S. Aberration measurement and correction on a large field of view in fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:262-273. [PMID: 35154869 PMCID: PMC8803008 DOI: 10.1364/boe.441810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
The aberrations induced by the sample and/or by the sample holder limit the resolution of optical microscopes. Wavefront correction can be achieved using a deformable mirror with wavefront sensorless optimization algorithms but, despite the complexity of these systems, the level of correction is often limited to a small area in the field of view of the microscope. In this work, we present a plug and play module for aberration measurement and correction. The wavefront correction is performed through direct wavefront reconstruction using the spinning-pupil aberration measurement and controlling a deformable lens in closed loop. The lens corrects the aberrations in the center of the field of view, leaving residual aberrations at the margins, that are removed by anisoplanatic deconvolution. We present experimental results obtained in fluorescence microscopy, with a wide field and a light sheet fluorescence microscope. These results indicate that detection and correction over the full field of view can be achieved with a compact transmissive module placed in the detection path of the fluorescence microscope.
Collapse
Affiliation(s)
- T. Furieri
- National Council of Research of Italy, Institute of Photonics and Nanotechnology, via Trasea 7, 35131, Padova, Italy
- University of Padova, Department of Information Engineering, Via Gradenigo 6, 35131, Padova, Italy
| | - D. Ancora
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - G. Calisesi
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - S. Morara
- National Council of Research of Italy, Institute of Neuroscience, via Vanvitelli 32, 20129, Milan, Italy
| | - A. Bassi
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - S. Bonora
- National Council of Research of Italy, Institute of Photonics and Nanotechnology, via Trasea 7, 35131, Padova, Italy
| |
Collapse
|
11
|
Brunner E, Shatokhina J, Shirazi MF, Drexler W, Leitgeb R, Pollreisz A, Hitzenberger CK, Ramlau R, Pircher M. Retinal adaptive optics imaging with a pyramid wavefront sensor. BIOMEDICAL OPTICS EXPRESS 2021; 12:5969-5990. [PMID: 34745716 PMCID: PMC8548025 DOI: 10.1364/boe.438915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 05/25/2023]
Abstract
The pyramid wavefront sensor (P-WFS) has replaced the Shack-Hartmann (SH-) WFS as the sensor of choice for high-performance adaptive optics (AO) systems in astronomy. Many advantages of the P-WFS, such as its adjustable pupil sampling and superior sensitivity, are potentially of great benefit for AO-supported imaging in ophthalmology as well. However, so far no high quality ophthalmic AO imaging was achieved using this novel sensor. Usually, a P-WFS requires modulation and high precision optics that lead to high complexity and costs of the sensor. These factors limit the competitiveness of the P-WFS with respect to other WFS devices for AO correction in visual science. Here, we present a cost-effective realization of AO correction with a non-modulated P-WFS based on standard components and apply this technique to human retinal in vivo imaging using optical coherence tomography (OCT). P-WFS based high quality AO imaging was successfully performed in 5 healthy subjects and smallest retinal cells such as central foveal cone photoreceptors are visualized. The robustness and versatility of the sensor is demonstrated in the model eye under various conditions and in vivo by high-resolution imaging of other structures in the retina using standard and extended fields of view. As a quality benchmark, the performance of conventional SH-WFS based AO was used and successfully met. This work may trigger a paradigm shift with respect to the wavefront sensor of choice for AO in ophthalmic imaging.
