1
|
Li X, Fan Z, Su J, Wang Y, Shi S, Qiu Q. Linearity improvement of chirped distributed feedback laser diodes based on an analog electro-optical phase-locked loop. OPTICS EXPRESS 2025; 33:15149-15158. [PMID: 40219432 DOI: 10.1364/oe.551333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
A linearity improvement method for frequency-modulated distributed feedback laser diodes (DFB-LD) is proposed and demonstrated based on a pre-distortion signal and an electro-optical phase-locked loop (EO-PLL). The pre-distortion signal is used to reduce the deterministic frequency errors. The EO-PLL is further used to suppress the stochastic frequency noise and enhance the coherence of the DFB-LD. In the EO-PLL, the DFB-LD output is transmitted through a Mach-Zehnder interferometer (MZI) and detected by a photodetector (PD) to get a beat note signal, which denotes the nonlinearity of the chirp. A mixing signal, achieved by mixing the beat note signal with a fixed frequency reference signal, is then filtered by a proportional integral filter (PIF) and feedback to the DFB-LD to reduce the stochastic frequency noise in the chirp. The EO-PLL bandwidth can be adjusted by tuning the PIF response. Consequently, a linear chirp optical signal with an enhanced linearity is generated from the DFB-LD. In the experiment, 788- and 321-time linearity improvements are implemented when the loop bandwidths are about 100 and 550 kHz, respectively. Correspondingly, residual frequency errors of 1.65 and 4.85 MHz at 52- and 450-THz/s chirp rates are obtained.
Collapse
|
2
|
Cai Z, Wang Z, Wei Z, Shi B, Sun W, Yang C, Liu J, Bao C. A microcomb-empowered Fourier domain mode-locked LIDAR. SCIENCE ADVANCES 2025; 11:eads9590. [PMID: 39908373 DOI: 10.1126/sciadv.ads9590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Light detection and ranging (LIDAR) has emerged as an indispensable tool in autonomous technology. Among its various techniques, frequency-modulated continuous wave (FMCW) LIDAR stands out due to its capability to operate with ultralow return power, immunity to unwanted light, and simultaneous acquisition of distance and velocity. However, achieving a rapid update rate with submicrometer precision remains a challenge for FMCW LIDARs. Here, we present such a LIDAR with a sub-10-nanometer precision and a 24.6-kilohertz update rate by combining a broadband Fourier domain mode-locked (FDML) laser with a silicon nitride soliton microcomb. An ultrahigh-frequency chirp rate up to 320 petahertz per second is linearized by a 50-gigahertz microcomb to reach this performance. Our theoretical analysis also contributes to resolving the challenge of FMCW velocity measurements with nonlinear frequency sweeps and enables us to realize velocity measurement with an uncertainty below 0.4 millimeter per second. Our work shows how microcombs can unlock the potential of ultrafast frequency sweeping lasers.
Collapse
Affiliation(s)
- Zhaoyu Cai
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Zihao Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Ziqi Wei
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Baoqi Shi
- International Quantum Academy, Shenzhen 518048, China
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Sun
- International Quantum Academy, Shenzhen 518048, China
| | - Changxi Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Junqiu Liu
- International Quantum Academy, Shenzhen 518048, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chengying Bao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Frank S, Reiter GS, Leingang O, Fuchs P, Coulibaly LM, Mares V, Bogunovic H, Schmidt-Erfurth U. ADVANCES IN PHOTORECEPTOR AND RETINAL PIGMENT EPITHELIUM QUANTIFICATIONS IN INTERMEDIATE AGE-RELATED MACULAR DEGENERATION: High-Res Versus Standard SPECTRALIS Optical Coherence Tomography. Retina 2024; 44:1351-1359. [PMID: 39047196 PMCID: PMC11280440 DOI: 10.1097/iae.0000000000004118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
PURPOSE In this study, differences in retinal feature visualization of high-resolution optical coherence tomography (OCT) devices were investigated with different axial resolutions in quantifications of retinal pigment epithelium and photoreceptors (PRs) in intermediate age-related macular degeneration. METHODS Patients were imaged with standard SPECTRALIS HRA + OCT and the investigational High-Res OCT device (both by Heidelberg Engineering, Heidelberg, Germany). Drusen, retinal pigment epithelium, and PR layers were segmented using validated artificial intelligence-based algorithms followed by manual corrections. Thickness and drusen maps were computed for all patients. Loss and thickness measurements were compared between devices, drusen versus nondrusen areas, and early treatment diabetic retinopathy study subfields using mixed-effects models. RESULTS Thirty-three eyes from 28 patients with intermediate age-related macular degeneration were included. Normalized PR integrity loss was significantly higher with 4.6% for standard OCT compared with 2.5% for High-Res OCT. The central and parafoveal PR integrity loss was larger than the perifoveal loss (P < 0.05). Photoreceptor thickness was increased on High-Res OCT and in nondrusen regions (P < 0.001). Retinal pigment epithelium appeared thicker on standard OCT and above drusen (P < 0.01). CONCLUSION Our study shows that High-Res OCT is able to identify the condition of investigated layers in intermediate age-related macular degeneration with higher precision. This improved in vivo imaging technology might promote our understanding of the pathophysiology and progression of age-related macular degeneration.
