1
|
Guo S, Kang JU. Convolutional neural network-based common-path optical coherence tomography A-scan boundary-tracking training and validation using a parallel Monte Carlo synthetic dataset. OPTICS EXPRESS 2022; 30:25876-25890. [PMID: 36237108 PMCID: PMC9363032 DOI: 10.1364/oe.462980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/16/2023]
Abstract
We present a parallel Monte Carlo (MC) simulation platform for rapidly generating synthetic common-path optical coherence tomography (CP-OCT) A-scan image dataset for image-guided needle insertion. The computation time of the method has been evaluated on different configurations and 100000 A-scan images are generated based on 50 different eye models. The synthetic dataset is used to train an end-to-end convolutional neural network (Ascan-Net) to localize the Descemet's membrane (DM) during the needle insertion. The trained Ascan-Net has been tested on the A-scan images collected from the ex-vivo human and porcine cornea as well as simulated data and shows improved tracking accuracy compared to the result by using the Canny-edge detector.
Collapse
Affiliation(s)
- Shoujing Guo
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Jin U. Kang
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Real-Time Strain and Elasticity Imaging in Phase-Sensitive Optical Coherence Elastography Using a Computationally Efficient Realization of the Vector Method. PHOTONICS 2021. [DOI: 10.3390/photonics8120527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a real-time realization of OCT-based elastographic mapping local strains and distribution of the Young’s modulus in biological tissues, which is in high demand for biomedical usage. The described variant exploits the principle of Compression Optical Coherence Elastography (C-OCE) and uses processing of phase-sensitive OCT signals. The strain is estimated by finding local axial gradients of interframe phase variations. Instead of the popular least-squares method for finding these gradients, we use the vector approach, one of its advantages being increased computational efficiency. Here, we present a modified, especially fast variant of this approach. In contrast to conventional correlation-based methods and previously used phase-resolved methods, the described method does not use any search operations or local calculations over a sliding window. Rather, it obtains local strain maps (and then elasticity maps) using several transformations represented as matrix operations applied to entire complex-valued OCT scans. We first elucidate the difference of the proposed method from the previously used correlational and phase-resolved methods and then describe the proposed method realization in a medical OCT device, in which for real-time processing, a “typical” central processor (e.g., Intel Core i7-8850H) is sufficient. Representative examples of on-flight obtained elastographic images are given. These results open prospects for broad use of affordable OCT devices for high-resolution elastographic vitalization in numerous biomedical applications, including the use in clinic.
Collapse
|
3
|
Han S, Wijesinghe RE, Jeon D, Han Y, Lee J, Lee J, Jo H, Lee DE, Jeon M, Kim J. Optical Interferometric Fringe Pattern-Incorporated Spectrum Calibration Technique for Enhanced Sensitivity of Spectral Domain Optical Coherence Tomography. SENSORS 2020; 20:s20072067. [PMID: 32272646 PMCID: PMC7181120 DOI: 10.3390/s20072067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/01/2022]
Abstract
Depth-visualizing sensitivity can be degraded due to imperfect optical alignment and non-equidistant distribution of optical signals in the pixel array, which requires a measurement of the re-sampling process. To enhance this depth-visualizing sensitivity, reference and sample arm-channeled spectra corresponding to different depths using mirrors were obtained to calibrate the spectrum sampling prior to Fourier transformation. During the process, eight interferogram patterns corresponding to point spread function (PSF) signals at eight optical path length differences were acquired. To calibrate the spectrum, generated intensity points of the original interferogram were re-indexed towards a maximum intensity range, and these interferogram re-indexing points were employed to generate a new lookup table. The entire software-based process consists of eight consecutive steps. Experimental results revealed that the proposed method can achieve images with a high depth-visualizing sensitivity. Furthermore, the results validate the proposed method as a rapidly performable spectral calibration technique, and the real-time images acquired using our technique confirm the simplicity and applicability of the method to existing optical coherence tomography (OCT) systems. The sensitivity roll-off prior to the spectral calibration was measured as 28 dB and it was halved after the calibration process.
Collapse
Affiliation(s)
- Sangyeob Han
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea; (S.H.); (D.J.); (J.L.); (J.L.); (H.J.); (J.K.)
| | - Ruchire Eranga Wijesinghe
- Department of Biomedical Engineering, College of Engineering, Kyungil University, 50, Gamasil-gil, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 38428, Korea;
- Department of Autonomous Robot Engineering, College of Smart Engineering, Kyungil University, 50, Gamasil-gil, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 38428, Korea
| | - Deokmin Jeon
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea; (S.H.); (D.J.); (J.L.); (J.L.); (H.J.); (J.K.)
| | - Youngmin Han
- Department of Nuclear Energy Convergence, Kyungil University, 50, Gamasil-gil, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 38428, Korea;
| | - Jaeyul Lee
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea; (S.H.); (D.J.); (J.L.); (J.L.); (H.J.); (J.K.)
| | - Junsoo Lee
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea; (S.H.); (D.J.); (J.L.); (J.L.); (H.J.); (J.K.)
| | - Hosung Jo
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea; (S.H.); (D.J.); (J.L.); (J.L.); (H.J.); (J.K.)
| | - Dong-Eun Lee
- School of Architecture and Civil Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea
- Correspondence: (D.-E.L.); (M.J.)
| | - Mansik Jeon
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea; (S.H.); (D.J.); (J.L.); (J.L.); (H.J.); (J.K.)