Collapse
Affiliation(s)
- Elisabeth Brunner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Julia Shatokhina
- Johann Radon Institute for Computational and Applied Mathematics, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Muhammad Faizan Shirazi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Ronny Ramlau
- Johann Radon Institute for Computational and Applied Mathematics, Altenbergerstrasse 69, A-4040 Linz, Austria
- Johannes Kepler University Linz, Industrial Mathematics Institute, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
12
|
Pandiyan VP, Jiang X, Kuchenbecker JA, Sabesan R. Reflective mirror-based line-scan adaptive optics OCT for imaging retinal structure and function. BIOMEDICAL OPTICS EXPRESS 2021; 12:5865-5880. [PMID: 34692221 PMCID: PMC8515964 DOI: 10.1364/boe.436337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 05/06/2023]
Abstract
Line-scan OCT incorporated with adaptive optics (AO) offers high resolution, speed, and sensitivity for imaging retinal structure and function in vivo. Here, we introduce its implementation with reflective mirror-based afocal telescopes, optimized for imaging light-induced retinal activity (optoretinography) and weak retinal reflections at the cellular scale. A non-planar optical design was followed based on previous recommendations with key differences specific to a line-scan geometry. The three beam paths fundamental to an OCT system -illumination/sample, detection, and reference- were modeled in Zemax optical design software to yield theoretically diffraction-limited performance over a 2.2 deg. field-of-view and 1.5 D vergence range at the eye's pupil. The performance for imaging retinal structure was exemplified by cellular-scale visualization of retinal ganglion cells, macrophages, foveal cones, and rods in human observers. The performance for functional imaging was exemplified by resolving the light-evoked optical changes in foveal cone photoreceptors where the spatial resolution was sufficient for cone spectral classification at an eccentricity 0.3 deg. from the foveal center. This enabled the first in vivo demonstration of reduced S-cone (short-wavelength cone) density in the human foveola, thus far observed only in ex vivo histological preparations. Together, the feasibility for high resolution imaging of retinal structure and function demonstrated here holds significant potential for basic science and translational applications.
Collapse
Affiliation(s)
- Vimal Prabhu Pandiyan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Co-first authors with equal contribution
| | - Xiaoyun Jiang
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Co-first authors with equal contribution
| | - James A Kuchenbecker
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| |
Collapse
|
13
|
Abstract
Adaptive optics (AO) is a technique that corrects for optical aberrations. It was originally proposed to correct for the blurring effect of atmospheric turbulence on images in ground-based telescopes and was instrumental in the work that resulted in the Nobel prize-winning discovery of a supermassive compact object at the centre of our galaxy. When AO is used to correct for the eye's imperfect optics, retinal changes at the cellular level can be detected, allowing us to study the operation of the visual system and to assess ocular health in the microscopic domain. By correcting for sample-induced blur in microscopy, AO has pushed the boundaries of imaging in thick tissue specimens, such as when observing neuronal processes in the brain. In this primer, we focus on the application of AO for high-resolution imaging in astronomy, vision science and microscopy. We begin with an overview of the general principles of AO and its main components, which include methods to measure the aberrations, devices for aberration correction, and how these components are linked in operation. We present results and applications from each field along with reproducibility considerations and limitations. Finally, we discuss future directions.
Collapse
|
14
|
Mecê P, Groux K, Scholler J, Thouvenin O, Fink M, Grieve K, Boccara C. Coherence gate shaping for wide field high-resolution in vivo retinal imaging with full-field OCT. BIOMEDICAL OPTICS EXPRESS 2020; 11:4928-4941. [PMID: 33014591 PMCID: PMC7510855 DOI: 10.1364/boe.400522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 05/05/2023]
Abstract
Allying high-resolution with a large field-of-view (FOV) is of great importance in the fields of biology and medicine, but it is particularly challenging when imaging non-flat living samples such as the human retina. Indeed, high-resolution is normally achieved with adaptive optics (AO) and scanning methods, which considerably reduce the useful FOV and increase the system complexity. An alternative technique is time-domain full-field optical coherence tomography (FF-OCT), which has already shown its potential for in-vivo high-resolution retinal imaging. Here, we introduce coherence gate shaping for FF-OCT, to optically shape the coherence gate geometry to match the sample curvature, thus achieving a larger FOV than previously possible. Using this instrument, we obtained high-resolution images of living human photoreceptors close to the foveal center without AO and with a 1 mm × 1 mm FOV in a single shot. This novel advance enables the extraction of photoreceptor-based biomarkers with ease and spatiotemporal monitoring of individual photoreceptors. We compare our findings with AO-assisted ophthalmoscopes, highlighting the potential of FF-OCT, as a compact system, to become a routine clinical imaging technique.