Collapse
Affiliation(s)
- Sophie Frank
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria;
| | - Gregor Sebastian Reiter
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria;
| | - Oliver Leingang
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria;
| | - Philipp Fuchs
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria;
| | - Leonard Mana Coulibaly
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria;
| | - Virginia Mares
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria;
- Department of Ophthalmology, Federal University of Minas Gerais, Belo Horizonte, Brazil; and
| | - Hrvoje Bogunovic
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria;
- Christian Doppler Lab for Artificial Intelligence in Retina, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria.
| | - Ursula Schmidt-Erfurth
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria;
| |
Collapse
|
4
|
Zeppieri M, Marsili S, Enaholo ES, Shuaibu AO, Uwagboe N, Salati C, Spadea L, Musa M. Optical Coherence Tomography (OCT): A Brief Look at the Uses and Technological Evolution of Ophthalmology. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2114. [PMID: 38138217 PMCID: PMC10744394 DOI: 10.3390/medicina59122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Medical imaging is the mainstay of clinical diagnosis and management. Optical coherence tomography (OCT) is a non-invasive imaging technology that has revolutionized the field of ophthalmology. Since its introduction, OCT has undergone significant improvements in image quality, speed, and resolution, making it an essential diagnostic tool for various ocular pathologies. OCT has not only improved the diagnosis and management of ocular diseases but has also found applications in other fields of medicine. In this manuscript, we provide a brief overview of the history of OCT, its current uses and diagnostic capabilities to assess the posterior segment of the eye, and the evolution of this technology from time-domain (TD) to spectral-domain (SD) and swept-source (SS). This brief review will also discuss the limitations, advantages, disadvantages, and future perspectives of this technology in the field of ophthalmology.
Collapse
Affiliation(s)
- Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Stefania Marsili
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA
| | - Ehimare Samuel Enaholo
- Centre for Sight Africa, Nkpor, Onitsha 434109, Nigeria
- Africa Eye Laser Centre Ltd., Benin 300102, Nigeria
| | | | - Ngozi Uwagboe
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| |
Collapse
|
5
|
Klufts M, Jiménez AM, Lotz S, Bashir MA, Pfeiffer T, Mlynek A, Wieser W, Chamorovskiy A, Bradu A, Podoleanu A, Huber R. 828 kHz retinal imaging with an 840 nm Fourier domain mode locked laser. BIOMEDICAL OPTICS EXPRESS 2023; 14:6493-6508. [PMID: 38420314 PMCID: PMC10898573 DOI: 10.1364/boe.504302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024]
Abstract
This paper presents a Fourier domain mode locked (FDML) laser centered around 840 nm. It features a bidirectional sweep repetition rate of 828 kHz and a spectral bandwidth of 40 nm. An axial resolution of ∼9.9 µm in water and a 1.4 cm sensitivity roll-off are achieved. Utilizing a complex master-slave (CMS) recalibration method and due to a sufficiently high sensitivity of 84.6 dB, retinal layers of the human eye in-vivo can be resolved during optical coherence tomography (OCT) examination. The developed FDML laser enables acquisition rates of 3D-volumes with a size of 200 × 100 × 256 voxels in under 100 milliseconds. Detailed information on the FDML implementation, its challenging design tasks, and OCT images obtained with the laser are presented in this paper.
Collapse
Affiliation(s)
- Marie Klufts
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| | | | - Simon Lotz
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| | | | | | | | | | | | - Adrian Bradu
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Adrian Podoleanu
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Robert Huber
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
6
|
Cuartas-Vélez C, Middelkamp HHT, van der Meer AD, van den Berg A, Bosschaart N. Tracking the dynamics of thrombus formation in a blood vessel-on-chip with visible-light optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:5642-5655. [PMID: 38021142 PMCID: PMC10659801 DOI: 10.1364/boe.500434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 12/01/2023]
Abstract
Thrombus formation is a physiological response to damage in a blood vessel that relies on a complex interplay of platelets, coagulation factors, immune cells, and the vessel wall. The dynamics of thrombus formation are essential for a deeper understanding of many disease processes, like bleeding, wound healing, and thrombosis. However, monitoring thrombus formation is challenging due to the limited imaging options available to analyze flowing blood. In this work, we use a visible-light optical coherence tomography (vis-OCT) system to monitor the dynamic process of the formation of thrombi in a microfluidic blood vessel-on-chip (VoC) device. Inside the VoC, thrombi form in a channel lined with a monolayer of endothelial cells and perfused by human whole blood. We show that the correlation of the vis-OCT signal can be utilized as a marker for thrombus formation. By thresholding the correlation during thrombus formation, we track and quantify the growth of the thrombi over time. We validate our results with fluorescence microscopic imaging of fibrin and platelet markers at the end of the blood perfusion assay. In conclusion, we demonstrate that the correlation of the vis-OCT signal can be used to visualize both the spatial and temporal behavior of the thrombus formation in flowing human whole blood.