- Correspondence: (D.-E.L.); (M.J.)
| | - Jeehyun Kim
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea; (S.H.); (D.J.); (J.L.); (J.L.); (H.J.); (J.K.)
| |
Collapse
|
4
|
Stroud JR, Liu L, Chin S, Tran TD, Foster MA. Optical coherence tomography using physical domain data compression to achieve MHz A-scan rates. OPTICS EXPRESS 2019; 27:36329-36339. [PMID: 31873414 DOI: 10.1364/oe.27.036329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
The three-dimensional volumetric imaging capability of optical coherence tomography (OCT) leads to the generation of large amounts of data, which necessitates high speed acquisition followed by high dimensional image processing and visualization. This signal acquisition and processing pipeline demands high A-scan rates on the front end, which has driven researchers to push A-scan acquisition rates into the MHz regime. To this end, the optical time-stretch approach uses a mode locked laser (MLL) source, dispersion in optical fiber, and a single analog-to-digital converter (ADC) to achieve multi-MHz A-scan rates. While enabling impressive performance this Nyquist sampling approach is ultimately constrained by the sampling rate and bandwidth of the ADC. Additionally such an approach generates massive amounts of data. Here we present a compressed sensing (CS) OCT system that uses a MLL, electro-optic modulation, and optical dispersion to implement data compression in the physical domain and rapidly acquire real-time compressed measurements of the OCT signals. Compression in the analog domain prior to digitization allows for the use of lower bandwidth ADCs, which reduces cost and decreases the required data capacity of the sampling interface. By leveraging a compressive A-scan optical sampling approach and the joint sparsity of C-scan data we demonstrate 14.4-MHz to 144-MHz A-scan acquisition speeds using a sub-Nyquist 1.44 Gsample/sec ADC sampling rate. Furthermore we evaluate the impact of data compression and resulting imaging speed on image quality.
Collapse
|
5
|
Wei S, Guo S, Kang JU. Analysis and evaluation of BC-mode OCT image visualization for microsurgery guidance. BIOMEDICAL OPTICS EXPRESS 2019; 10:5268-5290. [PMID: 31646046 PMCID: PMC6788622 DOI: 10.1364/boe.10.005268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 05/09/2023]
Abstract
Optical coherence tomography (OCT) has been gaining acceptance in image-guided microsurgery as a noninvasive imaging technique. However, when using B-mode OCT imaging, it is difficult to continuously keep the surgical tool in the imaging field, and the image of the tissue beneath the tool is corrupted by shadow effects. The alternative using C-mode OCT imaging is either too slow in imaging speed when operating in a high-resolution mode, or provides a poor image resolution in a high-speed mode, with the sweep rate less than one million hertz. Moreover, the 3-dimensional rendering of C-mode OCT image makes it difficult to visualize the tissue structure and track the surgical tool beneath the tissue surface. To solve these problems, we propose a BC-mode OCT image visualization method. This method uses a sparse C-scanning scheme, which provides a set of high-resolution B-mode OCT images at sparsely spaced cross sections. The final BC-mode OCT image is obtained by averaging the image set, with inter frame variance processing to enhance the signal of the surgical tool and tissue layers. The performance of BC-mode OCT images, such as image resolution, signal to noise ratio (SNR), imaging speed, and surgical tool tracking accuracy, is analyzed theoretically and verified experimentally. The feasibility of the proposed method is evaluated by guiding the insertion of a 30-gauge needle into the cornea of an ex-vivo human eye freehand. The results show that this provides better visualization of both the surgical tool and the tissue structure than the conventional B- or C- mode OCT image.
Collapse
|
6
|
Measurement of Vibrating Tympanic Membrane in an In Vivo Mouse Model Using Doppler Optical Coherence Tomography. J Imaging 2019; 5:jimaging5090074. [PMID: 34460668 PMCID: PMC8320936 DOI: 10.3390/jimaging5090074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 11/17/2022] Open
Abstract
Optical coherence tomography (OCT) has a micro-resolution with a penetration depth of about 2 mm and field of view of about 10 mm. This makes OCT well suited for analyzing the anatomical and internal structural assessment of the middle ear. To study the vibratory motion of the tympanic membrane (TM) and its internal structure, we developed a phase-resolved Doppler OCT system using Kasai’s autocorrelation algorithm. Doppler optical coherence tomography is a powerful imaging tool which can offer the micro-vibratory measurement of the tympanic membrane and obtain the micrometer-resolved cross-sectional images of the sample in real-time. To observe the relative vibratory motion of individual sections (malleus, thick regions, and the thin regions of the tympanic membrane) of the tympanic membrane in respect to auditory signals, we designed an experimental study for measuring the difference in Doppler phase shift for frequencies varying from 1 to 8 kHz which were given as external stimuli to the middle ear of a small animal model. Malleus is the very first interconnecting region between the TM and cochlea. In our proposed study, we observed that the maximum change in Doppler phase shift was seen for the 4 kHz acoustic stimulus in the malleus, the thick regions, and in the thin regions of the tympanic membrane. In particular, the vibration signals were higher in the malleus in comparison to the tympanic membrane.
Collapse
|
7
|
Kolb JP, Draxinger W, Klee J, Pfeiffer T, Eibl M, Klein T, Wieser W, Huber R. Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates. PLoS One 2019; 14:e0213144. [PMID: 30921342 PMCID: PMC6438632 DOI: 10.1371/journal.pone.0213144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Surgical microscopes are vital tools for ophthalmic surgeons. The recent development of an integrated OCT system for the first time allows to look at tissue features below the surface. Hence, these systems can drastically improve the quality and reduce the risk of surgical interventions. However, current commercial OCT-enhanced ophthalmic surgical microscopes provide only one additional cross sectional view to the standard microscope image and feature a low update rate. To present volumetric data at a high update rate, much faster OCT systems than the ones applied in today's surgical microscopes need to be developed. We demonstrate live volumetric retinal OCT imaging, which may provide a sufficiently large volume size (330x330x595 Voxel) and high update frequency (24.2 Hz) such that the surgeon may even purely rely on the OCT for certain surgical maneuvers. It represents a major technological step towards the possible application of OCT-only surgical microscopes in the future which would be much more compact thus enabling many additional minimal invasive applications. We show that multi-MHz A-scan rates are essential for such a device. Additionally, advanced phase-based OCT techniques require 3D OCT volumes to be detected with a stable optical phase. These techniques can provide additional functional information of the retina. Up to now, classical OCT was to slow for this, so our system can pave the way to holographic OCT with a traditional confocal flying spot approach. For the first time, we present point scanning volumetric OCT imaging of the posterior eye with up to 191.2 Hz volume rate. We show that this volume rate is high enough to enable a sufficiently stable optical phase to a level, where remaining phase errors can be corrected. Applying advanced post processing concepts for numerical refocusing or computational adaptive optics should be possible in future with such a system.