Collapse
Affiliation(s)
- Pedro Mecê
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Kassandra Groux
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Jules Scholler
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Olivier Thouvenin
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Kate Grieve
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France
- Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012, France
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| |
Collapse
|
15
|
Shirazi MF, Brunner E, Laslandes M, Pollreisz A, Hitzenberger CK, Pircher M. Visualizing human photoreceptor and retinal pigment epithelium cell mosaics in a single volume scan over an extended field of view with adaptive optics optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:4520-4535. [PMID: 32923061 PMCID: PMC7449740 DOI: 10.1364/boe.393906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
Abstract
Using adaptive optics optical coherence tomography, human photoreceptors and retinal pigment epithelium (RPE) cells are typically visualized on a small field of view of ∼1° to 2°. In addition, volume averaging is required for visualizing the RPE cell mosaic. To increase the imaging area, we introduce a lens based spectral domain AO-OCT system that shows low aberrations within an extended imaging area of 4°×4° while maintaining a high (theoretical) transverse resolution (at >7 mm pupil diameter) in the order of 2 µm. A new concept for wavefront sensing is introduced that uses light mainly originating from the RPE layer and yields images of the RPE cell mosaic in a single volume acquisition. The capability of the instrument for in vivo imaging is demonstrated by visualizing various cell structures within the posterior retinal layers over an extended field of view.
Collapse
Affiliation(s)
- Muhammad Faizan Shirazi
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Elisabeth Brunner
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Marie Laslandes
- ALPAO 727 rue Aristide Bergès 38330
Montbonnot-Saint-Martin, France
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry,
Medical University of Vienna, Vienna, Waehringer Guertel 18-20, A-1090
Vienna, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| |
Collapse
|
16
|
Beykin G, Norcia AM, Srinivasan VJ, Dubra A, Goldberg JL. Discovery and clinical translation of novel glaucoma biomarkers. Prog Retin Eye Res 2020; 80:100875. [PMID: 32659431 DOI: 10.1016/j.preteyeres.2020.100875] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Glaucoma and other optic neuropathies are characterized by progressive dysfunction and loss of retinal ganglion cells and their axons. Given the high prevalence of glaucoma-related blindness and the availability of treatment options, improving the diagnosis and precise monitoring of progression in these conditions is paramount. Here we review recent progress in the development of novel biomarkers for glaucoma in the context of disease pathophysiology and we propose future steps for the field, including integration of exploratory biomarker outcomes into prospective therapeutic trials. We anticipate that, when validated, some of the novel glaucoma biomarkers discussed here will prove useful for clinical diagnosis and prediction of progression, as well as monitoring of clinical responses to standard and investigational therapies.
Collapse
Affiliation(s)
- Gala Beykin
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| | - Anthony M Norcia
- Department of Psychology, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA.
| | - Vivek J Srinivasan
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA; Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, 4610 X St, Sacramento, CA, 96817, USA.
| | - Alfredo Dubra
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| |
Collapse
|
17
|
Shao W, Song W, Yi J. Is oblique scanning laser ophthalmoscope applicable to human ocular optics? A feasibility study using an eye model for volumetric imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e201960174. [PMID: 32101361 PMCID: PMC7278210 DOI: 10.1002/jbio.201960174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/02/2020] [Accepted: 02/22/2020] [Indexed: 05/11/2023]
Abstract
Oblique scanning laser ophthalmoscopy (oSLO) is a novel imaging modality to provide volumetric retinal imaging without depth sectioning over a large field of view (FOV). It has been successfully demonstrated in vivo in rodent eyes for volumetric fluorescein angiography (vFA). However, engineering oSLO for human retinal imaging is challenging because of the low numerical aperture (NA) of human ocular optics. To overcome this challenge, we implement optical designs to (a) increase the angle of the intermediate image under Scheimpflug condition, and (b) expand the magnification in the depth dimension with cylindrical lens to enable sufficient sampling density. In addition, we adopt a scanning-and-descaning strategy, resulting in a compact oSLO system. We experimentally show that the current setup can achieve a FOV of ~3 × 6 × 0.8 mm3 , and the transverse and axial resolutions of 7 and 41 μm, respectively. This feasibility study serves an important step for future in vivo human retinal imaging.
Collapse
Affiliation(s)
- Wenjun Shao
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Weiye Song
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Ji Yi
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Electric and Computer Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
18
|
Gill JS, Moosajee M, Dubis AM. Cellular imaging of inherited retinal diseases using adaptive optics. Eye (Lond) 2019; 33:1683-1698. [PMID: 31164730 PMCID: PMC7002587 DOI: 10.1038/s41433-019-0474-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Adaptive optics (AO) is an insightful tool that has been increasingly applied to existing imaging systems for viewing the retina at a cellular level. By correcting for individual optical aberrations, AO offers an improvement in transverse resolution from 10-15 μm to ~2 μm, enabling assessment of individual retinal cell types. One of the settings in which its utility has been recognised is that of the inherited retinal diseases (IRDs), the genetic and clinical heterogeneity of which warrants better cellular characterisation. In this review, we provide a summary of the basic principles of AO, its integration into multiple retinal imaging modalities and its clinical applications, focusing primarily on IRDs. Furthermore, we present a comprehensive summary of AO-based cellular findings in IRDs according to their associated disease-causing genes.