Collapse
Affiliation(s)
- Carlos Cuartas-Vélez
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Heleen H. T. Middelkamp
- BIOS/Lab on a Chip, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands
| | - Andries D. van der Meer
- Applied Stem Cell Technologies, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Albert van den Berg
- BIOS/Lab on a Chip, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands
| | - Nienke Bosschaart
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
7
|
Sun X, Yamashita S, Set S. Fast wavelength-swept polarization maintaining all-fiber mode-locked laser based on a piezo-stretched fiber Lyot filter. OPTICS EXPRESS 2023; 31:12837-12846. [PMID: 37157435 DOI: 10.1364/oe.485613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We demonstrate for the first time a strain-controlled all polarization-maintaining (PM) fiber Lyot filter based on a piezoelectric lead zirconate titanate (PZT) fiber stretcher. This filter is implemented in an all-PM mode-locked fiber laser to serve as a novel wavelength-tuning mechanism for fast wavelength sweeping. The center wavelength of the output laser can be tuned across a range from 1540 nm to 1567 nm linearly. And the strain sensitivity achieved in the proposed all-PM fiber Lyot filter is 0.052nm/με, which is 43 times higher than that achievable by other strain-controlled filters such as a fiber Bragg grating filter (0.0012nm/με). Wavelength-swept rates up to 500 Hz and wavelength tuning speeds up to 13,000 nm/s are demonstrated, which is hundreds of times faster than what is attainable with conventional sub-picosecond mode-locked lasers based on mechanical tuning methods. This highly repeatable and swift wavelength-tunable all-PM fiber mode-locked laser is a promising source for applications requiring fast wavelength tunability, such as coherent Raman microscopy.
Collapse
|
8
|
Output Stabilization of Wavelength-Swept Laser Based on Closed-Loop Control of Fabry-Pérot Tunable Wavelength Filter for Fiber-Optic Sensors. SENSORS 2022; 22:s22124337. [PMID: 35746118 PMCID: PMC9230916 DOI: 10.3390/s22124337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 01/18/2023]
Abstract
The output of a wavelength-swept laser (WSL) based on a fiber Fabry–Pérot tunable filter (FFP-TF) tends to shift the peak wavelength due to external temperature or heat generated by the FFP-TF itself. Therefore, when measuring the output of WSL for a long time, it is very difficult to accurately measure a signal in the temporal domain corresponding to a specific wavelength of the output of the WSL. If the wavelength variation of the WSL output can be predicted through the peak time information of the forward scan or the backward scan from the WSL, the variation of the peak wavelength can be compensated for by adjusting the offset voltage applied to the FFP-TF. This study presents a successful stabilization method for peak wavelength variation in WSLs by adjusting the offset voltage of the FFP-TF with closed-loop control. The closed-loop control is implemented by measuring the deviation in the WSL peak position in the temporal domain using the trigger signal of the function generator. The feedback repetition rate for WSL stabilization was approximately 0.2 s, confirming that the WSL output and the peak position for the fiber Bragg grating (FBG) reflection spectrum were kept constant within ±7 μs at the maximum when the stabilization loop was applied. The standard deviations of WSL output and reflection peak positions were 1.52 μs and 1.59 μs, respectively. The temporal and spectral domains have a linear relationship; the ±7 μs maximum variation of the peak position corresponded to ±0.035 nm of the maximum wavelength variation in the spectral domain. The proposed WSL system can be used as a light source for temperature or strain-dependent sensors as it compensates for the WSL wavelength variation in applications that do not require a fast scanning rate.
Collapse
|
9
|
Huang D, Shi Y, Li F, Wai PKA. Fourier Domain Mode Locked Laser and Its Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:3145. [PMID: 35590839 PMCID: PMC9105910 DOI: 10.3390/s22093145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The sweep rate of conventional short-cavity lasers with an intracavity-swept filter is limited by the buildup time of laser signals from spontaneous emissions. The Fourier domain mode-locked (FDML) laser was proposed to overcome the limitations of buildup time by inserting a long fiber delay in the cavity to store the whole swept signal and has attracted much interest in both theoretical and experimental studies. In this review, the theoretical models to understand the dynamics of the FDML laser and the experimental techniques to realize high speed, wide sweep range, long coherence length, high output power and highly stable swept signals in FDML lasers will be discussed. We will then discuss the applications of FDML lasers in optical coherence tomography (OCT), fiber sensing, precision measurement, microwave generation and nonlinear microscopy.