Collapse
Affiliation(s)
- Jan Philip Kolb
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
| | - Wolfgang Draxinger
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
| | - Julian Klee
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
| | - Tom Pfeiffer
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
| | - Matthias Eibl
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
| | | | | | - Robert Huber
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
8
|
Kolb JP, Draxinger W, Klee J, Pfeiffer T, Eibl M, Klein T, Wieser W, Huber R. Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates. PLoS One 2019; 14:e0213144. [PMID: 30921342 DOI: 10.1371/journals.phone.0213144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 02/18/2019] [Indexed: 05/25/2023] Open
Abstract
Surgical microscopes are vital tools for ophthalmic surgeons. The recent development of an integrated OCT system for the first time allows to look at tissue features below the surface. Hence, these systems can drastically improve the quality and reduce the risk of surgical interventions. However, current commercial OCT-enhanced ophthalmic surgical microscopes provide only one additional cross sectional view to the standard microscope image and feature a low update rate. To present volumetric data at a high update rate, much faster OCT systems than the ones applied in today's surgical microscopes need to be developed. We demonstrate live volumetric retinal OCT imaging, which may provide a sufficiently large volume size (330x330x595 Voxel) and high update frequency (24.2 Hz) such that the surgeon may even purely rely on the OCT for certain surgical maneuvers. It represents a major technological step towards the possible application of OCT-only surgical microscopes in the future which would be much more compact thus enabling many additional minimal invasive applications. We show that multi-MHz A-scan rates are essential for such a device. Additionally, advanced phase-based OCT techniques require 3D OCT volumes to be detected with a stable optical phase. These techniques can provide additional functional information of the retina. Up to now, classical OCT was to slow for this, so our system can pave the way to holographic OCT with a traditional confocal flying spot approach. For the first time, we present point scanning volumetric OCT imaging of the posterior eye with up to 191.2 Hz volume rate. We show that this volume rate is high enough to enable a sufficiently stable optical phase to a level, where remaining phase errors can be corrected. Applying advanced post processing concepts for numerical refocusing or computational adaptive optics should be possible in future with such a system.
Collapse
Affiliation(s)
- Jan Philip Kolb
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
| | - Wolfgang Draxinger
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
| | - Julian Klee
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
| | - Tom Pfeiffer
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
| | - Matthias Eibl
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
| | | | | | - Robert Huber
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Acceleration of OCT Signal Processing with Lookup Table Method for Logarithmic Transformation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Real-time Fourier domain optical coherence tomography (FDOCT) has been widely used in clinical applications. In order to accelerate the imaging processing and display of FDOCT, an alternative lookup table-based strategy for logarithmic transformation was presented. In this paper, real-time and high-quality FDOCT imaging display of biological tissues at an A-line rate of 62 kHz was demonstrated by optimizing the logarithmic calculation.
Collapse
|
10
|
Lu CD, Waheed NK, Witkin A, Baumal CR, Liu JJ, Potsaid B, Joseph A, Jayaraman V, Cable A, Chan K, Duker JS, Fujimoto JG. Microscope-Integrated Intraoperative Ultrahigh-Speed Swept-Source Optical Coherence Tomography for Widefield Retinal and Anterior Segment Imaging. Ophthalmic Surg Lasers Imaging Retina 2019; 49:94-102. [PMID: 29443358 DOI: 10.3928/23258160-20180129-03] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To demonstrate the feasibility of retinal and anterior segment intraoperative widefield imaging using an ultrahigh-speed, swept-source optical coherence tomography (SS-OCT) surgical microscope attachment. PATIENTS AND METHODS A prototype post-objective SS-OCT using a 1,050-nm wavelength, 400 kHz A-scan rate, vertical cavity surface-emitting laser (VCSEL) light source was integrated to a commercial ophthalmic surgical microscope after the objective. Each widefield OCT data set was acquired in 3 seconds (1,000 × 1,000 A-scans, 12 × 12 mm2 for retina and 10 × 10 mm2 for anterior segment). RESULTS Intraoperative SS-OCT was performed in 20 eyes of 20 patients. In six of seven membrane peels and five of seven rhegmatogenous retinal detachment repair surgeries, widefield retinal imaging enabled evaluation pre- and postoperatively. In all seven cataract cases, anterior imaging evaluated the integrity of the posterior lens capsule. CONCLUSIONS Ultrahigh-speed SS-OCT enables widefield intraoperative viewing in the posterior and anterior eye. Widefield imaging visualizes ocular structures and pathology without requiring OCT realignment. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:94-102.].