Collapse
Affiliation(s)
- Jasdeep S Gill
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Trust and UCL Institute of Ophthalmology, 162 City Road, London, EC1V 9PD, UK
- Great Ormond Street Hospital for Children, Great Ormond Street, London, WC1N 3JH, UK
| | - Adam M Dubis
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Trust and UCL Institute of Ophthalmology, 162 City Road, London, EC1V 9PD, UK.
| |
Collapse
|
19
|
Collini M, Radaelli F, Sironi L, Ceffa NG, D’Alfonso L, Bouzin M, Chirico G. Adaptive optics microspectrometer for cross-correlation measurement of microfluidic flows. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-15. [PMID: 30816029 PMCID: PMC6987636 DOI: 10.1117/1.jbo.24.2.025004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/04/2018] [Indexed: 05/17/2023]
Abstract
Mapping flows in vivo is essential for the investigation of cardiovascular pathologies in animal models. The limitation of optical-based methods, such as space-time cross correlation, is the scattering of light by the connective and fat components and the direct wave front distortion by large inhomogeneities in the tissue. Nonlinear excitation of the sample fluorescence helps us by reducing light scattering in excitation. However, there is still a limitation on the signal-background due to the wave front distortion. We develop a diffractive optical microscope based on a single spatial light modulator (SLM) with no movable parts. We combine the correction of wave front distortions to the cross-correlation analysis of the flow dynamics. We use the SLM to shine arbitrary patterns of spots on the sample, to correct their optical aberrations, to shift the aberration corrected spot array on the sample for the collection of fluorescence images, and to measure flow velocities from the cross-correlation functions computed between couples of spots. The setup and the algorithms are tested on various microfluidic devices. By applying the adaptive optics correction algorithm, it is possible to increase up to 5 times the signal-to-background ratio and to reduce approximately of the same ratio the uncertainty of the flow speed measurement. By working on grids of spots, we can correct different aberrations in different portions of the field of view, a feature that allows for anisoplanatic aberrations correction. Finally, being more efficient in the excitation, we increase the accuracy of the speed measurement by employing a larger number of spots in the grid despite the fact that the two-photon excitation efficiency scales as the fourth power of this number: we achieve a twofold decrease of the uncertainty and a threefold increase of the accuracy in the evaluation of the flow speed.
Collapse
Affiliation(s)
- Maddalena Collini
- University of Milano-Bicocca, Department of Physics, Milan, Italy
- University of Milano-Bicocca, Nanomedicine Center, Milan, Italy
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Pozzuoli, Italy
| | | | - Laura Sironi
- University of Milano-Bicocca, Department of Physics, Milan, Italy
| | - Nicolo G. Ceffa
- University of Milano-Bicocca, Department of Physics, Milan, Italy
| | - Laura D’Alfonso
- University of Milano-Bicocca, Department of Physics, Milan, Italy
| | - Margaux Bouzin
- University of Milano-Bicocca, Department of Physics, Milan, Italy
| | - Giuseppe Chirico
- University of Milano-Bicocca, Department of Physics, Milan, Italy
- University of Milano-Bicocca, Nanomedicine Center, Milan, Italy
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Pozzuoli, Italy
- Address all correspondence to Giuseppe Chirico, E-mail:
| |
Collapse
|
20
|
Jung H, Liu T, Liu J, Huryn LA, Tam J. Combining multimodal adaptive optics imaging and angiography improves visualization of human eyes with cellular-level resolution. Commun Biol 2018; 1:189. [PMID: 30456310 PMCID: PMC6235967 DOI: 10.1038/s42003-018-0190-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Visualizing the cellular manifestation of disease has recently been aided by an increasing number of adaptive optics (AO)-based imaging modalities developed for the living human eye. However, simultaneous visualization of multiple, interacting cell types within a complete neural-epithelial-vascular complex has proven challenging. By incorporating AO with indocyanine green angiography, we demonstrate the possibility of imaging photoreceptors, retinal pigment epithelial cells, and choriocapillaris in the living human eye. Unexpectedly, we found that there was uptake of indocyanine green dye into the retinal pigment epithelial cells in the earliest phases of imaging, which formed the basis for devising a strategy to visualize the choriocapillaris. Our results expand the range of applications for an existing, FDA-approved, systemically injected fluorescent dye. The combined multimodal approach can be used to evaluate the complete outer retinal complex at the cellular level, a transformative step toward revealing the in vivo cellular status of neurodegenerative conditions and blinding diseases.