Collapse
Affiliation(s)
- Dongmei Huang
- Photonics Research Institute, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (D.H.); (Y.S.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
| | - Yihuan Shi
- Photonics Research Institute, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (D.H.); (Y.S.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
| | - Feng Li
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
- Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - P. K. A. Wai
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
- Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
10
|
Okawa Y, Hotate K. Computed tomography for distributed Brillouin sensing. OPTICS EXPRESS 2021; 29:35067-35077. [PMID: 34808950 DOI: 10.1364/oe.435320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
A method to reconstruct the spatial distribution of Brillouin gain spectrum from its Radon transform is proposed, which is a type of optical computed tomography. To verify the concept, an experiment was performed on distributed Brillouin fiber sensing, which succeeded in detecting a 55-cm strain section along a 10-m fiber. The experimental system to obtain the Radon transform of the Brillouin gain spectrum is based on a Brillouin optical correlation-domain analysis with a linear frequency-modulated continuous-wave laser. Combining distributed fiber sensing with computed tomography, this method can realize a high signal-to-noise ratio Brillouin sensing.
Collapse
|
11
|
Münter M, Pieper M, Kohlfaerber T, Bodenstorfer E, Ahrens M, Winter C, Huber R, König P, Hüttmann G, Schulz-Hildebrandt H. Microscopic optical coherence tomography (mOCT) at 600 kHz for 4D volumetric imaging and dynamic contrast. BIOMEDICAL OPTICS EXPRESS 2021; 12:6024-6039. [PMID: 34745719 PMCID: PMC8547980 DOI: 10.1364/boe.425001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 05/11/2023]
Abstract
Volumetric imaging of dynamic processes with microscopic resolution holds a huge potential in biomedical research and clinical diagnosis. Using supercontinuum light sources and high numerical aperture (NA) objectives, optical coherence tomography (OCT) achieves microscopic resolution and is well suited for imaging cellular and subcellular structures of biological tissues. Currently, the imaging speed of microscopic OCT (mOCT) is limited by the line-scan rate of the spectrometer camera and ranges from 30 to 250 kHz. This is not fast enough for volumetric imaging of dynamic processes in vivo and limits endoscopic application. Using a novel CMOS camera, we demonstrate fast 3-dimensional OCT imaging with 600,000 A-scans/s at 1.8 µm axial and 1.1 µm lateral resolution. The improved speed is used for imaging of ciliary motion and particle transport in ex vivo mouse trachea. Furthermore, we demonstrate dynamic contrast OCT by evaluating the recorded volumes rather than en face planes or B-scans. High-speed volumetric mOCT will enable the correction of global tissue motion and is a prerequisite for applying dynamic contrast mOCT in vivo. With further increase in imaging speed and integration in flexible endoscopes, volumetric mOCT may be used to complement or partly replace biopsies.
Collapse
Affiliation(s)
- Michael Münter
- University of Lübeck,
Institute of Biomedical Optics,
Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum
Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Mario Pieper
- University of
Lübeck, Institute of Anatomy, Ratzeburger Allee 160,
23562 Lübeck, Germany
- Airway Research Center North
Member of the German Center for Lung Research, DZL,
22927 Großhansdorf, Germany
| | - Tabea Kohlfaerber
- Medizinisches Laserzentrum
Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Ernst Bodenstorfer
- Austrian Institute of
Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Martin Ahrens
- University of Lübeck,
Institute of Biomedical Optics,
Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Airway Research Center North
Member of the German Center for Lung Research, DZL,
22927 Großhansdorf, Germany
| | | | - Robert Huber
- University of Lübeck,
Institute of Biomedical Optics,
Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Peter König
- University of
Lübeck, Institute of Anatomy, Ratzeburger Allee 160,
23562 Lübeck, Germany
- Airway Research Center North
Member of the German Center for Lung Research, DZL,
22927 Großhansdorf, Germany
| | - Gereon Hüttmann
- University of Lübeck,
Institute of Biomedical Optics,
Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum
Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Airway Research Center North
Member of the German Center for Lung Research, DZL,
22927 Großhansdorf, Germany
| | - Hinnerk Schulz-Hildebrandt
- University of Lübeck,
Institute of Biomedical Optics,
Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum
Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Airway Research Center North
Member of the German Center for Lung Research, DZL,
22927 Großhansdorf, Germany
| |
Collapse
|
12
|
Lotz S, Grill C, Göb M, Draxinger W, Kolb JP, Huber R. Cavity length control for Fourier domain mode locked (FDML) lasers with µm precision. BIOMEDICAL OPTICS EXPRESS 2021; 12:2604-2616. [PMID: 34123491 PMCID: PMC8176810 DOI: 10.1364/boe.422898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
In highly dispersion compensated Fourier domain mode locked (FDML) lasers, an ultra-low noise operation can only be achieved by extremely precise and stable matching of the filter tuning period and light circulation time in the cavity. We present a robust and high precision closed-loop control algorithm and an actively cavity length controlled FDML laser. The cavity length control achieves a stability of ∼0.18 mHz at a sweep repetition rate of ∼418 kHz which corresponds to a ratio of 4×10-10. Furthermore, we prove that the rapid change of the cavity length has no negative impact on the quality of optical coherence tomography using the FDML laser as light source.