Collapse
|
11
|
Teikari P, Najjar RP, Schmetterer L, Milea D. Embedded deep learning in ophthalmology: making ophthalmic imaging smarter. Ther Adv Ophthalmol 2019; 11:2515841419827172. [PMID: 30911733 PMCID: PMC6425531 DOI: 10.1177/2515841419827172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/20/2018] [Indexed: 01/22/2023] Open
Abstract
Deep learning has recently gained high interest in ophthalmology due to its ability to detect clinically significant features for diagnosis and prognosis. Despite these significant advances, little is known about the ability of various deep learning systems to be embedded within ophthalmic imaging devices, allowing automated image acquisition. In this work, we will review the existing and future directions for 'active acquisition'-embedded deep learning, leading to as high-quality images with little intervention by the human operator. In clinical practice, the improved image quality should translate into more robust deep learning-based clinical diagnostics. Embedded deep learning will be enabled by the constantly improving hardware performance with low cost. We will briefly review possible computation methods in larger clinical systems. Briefly, they can be included in a three-layer framework composed of edge, fog, and cloud layers, the former being performed at a device level. Improved egde-layer performance via 'active acquisition' serves as an automatic data curation operator translating to better quality data in electronic health records, as well as on the cloud layer, for improved deep learning-based clinical data mining.
Collapse
Affiliation(s)
- Petteri Teikari
- Visual Neurosciences Group, Singapore Eye Research Institute, Singapore
- Advanced Ocular Imaging, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Raymond P. Najjar
- Visual Neurosciences Group, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Leopold Schmetterer
- Visual Neurosciences Group, Singapore Eye Research Institute, Singapore
- Advanced Ocular Imaging, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Ocular and Dermal Effects of Thiomers, Medical University of Vienna, Vienna, Austria
| | - Dan Milea
- Visual Neurosciences Group, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore
- Neuro-Ophthalmology Department, Singapore National Eye Centre, Singapore
| |
Collapse
|
12
|
Jeon D, Cho NH, Park K, Kim K, Jeon M, Jang JH, Kim J. In Vivo Vibration Measurement of Middle Ear Structure Using Doppler Optical Coherence Tomography: Preliminary Study. Clin Exp Otorhinolaryngol 2018; 12:40-49. [PMID: 30045616 PMCID: PMC6315208 DOI: 10.21053/ceo.2018.00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/31/2018] [Indexed: 12/27/2022] Open
Abstract
Objectives Doppler optical coherence tomography (DOCT) is useful for both, the spatially resolved measurement of the tympanic membrane (TM) oscillation and high-resolution imaging. We demonstrated a new technique capable of providing real-time two-dimensional Doppler OCT image of rapidly oscillatory latex mini-drum and in vivo rat TM and ossicles. Methods Using DOCT system, the oscillation of sample was measured at frequency range of 1–4 kHz at an output of 15 W. After the sensitivity of the DOCT system was verified using a latex mini-drum consisting of a 100 μm-thick latex membrane, changes in displacement of the umbo and contacted area between TM and malleus in normal and pathologic conditions. Results The oscillation cycles of the mini-drum for stimulus frequencies were 1.006 kHz for 1 kHz, 2.012 kHz for 2kHz, and 3.912 kHz for 4 kHz, which means that the oscillation cycle of the mini-drum become short in proportional to the frequency of stimuli. The oscillation cycles of umbo area and the junction area in normal TM for frequencies of the stimuli showed similar integer ratio with the data of latex mini-drum for stimuli less than 4 kHz. In the case of middle ear effusion condition, the Doppler signal showed a tendency of attenuation in all frequencies, which was prominent at 1 kHz and 2 kHz. Conclusion The TM vibration under sound stimulation with frequencies from 1 kHz to 4 kHz in normal and pathologic conditions was demonstrated using signal demodulation method in in vivo condition. The OCT technology could be helpful for functional and structural assessment as an optional modality.
Collapse
Affiliation(s)
- Doekmin Jeon
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu, Korea
| | - Nam Hyun Cho
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary (MEEI), Boston, MA, USA
| | - Kibeom Park
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu, Korea
| | - Kanghae Kim
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu, Korea
| | - Mansik Jeon
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu, Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| | - Jeehyun Kim
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu, Korea
| |
Collapse
|
13
|
Keller B, Draelos M, Tang G, Farsiu S, Kuo AN, Hauser K, Izatt JA. Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT. BIOMEDICAL OPTICS EXPRESS 2018; 9:2716-2732. [PMID: 30258685 PMCID: PMC6154196 DOI: 10.1364/boe.9.002716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 05/09/2023]
Abstract
Ophthalmic procedures demand precise surgical instrument control in depth, yet standard operating microscopes supply limited depth perception. Current commercial microscope-integrated optical coherence tomography partially meets this need with manually-positioned cross-sectional images that offer qualitative estimates of depth. In this work, we present methods for automatic quantitative depth measurement using real-time, two-surface corneal segmentation and needle tracking in OCT volumes. We then demonstrate these methods for guidance of ex vivo deep anterior lamellar keratoplasty (DALK) needle insertions. Surgeons using the output of these methods improved their ability to reach a target depth, and decreased their incidence of corneal perforations, both with statistical significance. We believe these methods could increase the success rate of DALK and thereby improve patient outcomes.
Collapse
Affiliation(s)
- Brenton Keller
- Department of Biomedical Engineering, Duke University, Durham, NC 27708,
USA
| | - Mark Draelos
- Department of Biomedical Engineering, Duke University, Durham, NC 27708,
USA
| | - Gao Tang
- Department of Mechanical Engineering, Duke University, Durham, NC 27708,
USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708,
USA
- Department of Ophthalmology, Duke University Medical Center, Durham NC 27710,
USA
| | - Anthony N. Kuo
- Department of Biomedical Engineering, Duke University, Durham, NC 27708,
USA
- Department of Ophthalmology, Duke University Medical Center, Durham NC 27710,
USA
| | - Kris Hauser
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27701,
USA
| | - Joseph A. Izatt
- Department of Ophthalmology, Duke University Medical Center, Durham NC 27710,
USA
| |
Collapse
|
14
|
Needle Segmentation in Volumetric Optical Coherence Tomography Images for Ophthalmic Microsurgery. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Seider MI, Izatt JA, Toth CA. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery. Invest Ophthalmol Vis Sci 2017; 57:OCT37-50. [PMID: 27409495 PMCID: PMC4968921 DOI: 10.1167/iovs.16-19277] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions.