Collapse
Affiliation(s)
- HaeWon Jung
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jianfei Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laryssa A Huryn
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Impact of CMOS Pixel and Electronic Circuitry in the Performance of a Hartmann-Shack Wavefront Sensor. SENSORS 2018; 18:s18103282. [PMID: 30274297 PMCID: PMC6210534 DOI: 10.3390/s18103282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/17/2022]
Abstract
This work presents a numerical simulation of a Hartmann-Shack wavefront sensor (WFS) that assesses the impact of integrated electronic circuitry on the sensor performance, by evaluating a full detection chain encompassing wavefront sampling, photodetection, electronic circuitry and wavefront reconstruction. This platform links dedicated C algorithms for WFS to a SPICE circuit simulator for integrated electronics. The complete codes can be easily replaced in order to represent different detection or reconstruction methods, while the circuit simulator employs reliable models of either off-the-shelf circuit components or custom integrated circuit modules. The most relevant role of this platform is to enable the evaluation of the applicability and constraints of the focal plane of a given wavefront sensor prior to the actual fabrication of the detector chip. In this paper, we will present the simulation results for a Hartmann-Shack wavefront sensor with an orthogonal array of quad-cells (QC) integrated along with active-pixel (active-pixel sensor (APS)) circuitry and analog-to-digital converters (ADC) on a “complementary metal oxide semiconductor” (CMOS) process and deploying a modal wavefront reconstructor. This extended simulation capability for wavefront sensors enables the test and verification of different photosensitive and circuitry topologies for position-sensitive detectors combined with the simulation of sampling microlenses and reconstruction algorithms, with the goal of enhancing the accuracy in the prediction of the wavefront-sensor performance before a detector CMOS chip is actually fabricated.
Collapse
|
22
|
Coughlan MF, Goncharov AV. Nonpupil adaptive optics for visual simulation of a customized contact lens. APPLIED OPTICS 2018; 57:E57-E63. [PMID: 30117922 DOI: 10.1364/ao.57.000e57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
We present a method for determining the deformable mirror profile to simulate the optical effect of a customized contact lens in the central visual field. Using nonpupil-conjugated adaptive optics allows a wider field simulation compared to traditional pupil-conjugated adaptive optics. For a given contact lens, the mirror shape can be derived analytically using Fermat's principle of the stationary optical path or numerically using optimization in ray-tracing programs. An example of an aspheric contact lens simulation is given to illustrate the method, and the effect of eye misalignment with respect to the deformable mirror position is investigated. The optimal deformable mirror conjugation position is found to be near the posterior corneal surface. Chromatic aberration analysis is also presented, and our findings indicate that the polychromatic simulation quality is similar to that of the monochromatic case, even though the mirror is a reflective component. The limitations of a single continuous surface deformable mirror to mimic a contact lens are outlined, with some recommendations for improving the quality of simulation.
Collapse
|
23
|
Cunefare D, Langlo CS, Patterson EJ, Blau S, Dubra A, Carroll J, Farsiu S. Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia. BIOMEDICAL OPTICS EXPRESS 2018; 9:3740-3756. [PMID: 30338152 PMCID: PMC6191607 DOI: 10.1364/boe.9.003740] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 05/18/2023]
Abstract
Fast and reliable quantification of cone photoreceptors is a bottleneck in the clinical utilization of adaptive optics scanning light ophthalmoscope (AOSLO) systems for the study, diagnosis, and prognosis of retinal diseases. To-date, manual grading has been the sole reliable source of AOSLO quantification, as no automatic method has been reliably utilized for cone detection in real-world low-quality images of diseased retina. We present a novel deep learning based approach that combines information from both the confocal and non-confocal split detector AOSLO modalities to detect cones in subjects with achromatopsia. Our dual-mode deep learning based approach outperforms the state-of-the-art automated techniques and is on a par with human grading.
Collapse
Affiliation(s)
- David Cunefare
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Christopher S. Langlo
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Emily J. Patterson
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sarah Blau
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|