Collapse
Affiliation(s)
- Simon Lotz
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Christin Grill
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Madita Göb
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Wolfgang Draxinger
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Jan Philip Kolb
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Robert Huber
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| |
Collapse
|
13
|
Butler SM, Singaravelu PKJ, O'Faolain L, Hegarty SP. Long cavity photonic crystal laser in FDML operation using an akinetic reflective filter. OPTICS EXPRESS 2020; 28:38813-38821. [PMID: 33379441 DOI: 10.1364/oe.410525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
A novel configuration of a Fourier domain mode locked (FDML) laser based on silicon photonics platform is presented in this work that exploits the narrowband reflection spectrum of a photonic crystal (PhC) cavity resonator. Configured as a linear Fabry-Perot laser, forward biasing of a p-n junction on the PhC cavity allowed for thermal tuning of the spectrum. The modulation frequency applied to the reflector equalled the inverse roundtrip time of the long cavity resulting in stable FDML operation over the swept wavelength range. An interferometric phase measurement measured the sweeping instantaneous frequency of the laser. The silicon photonics platform has potential for very compact implementation, and the electro-optic modulation method opens the possibility of modulation speeds far beyond those of mechanical filters.
Collapse
|
14
|
A Novel Method of Measuring Instantaneous Frequency of an Ultrafast Frequency Modulated Continuous-Wave Laser. SENSORS 2020; 20:s20143834. [PMID: 32660043 PMCID: PMC7412386 DOI: 10.3390/s20143834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 01/11/2023]
Abstract
Ultrafast linear frequency modulated continuous-wave (FMCW) lasers are a special category of CW lasers. The linear FMCW laser is the light source for many sensing applications, especially for light detection and ranging (LiDAR). However, systems for the generation of high quality linear FMCW light are limited and diverse in terms of technical approaches and mechanisms. Due to a lack of characterization methods for linear FMCW lasers, it is difficult to compare and judge the generation systems in the same category. We propose a novel scheme for measuring the mapping relationship between instantaneous frequency and time of a FMCW laser based on a modified coherent optical spectrum analyzer (COSA) and digital signal processing (DSP) method. Our method has the potential to measure the instantaneous frequency of a FMCW laser at an unlimited sweep rate. In this paper, we demonstrate how to use this new method to precisely measure a FMCW laser at a large fast sweep rate of 5000 THz/s by both simulation and experiments. We find experimentally that the uncertainty of this method is less than 100 kHz and can be improved further if a frequency feedback servo system is introduced to stabilize the local CW laser.
Collapse
|
15
|
Fang Q, Frewer L, Zilkens R, Krajancich B, Curatolo A, Chin L, Foo KY, Lakhiani DD, Sanderson RW, Wijesinghe P, Anstie JD, Dessauvagie BF, Latham B, Saunders CM, Kennedy BF. Handheld volumetric manual compression-based quantitative microelastography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960196. [PMID: 32057188 DOI: 10.1002/jbio.201960196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 05/20/2023]
Abstract
Compression optical coherence elastography (OCE) typically requires a mechanical actuator to impart a controlled uniform strain to the sample. However, for handheld scanning, this adds complexity to the design of the probe and the actuator stroke limits the amount of strain that can be applied. In this work, we present a new volumetric imaging approach that utilizes bidirectional manual compression via the natural motion of the user's hand to induce strain to the sample, realizing compact, actuator-free, handheld compression OCE. In this way, we are able to demonstrate rapid acquisition of three-dimensional quantitative microelastography (QME) datasets of a tissue volume (6 × 6 × 1 mm3 ) in 3.4 seconds. We characterize the elasticity sensitivity of this freehand manual compression approach using a homogeneous silicone phantom and demonstrate comparable performance to a benchtop mounted, actuator-based approach. In addition, we demonstrate handheld volumetric manual compression-based QME on a tissue-mimicking phantom with an embedded stiff inclusion and on freshly excised human breast specimens from both mastectomy and wide local excision (WLE) surgeries. Tissue results are coregistered with postoperative histology, verifying the capability of our approach to measure the elasticity of tissue and to distinguish stiff tumor from surrounding soft benign tissue.