Collapse
Affiliation(s)
| | - Brenton Keller
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Christian Viehland
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Liangbo Shen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Michael I Seider
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Joseph A Izatt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States 2Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Cynthia A Toth
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States 2Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
16
|
Shan T, Qi J, Jiang M, Jiang H. GPU-based acceleration and mesh optimization of finite-element-method-based quantitative photoacoustic tomography: a step towards clinical applications. APPLIED OPTICS 2017; 56:4426-4432. [PMID: 29047873 DOI: 10.1364/ao.56.004426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/25/2017] [Indexed: 05/25/2023]
Abstract
Finite element method (FEM)-based time-domain quantitative photoacoustic tomography (TD-qPAT) is a powerful approach, as it provides highly accurate quantitative imaging capability by recovering absolute tissue absorption coefficients for functional imaging. However, this approach is extremely computationally demanding, and requires days for the reconstruction of one set of images, making it impractical to be used in clinical applications, where a large amount of data needs to be processed in a limited time scale. To address this challenge, here we present a graphic processing unit (GPU)-based parallelization method to accelerate the image reconstruction using FEM-based TD-qPAT. In addition, to further optimize FEM-based TD-qPAT reconstruction, an adaptive meshing technique, along with mesh density optimization, is adopted. Phantom experimental data are used in our study to evaluate the GPU-based TD-qPAT algorithm, as well as the adaptive meshing technique. The results show that our new approach can considerably reduce the computation time by at least 136-fold over the current central processing unit (CPU)-based algorithm. The quality of image reconstruction is also improved significantly when adaptive meshing and mesh density optimization are applied.
Collapse
|
17
|
Carrasco-Zevallos OM, Viehland C, Keller B, Draelos M, Kuo AN, Toth CA, Izatt JA. Review of intraoperative optical coherence tomography: technology and applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1607-1637. [PMID: 28663853 PMCID: PMC5480568 DOI: 10.1364/boe.8.001607] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 05/19/2023]
Abstract
During microsurgery, en face imaging of the surgical field through the operating microscope limits the surgeon's depth perception and visualization of instruments and sub-surface anatomy. Surgical procedures outside microsurgery, such as breast tumor resections, may also benefit from visualization of the sub-surface tissue structures. The widespread clinical adoption of optical coherence tomography (OCT) in ophthalmology and its growing prominence in other fields, such as cancer imaging, has motivated the development of intraoperative OCT for real-time tomographic visualization of surgical interventions. This article reviews key technological developments in intraoperative OCT and their applications in human surgery. We focus on handheld OCT probes, microscope-integrated OCT systems, and OCT-guided laser treatment platforms designed for intraoperative use. Moreover, we discuss intraoperative OCT adjuncts and processing techniques currently under development to optimize the surgical feedback derivable from OCT data. Lastly, we survey salient clinical studies of intraoperative OCT for human surgery.
Collapse
Affiliation(s)
| | - Christian Viehland
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brenton Keller
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Mark Draelos
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Anthony N. Kuo
- Department of Ophthalmology, Duke University Medical Center, NC 27710, USA
| | - Cynthia A. Toth
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, NC 27710, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, NC 27710, USA
| |
Collapse
|
18
|
Zaki F, Hou I, Cooper D, Patel D, Yang Y, Liu X. High-definition optical coherence tomography imaging for noninvasive examination of heritage works. APPLIED OPTICS 2016; 55:10313-10317. [PMID: 28059251 DOI: 10.1364/ao.55.010313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cultural heritage works, such as ancient murals and historical paintings, are examined routinely for the purpose of conservation. Previous works have applied optical coherence tomography (OCT), which is a three-dimensional (3D) microscopic imaging modality in the field of heritage works conservation. The data acquired by OCT provides both 3D surface information of the object and structure information underneath the surface. Therefore, cross-sectional information on the object can be utilized to study layer structure of the painting and brush stroke techniques used by the artist. However, as demonstrated in previous studies, OCT has limited capability in high-definition (HD) examination of paintings or murals that are in macroscopic scale. HD examination of heritage works needs to scan large areas and process huge amounts of data, while OCT imaging has a limited field of view and processing power. To further advance the application of OCT in the conservation of heritage works, we demonstrate what we believe is a novel high-speed, large field-of-view (FOV) OCT imaging platform. Our results suggest that this OCT platform has the potential to become a nondestructive alternative for the analysis and conservation of paintings and murals.
Collapse
|
19
|
Singh M, Raghunathan R, Piazza V, Davis-Loiacono AM, Cable A, Vedakkan TJ, Janecek T, Frazier MV, Nair A, Wu C, Larina IV, Dickinson ME, Larin KV. Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:2295-310. [PMID: 27375945 PMCID: PMC4918583 DOI: 10.1364/boe.7.002295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 05/17/2023]
Abstract
We present an analysis of imaging murine embryos at various embryonic developmental stages (embryonic day 9.5, 11.5, and 13.5) by optical coherence tomography (OCT) and optical projection tomography (OPT). We demonstrate that while OCT was capable of rapid high-resolution live 3D imaging, its limited penetration depth prevented visualization of deeper structures, particularly in later stage embryos. In contrast, OPT was able to image the whole embryos, but could not be used in vivo because the embryos must be fixed and cleared. Moreover, the fixation process significantly altered the embryo morphology, which was quantified by the volume of the eye-globes before and after fixation. All of these factors should be weighed when determining which imaging modality one should use to achieve particular goals of a study.