Collapse
Affiliation(s)
- Qi Fang
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Luke Frewer
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Renate Zilkens
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Division of Surgery, Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Brooke Krajancich
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Andrea Curatolo
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Optics and Biophotonics Group, Visual Instituto de Óptica "Daza de Valdés," Consejo Superior de Investigaciones Cientificas (IO, CSIC), Madrid, Spain
| | - Lixin Chin
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ken Y Foo
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Devina D Lakhiani
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Rowan W Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Philip Wijesinghe
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- School of Physics and Astronomy (SUPA), University of St Andrews, St Andrews, UK
| | - James D Anstie
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Benjamin F Dessauvagie
- PathWest, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Bruce Latham
- PathWest, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- The University of Notre Dame, Fremantle, Western Australia, Australia
| | - Christobel M Saunders
- Division of Surgery, Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Breast Centre, Fiona Stanley Hospital, 11 Robin Warren Drive, Murdoch, Western Australia, Australia
- Breast Clinic, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Western Australia, Australia
| |
Collapse
|
16
|
Karpf S, Riche CT, Di Carlo D, Goel A, Zeiger WA, Suresh A, Portera-Cailliau C, Jalali B. Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates. Nat Commun 2020; 11:2062. [PMID: 32346060 PMCID: PMC7188897 DOI: 10.1038/s41467-020-15618-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
Two-Photon Microscopy has become an invaluable tool for biological and medical research, providing high sensitivity, molecular specificity, inherent three-dimensional sub-cellular resolution and deep tissue penetration. In terms of imaging speeds, however, mechanical scanners still limit the acquisition rates to typically 10-100 frames per second. Here we present a high-speed non-linear microscope achieving kilohertz frame rates by employing pulse-modulated, rapidly wavelength-swept lasers and inertia-free beam steering through angular dispersion. In combination with a high bandwidth, single-photon sensitive detector, this enables recording of fluorescent lifetimes at speeds of 88 million pixels per second. We show high resolution, multi-modal - two-photon fluorescence and fluorescence lifetime (FLIM) - microscopy and imaging flow cytometry with a digitally reconfigurable laser, imaging system and data acquisition system. These high speeds should enable high-speed and high-throughput image-assisted cell sorting.
Collapse
Affiliation(s)
- Sebastian Karpf
- Department of Electrical Engineering and Computational Science, University of California, Los Angeles (UCLA), Los Angeles, CA-90095, USA.
- Institute of Biomedical Optics (BMO), University of Luebeck, 23562, Luebeck, Germany.
| | - Carson T Riche
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA-90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA-90095, USA
| | - Anubhuti Goel
- Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, CA-90095, USA
| | - William A Zeiger
- Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, CA-90095, USA
| | - Anand Suresh
- Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, CA-90095, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, CA-90095, USA
| | - Bahram Jalali
- Department of Electrical Engineering and Computational Science, University of California, Los Angeles (UCLA), Los Angeles, CA-90095, USA
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA-90095, USA
| |
Collapse
|
17
|
Ellebrecht DB, Latus S, Schlaefer A, Keck T, Gessert N. Towards an Optical Biopsy during Visceral Surgical Interventions. Visc Med 2020; 36:70-79. [PMID: 32355663 DOI: 10.1159/000505938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cancer will replace cardiovascular diseases as the most frequent cause of death. Therefore, the goals of cancer treatment are prevention strategies and early detection by cancer screening and ideal stage therapy. From an oncological point of view, complete tumor resection is a significant prognostic factor. Optical coherence tomography (OCT) and confocal laser microscopy (CLM) are two techniques that have the potential to complement intraoperative frozen section analysis as in vivo and real-time optical biopsies. Summary In this review we present both procedures and review the progress of evaluation for intraoperative application in visceral surgery. For visceral surgery, there are promising studies evaluating OCT and CLM; however, application during routine visceral surgical interventions is still lacking. Key Message OCT and CLM are not competing but complementary approaches of tissue analysis to intraoperative frozen section analysis. Although intraoperative application of OCT and CLM is at an early stage, they are two promising techniques of intraoperative in vivo and real-time tissue examination. Additionally, deep learning strategies provide a significant supplement for automated tissue detection.
Collapse
Affiliation(s)
- David Benjamin Ellebrecht
- LungenClinic Grosshansdorf, Department of Thoracic Surgery, Grosshansdorf, Germany.,University Medical Center Schleswig-Holstein, Campus Lübeck, Department of Surgery, Lübeck, Germany
| | - Sarah Latus
- Hamburg University of Technology, Institute of Medical Technology, Hamburg, Germany
| | - Alexander Schlaefer
- Hamburg University of Technology, Institute of Medical Technology, Hamburg, Germany
| | - Tobias Keck
- University Medical Center Schleswig-Holstein, Campus Lübeck, Department of Surgery, Lübeck, Germany
| | - Nils Gessert
- Hamburg University of Technology, Institute of Medical Technology, Hamburg, Germany
| |
Collapse
|
18
|
Si P, Honkala A, de la Zerda A, Smith BR. Optical Microscopy and Coherence Tomography of Cancer in Living Subjects. Trends Cancer 2020; 6:205-222. [PMID: 32101724 DOI: 10.1016/j.trecan.2020.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Intravital microscopy (IVM) and optical coherency tomography (OCT) are two powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. Recent advances in labeling and label-free techniques empower IVM and OCT for a wide range of preclinical and clinical cancer imaging, providing profound insights into the complex physiological, cellular, and molecular behaviors of tumors. Preclinical IVM and OCT have elucidated many otherwise inscrutable aspects of cancer biology, while clinical applications of IVM and OCT are revolutionizing cancer diagnosis and therapies. We review important progress in the fields of IVM and OCT for cancer imaging in living subjects, highlighting key technological developments and their emerging applications in fundamental cancer biology research and clinical oncology investigation.
Collapse
Affiliation(s)
- Peng Si
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Alexander Honkala
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; The Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Bryan Ronain Smith
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
19
|
Semenova NS, Larichev AV, Akopyan VS. [Swept source optical coherence tomography: a technology review]. Vestn Oftalmol 2020; 136:111-116. [PMID: 32241977 DOI: 10.17116/oftalma2020136011111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The article reviews the concept of swept source optical coherence tomography (SS-OCT) and presents a brief history of the technology, its implementation in modern commercial tomography, the advantages and disadvantages of the method.
Collapse
Affiliation(s)
- N S Semenova
- Lomonosov Moscow State University, Department of Ophthalmology, Faculty of Fundamental Medicine, 27-1 Lomonosovskiy av., Moscow, Russian Federation, 119991
| | - A V Larichev
- Lomonosov Moscow State University, Department of Medical Physics, Faculty of Physics, 1-2 Leninskie Gory, Moscow, Russian Federation, 119991
| | - V S Akopyan
- Lomonosov Moscow State University, Department of Ophthalmology, Faculty of Fundamental Medicine, 27-1 Lomonosovskiy av., Moscow, Russian Federation, 119991
| |
Collapse
|
20
|
Optical coherence tomography angiography in preclinical neuroimaging. Biomed Eng Lett 2019; 9:311-325. [PMID: 31456891 DOI: 10.1007/s13534-019-00118-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/29/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023] Open
Abstract
Preclinical neuroimaging allows for the assessment of brain anatomy, connectivity, and function in laboratory animals, such as mice and this imaging field has been a rapidly growing aimed at bridging the translation gap between animal and human research. The progress in the animal research could be accelerated by high-resolution in vivo optical imaging technologies. Optical coherence tomography-based angiography (OCTA) estimates the scattering from moving red blood cells, providing the visualization of functional micro-vessel networks within tissue beds in vivo without a need for exogenous contrast agents. Recent advancement of OCTA methods have expanded its application to neuroimaging of small animal models of brain disorders. In this paper, we overview the recent development of OCTA techniques for blood flow imaging and its preclinical applications in neuroimaging. In specific, a summary of preclinical OCTA studies for traumatic brain injury, cerebral stroke, and aging brain on mice is reviewed.
Collapse
|
21
|
Karpf S, Jalali B. Fourier-domain mode-locked laser combined with a master-oscillator power amplifier architecture. OPTICS LETTERS 2019; 44:1952-1955. [PMID: 30985783 DOI: 10.1364/ol.44.001952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Originally introduced in 2005 for high-speed optical coherence tomography, the rapidly wavelength-swept Fourier-domain mode-locked (FDML) laser still, to this day, enables highest imaging speeds through a very high-speed spectral tuning capability. The FDML laser achieves a tuning bandwidth of over 1/10th of its center wavelength and can sweep this entire bandwidth in less than a microsecond. Interestingly, even though it covers a very broad spectral range, instantaneously it has a narrow spectral linewidth that puts it in a unique space compared to other high-speed broadband laser sources, e.g., mode-locked lasers or supercontinuum sources. Although it has been applied for nonlinear Raman spectroscopy and imaging, a current drawback of this continuous wave laser is the relatively low instantaneous power of 10-100 mW. Here, we report the combination of an FDML laser with a master oscillator power amplifier (MOPA) architecture to increase the instantaneous power of the FDML for nonlinear optical interactions. The output of an FDML laser around 1060 nm is modulated to short pulses by using an electro-optic amplitude modulator and subsequently amplified using ytterbium-doped fiber amplifiers (YDFAs). This generates a spectral rainbow of 65 picosecond pulses, where each pulse has a distinct, monochromatic wavelength. The instantaneous power can be adjusted by the YDFAs to reach nonlinear optical excitation regimes. This wavelength-swept FDML-MOPA laser will have a vast range of applications in, e.g., nonlinear optics, spectroscopy, imaging, and sensing.