Collapse
Affiliation(s)
- Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Raksha Raghunathan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Victor Piazza
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | | | - Alex Cable
- Thorlabs, Inc., 56 Sparta Ave., Newton, 07860, USA
| | - Tegy J. Vedakkan
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Trevor Janecek
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Michael V. Frazier
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Achuth Nair
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Chen Wu
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
- Department of Electrical Engineering, Samara National Research University, Samara, 34 Moskovskoye sh., 443086, Russia
| |
Collapse
|
20
|
Singh M, Li J, Vantipalli S, Wang S, Han Z, Nair A, Aglyamov SR, Twa MD, Larin KV. Noncontact Elastic Wave Imaging Optical Coherence Elastography for Evaluating Changes in Corneal Elasticity Due to Crosslinking. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016. [PMID: 27547022 DOI: 10.1109/jqe.2016.2585338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mechanical properties of tissues can provide valuable information about tissue integrity and health and can assist in detecting and monitoring the progression of diseases such as keratoconus. Optical coherence elastography (OCE) is a rapidly emerging technique, which can assess localized mechanical contrast in tissues with micrometer spatial resolution. In this work we present a noncontact method of optical coherence elastography to evaluate the changes in the mechanical properties of the cornea after UV-induced collagen cross-linking. A focused air-pulse induced a low amplitude (μm scale) elastic wave, which then propagated radially and was imaged in three dimensions by a phase-stabilized swept source optical coherence tomography (PhS-SSOCT) system. The elastic wave velocity was translated to Young's modulus in agar phantoms of various concentrations. Additionally, the speed of the elastic wave significantly changed in porcine cornea before and after UV-induced corneal collagen cross-linking (CXL). Moreover, different layers of the cornea, such as the anterior stroma, posterior stroma, and inner region, could be discerned from the phase velocities of the elastic wave. Therefore, because of noncontact excitation and imaging, this method may be useful for in vivo detection of ocular diseases such as keratoconus and evaluation of therapeutic interventions such as CXL.
Collapse
Affiliation(s)
- Manmohan Singh
- Department of Biomedical Engineering at the University of Houston, Houston, TX 77204 USA
| | - Jiasong Li
- Department of Biomedical Engineering at the University of Houston, Houston, TX 77204 USA
| | | | - Shang Wang
- Department of Molecular Physiology and Biophysics at Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Zhaolong Han
- Department of Biomedical Engineering at the University of Houston, Houston, TX 77204 USA
| | - Achuth Nair
- Department of Biomedical Engineering at the University of Houston, Houston, TX 77004 USA
| | - Salavat R Aglyamov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78731 USA
| | - Michael D Twa
- School of Optometry at the University of Alabama at Birmingham, Birmingham, AL 35924
| | - Kirill V Larin
- Department of Biomedical Engineering at the University of Houston, Houston, TX 77004 USA and and the Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk 634050, Russia, phone: 832-842-8834; fax: 713-743-0226
| |
Collapse
|
21
|
Viehland C, Keller B, Carrasco-Zevallos OM, Nankivil D, Shen L, Mangalesh S, Viet DT, Kuo AN, Toth CA, Izatt JA. Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT. BIOMEDICAL OPTICS EXPRESS 2016; 7:1815-29. [PMID: 27231623 PMCID: PMC4871083 DOI: 10.1364/boe.7.001815] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 05/22/2023]
Abstract
Current-generation software for rendering volumetric OCT data sets based on ray casting results in volume visualizations with indistinct tissue features and sub-optimal depth perception. Recent developments in hand-held and microscope-integrated intrasurgical OCT designed for real-time volumetric imaging motivate development of rendering algorithms which are both visually appealing and fast enough to support real time rendering, potentially from multiple viewpoints for stereoscopic visualization. We report on an enhanced, real time, integrated volumetric rendering pipeline which incorporates high performance volumetric median and Gaussian filtering, boundary and feature enhancement, depth encoding, and lighting into a ray casting volume rendering model. We demonstrate this improved model implemented on graphics processing unit (GPU) hardware for real-time volumetric rendering of OCT data during tissue phantom and live human surgical imaging. We show that this rendering produces enhanced 3D visualizations of pathology and intraoperative maneuvers compared to standard ray casting.
Collapse
Affiliation(s)
- Christian Viehland
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brenton Keller
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Derek Nankivil
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Liangbo Shen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Shwetha Mangalesh
- Deparment of Ophthalmology, Duke University Medical Center, Durham NC 27710, USA
| | - Du Tran Viet
- Deparment of Ophthalmology, Duke University Medical Center, Durham NC 27710, USA
| | - Anthony N. Kuo
- Deparment of Ophthalmology, Duke University Medical Center, Durham NC 27710, USA
| | - Cynthia A. Toth
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Deparment of Ophthalmology, Duke University Medical Center, Durham NC 27710, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Deparment of Ophthalmology, Duke University Medical Center, Durham NC 27710, USA
| |
Collapse
|
22
|
Singh M, Li J, Vantipalli S, Wang S, Han Z, Nair A, Aglyamov SR, Twa MD, Larin KV. Noncontact Elastic Wave Imaging Optical Coherence Elastography for Evaluating Changes in Corneal Elasticity Due to Crosslinking. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6801911. [PMID: 27547022 PMCID: PMC4990138 DOI: 10.1109/jstqe.2015.2510293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The mechanical properties of tissues can provide valuable information about tissue integrity and health and can assist in detecting and monitoring the progression of diseases such as keratoconus. Optical coherence elastography (OCE) is a rapidly emerging technique, which can assess localized mechanical contrast in tissues with micrometer spatial resolution. In this work we present a noncontact method of optical coherence elastography to evaluate the changes in the mechanical properties of the cornea after UV-induced collagen cross-linking. A focused air-pulse induced a low amplitude (μm scale) elastic wave, which then propagated radially and was imaged in three dimensions by a phase-stabilized swept source optical coherence tomography (PhS-SSOCT) system. The elastic wave velocity was translated to Young's modulus in agar phantoms of various concentrations. Additionally, the speed of the elastic wave significantly changed in porcine cornea before and after UV-induced corneal collagen cross-linking (CXL). Moreover, different layers of the cornea, such as the anterior stroma, posterior stroma, and inner region, could be discerned from the phase velocities of the elastic wave. Therefore, because of noncontact excitation and imaging, this method may be useful for in vivo detection of ocular diseases such as keratoconus and evaluation of therapeutic interventions such as CXL.
Collapse
Affiliation(s)
| | | | | | - Shang Wang
- Department of Molecular Physiology and Biophysics at Baylor College
of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Zhaolong Han
- Department of Biomedical Engineering at the University of Houston,
Houston, TX 77204 USA
| | - Achuth Nair
- Department of Biomedical Engineering at the University of Houston,
Houston, TX 77004 USA
| | - Salavat R. Aglyamov
- Department of Biomedical Engineering, University of Texas at
Austin, Austin, TX 78731 USA
| | - Michael D. Twa
- School of Optometry at the University of Alabama at Birmingham,
Birmingham, AL 35924
| | - Kirill V. Larin
- Department of Biomedical Engineering at the University of Houston,
Houston, TX 77004 USA and and the Interdisciplinary Laboratory of
Biophotonics, Tomsk State University, Tomsk 634050, Russia, phone:
832-842-8834; fax: 713-743-0226
| |
Collapse
|
23
|
Bradu A, Kapinchev K, Barnes F, Podoleanu A. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:76008. [PMID: 26198418 DOI: 10.1117/1.jbo.20.7.076008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/24/2015] [Indexed: 05/25/2023]
Abstract
In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.
Collapse
Affiliation(s)
- Adrian Bradu
- University of Kent, Applied Optics Group, School of Physical Sciences, Canterbury, CT2 7NH, United Kingdom
| | - Konstantin Kapinchev
- University of Kent, Programming Languages and Systems, School of Computing, Canterbury, CT2 7NF, United Kingdom
| | - Frederick Barnes
- University of Kent, Programming Languages and Systems, School of Computing, Canterbury, CT2 7NF, United Kingdom
| | - Adrian Podoleanu
- University of Kent, Applied Optics Group, School of Physical Sciences, Canterbury, CT2 7NH, United Kingdom
| |
Collapse
|
24
|
Singh M, Wu C, Liu CH, Li J, Schill A, Nair A, Larin KV. Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second. OPTICS LETTERS 2015; 40:2588-91. [PMID: 26030564 PMCID: PMC5451255 DOI: 10.1364/ol.40.002588] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Shear-wave imaging optical coherence elastography (SWI-OCE) is an emerging method for 3D quantitative assessment of tissue local mechanical properties based on imaging and analysis of elastic wave propagation. Current methods for SWI-OCE involve multiple temporal optical coherence tomography scans (M-mode) at different spatial locations across tissue surface (B- and C-modes). This requires an excitation for each measurement position leading to clinically unacceptable long acquisition times up to tens of minutes. In this Letter, we demonstrate, for the first time, noncontact true kilohertz frame-rate OCE by combining a Fourier domain mode-locked swept source laser with an A-scan rate of ∼1.5 MHz and a focused air-pulse as an elastic wave excitation source. The propagation of the elastic wave in the sample was imaged at a frame rate of ∼7.3 kHz. Therefore, to quantify the elastic wave propagation velocity in a single direction, only a single excitation was needed. This method was validated by quantifying the elasticity of tissue-mimicking agar phantoms as well as of a porcine cornea ex vivo at different intraocular pressures. The results demonstrate that this method can reduce the acquisition time of an elastogram to milliseconds.
Collapse
Affiliation(s)
- Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77004, USA
| | - Chen Wu
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77004, USA
| | - Chih-Hao Liu
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77004, USA
| | - Jiasong Li
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77004, USA
| | - Alexander Schill
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77004, USA
| | - Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77004, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77004, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk 634050, Russia
- Corresponding author:
| |
Collapse
|
25
|
Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc Natl Acad Sci U S A 2015; 112:3128-33. [PMID: 25737536 DOI: 10.1073/pnas.1500038112] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sound is encoded within the auditory portion of the inner ear, the cochlea, after propagating down its length as a traveling wave. For over half a century, vibratory measurements to study cochlear traveling waves have been made using invasive approaches such as laser Doppler vibrometry. Although these studies have provided critical information regarding the nonlinear processes within the living cochlea that increase the amplitude of vibration and sharpen frequency tuning, the data have typically been limited to point measurements of basilar membrane vibration. In addition, opening the cochlea may alter its function and affect the findings. Here we describe volumetric optical coherence tomography vibrometry, a technique that overcomes these limitations by providing depth-resolved displacement measurements at 200 kHz inside a 3D volume of tissue with picometer sensitivity. We studied the mouse cochlea by imaging noninvasively through the surrounding bone to measure sound-induced vibrations of the sensory structures in vivo, and report, to our knowledge, the first measures of tectorial membrane vibration within the unopened cochlea. We found that the tectorial membrane sustains traveling wave propagation. Compared with basilar membrane traveling waves, tectorial membrane traveling waves have larger dynamic ranges, sharper frequency tuning, and apically shifted positions of peak vibration. These findings explain discrepancies between previously published basilar membrane vibration and auditory nerve single unit data. Because the tectorial membrane directly overlies the inner hair cell stereociliary bundles, these data provide the most accurate characterization of the stimulus shaping the afferent auditory response available to date.