Collapse
|
22
|
Duan Y, Dong X, Zhang L, Li Y, Lei Z, Chen L, Zhou X, Zhang C, Zhang X. Ultrafast discrete swept source based on dual chirped combs for microscopic imaging. OPTICS EXPRESS 2019; 27:2621-2631. [PMID: 30732297 DOI: 10.1364/oe.27.002621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
An inertial-free, ultrafast frequency comb source based on two chirped optical frequency combs (OFCs) is proposed and experimentally demonstrated. The high linearity frequency sweeping is realized by the Vernier effect between the two OFCs rather than any mechanical motion component, so that good stability and reliability are ensured and no recalibration or resampling process is required. Swept rate up to 1 MHz is realized while keeping a narrow instantaneous linewidth of 0.03 nm, thanks to the extra-cavity frequency sweeping method. The wavelength step is proportional to the swept rate (3.8 pm at 10 kHz), and can be tuned by changing the repetition rate difference between the two OFCs. This swept source is applied for high-speed wavelength encoded imaging and achieves 4.4-μm spatial resolution at a 329-kHz frame rate. Compared with the traditional time-stretch microscopy, the signal acquisition bandwidth decreased from 3.8 GHz to below 90 MHz to achieve the same spatial resolution. Furthermore, the exposure time for a specific wavelength is much longer due to the discrete sweeping feature, which is a benefit for higher sensitivity. This discrete swept source provided a promising low-cost option for high-speed biomedical imaging systems and high-accuracy spectroscopy.
Collapse
|
23
|
Lee HD, Kim GH, Shin JG, Lee B, Kim CS, Eom TJ. Akinetic swept-source optical coherence tomography based on a pulse-modulated active mode locking fiber laser for human retinal imaging. Sci Rep 2018; 8:17660. [PMID: 30518926 PMCID: PMC6281618 DOI: 10.1038/s41598-018-36252-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/15/2018] [Indexed: 01/09/2023] Open
Abstract
Optical coherence tomography (OCT) is a noninvasive imaging modality that can provide high-resolution, cross-sectional images of tissues. Especially in retinal imaging, OCT has become one of the most valuable imaging tools for diagnosing eye diseases. Considering the scattering and absorption properties of the eye, the 1000-nm OCT system is preferred for retinal imaging. In this study, we describe the use of an akinetic swept-source OCT system based on a pulse-modulated active mode locking (AML) fiber laser at a 1080-nm wavelength for in-vivo human retinal imaging. The akinetic AML wavelength-swept fiber laser was constructed with polarization-maintaining fiber that has an average linewidth of 0.625 nm, a spectral bandwidth of 81.15 nm, and duty ratio of 90% without the buffering method. We successfully obtained in-vivo human retinal images using the proposed OCT system without the additional k-clock and the frequency shifter that provides a wide field of view of 43.1°. The main retina layers, such as the retinal pigment epithelium, can be distinguished from the OCT image with an axial resolution of 6.3 μm with this OCT system.
Collapse
Affiliation(s)
- Hwi Don Lee
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Gyeong Hun Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, South Korea
| | - Jun Geun Shin
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Boram Lee
- Department of ophthalmology, Korea University college of medicine, Seoul, 02841, South Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, South Korea.
| | - Tae Joong Eom
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
24
|
Kang J, Feng P, Wei X, Lam EY, Tsia KK, Wong KKY. 102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography. OPTICS EXPRESS 2018; 26:4370-4381. [PMID: 29475287 DOI: 10.1364/oe.26.004370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A swept source with both high repetition-rate and broad bandwidth is indispensable to enable optical coherence tomography (OCT) with high imaging rate and high axial resolution. However, available swept sources are commonly either limited in speed (sub-MHz) by inertial or kinetic component, or limited in bandwidth (<100 nm) by the gain medium. Here we report an ultrafast broadband (over 100 nm centered at 1.55-µm) all-fiber inertial-free swept source built upon a high-power dispersion-managed fiber laser in conjunction with an optical time-stretch module which bypasses complex optical amplification scheme, which result in a portable and compact implementation of time-stretch OCT (TS-OCT) at A-scan rate of 44.5-MHz, axial resolution of 14 µm in air (or 10 µm in tissue), and flat sensitivity roll-off within 4.3 mm imaging range. Together with the demonstration of two- and three-dimensional OCT imaging of a mud-fish eye anterior segment, we also perform comprehensive studies on the imaging depth, receiver bandwidth, and group velocity dispersion condition. This all-fiber inertia-free swept source could provide a promising source solution for SS-OCT system to realize high-performance volumetric OCT imaging in real time.
Collapse
|