Collapse
|
26
|
Zhang T, Zhou J, Carney PR, Jiang H. Towards real-time detection of seizures in awake rats with GPU-accelerated diffuse optical tomography. J Neurosci Methods 2014; 240:28-36. [PMID: 25445250 DOI: 10.1016/j.jneumeth.2014.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/06/2014] [Accepted: 10/21/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND Advancement in clinically relevant studies like seizure interruption using functional neuro imaging tools has shown that specific changes in hemodynamics precede and accompany seizure onset and propagation. However, preclinical seizure experiments need to be conducted in awake animals with images reconstructed and displayed in real-time. METHODS This article describes an approach that can be utilized to tackle these challenges. A subject specific head interface and restraining method was designed to allow for DOT to imaging of hemodynamic changes in unanesthetized rats during evoked acute seizures. Using CUDA programming model, the finite-element based nonlinear iterative algorithm for image reconstruction was parallelized. RESULTS Early hemodynamic changes were monitored in real time and observed tens of seconds prior to seizure onset. Utilizing the massive parallelization offered by graphic processing units (GPU), DOT was extended to online image reconstruction within 1s. COMPARISON WITH EXISTING METHODS Pre-seizure state related hemodynamic changes were detected in awake rats. 3D monitoring of hemodynamic changes was performed in real time with our parallelized image reconstruction procedure. CONCLUSION Diffuse optical tomography (DOT) is a promising neuroimaging tool for the investigation of seizures in awake animals.
Collapse
Affiliation(s)
- Tao Zhang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Junli Zhou
- Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Paul R Carney
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Huabei Jiang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
27
|
Liu X, Kirby M, Zhao F. Motion analysis and removal in intensity variation based OCT angiography. BIOMEDICAL OPTICS EXPRESS 2014; 5:3833-47. [PMID: 25426314 PMCID: PMC4242021 DOI: 10.1364/boe.5.003833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 05/18/2023]
Abstract
In this work, we investigated how bulk motion degraded the quality of optical coherence tomography (OCT) angiography that was obtained through calculating interframe signal variation, i.e., interframe signal variation based optical coherence angiography (isvOCA). We demonstrated theoretically and experimentally that the spatial average of isvOCA signal had an explicit functional dependency on bulk motion. Our result suggested that the bulk motion could lead to an increased background in angiography image. Based on our motion analysis, we proposed to reduce image artifact induced by transient bulk motion in isvOCA through adaptive thresholding. The motion artifact reduced angiography was demonstrated in a 1.3μm spectral domain OCT system. We implemented signal processing using graphic processing unit for real-time imaging and conducted in vivo microvasculature imaging on human skin. Our results clearly showed that the adaptive thresholding method was highly effective in the motion artifact removal for OCT angiography.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ USA
| | - Mitchell Kirby
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI USA
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI USA
| |
Collapse
|
28
|
Wieser W, Draxinger W, Klein T, Karpf S, Pfeiffer T, Huber R. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. BIOMEDICAL OPTICS EXPRESS 2014; 5:2963-77. [PMID: 25401010 PMCID: PMC4230855 DOI: 10.1364/boe.5.002963] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 05/18/2023]
Abstract
We present a 1300 nm OCT system for volumetric real-time live OCT acquisition and visualization at 1 billion volume elements per second. All technological challenges and problems associated with such high scanning speed are discussed in detail as well as the solutions. In one configuration, the system acquires, processes and visualizes 26 volumes per second where each volume consists of 320 x 320 depth scans and each depth scan has 400 usable pixels. This is the fastest real-time OCT to date in terms of voxel rate. A 51 Hz volume rate is realized with half the frame number. In both configurations the speed can be sustained indefinitely. The OCT system uses a 1310 nm Fourier domain mode locked (FDML) laser operated at 3.2 MHz sweep rate. Data acquisition is performed with two dedicated digitizer cards, each running at 2.5 GS/s, hosted in a single desktop computer. Live real-time data processing and visualization are realized with custom developed software on an NVidia GTX 690 dual graphics processing unit (GPU) card. To evaluate potential future applications of such a system, we present volumetric videos captured at 26 and 51 Hz of planktonic crustaceans and skin.
Collapse
Affiliation(s)
- Wolfgang Wieser
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Wolfgang Draxinger
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Thomas Klein
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Sebastian Karpf
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Tom Pfeiffer
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Robert Huber
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck Germany
| |
Collapse
|
29
|
Xu D, Huang Y, Kang JU. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography. OPTICS EXPRESS 2014; 22:14871-84. [PMID: 24977582 PMCID: PMC4083058 DOI: 10.1364/oe.22.014871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).
Collapse
|
30
|
Bradu A, Podoleanu AG. Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:1233-49. [PMID: 24761303 PMCID: PMC3985995 DOI: 10.1364/boe.5.001233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 05/09/2023]
Abstract
Real-time display of processed en-face spectral domain optical coherence tomography (SD-OCT) images is important for diagnosis. However, due to many steps of data processing requirements, such as Fast Fourier transformation (FFT), data re-sampling, spectral shaping, apodization, zero padding, followed by software cut of the 3D volume acquired to produce an en-face slice, conventional high-speed SD-OCT cannot render an en-face OCT image in real time. Recently we demonstrated a Master/Slave (MS)-OCT method that is highly parallelizable, as it provides reflectivity values of points at depth within an A-scan in parallel. This allows direct production of en-face images. In addition, the MS-OCT method does not require data linearization, which further simplifies the processing. The computation in our previous paper was however time consuming. In this paper we present an optimized algorithm that can be used to provide en-face MS-OCT images much quicker. Using such an algorithm we demonstrate around 10 times faster production of sets of en-face OCT images than previously obtained as well as simultaneous real-time display of up to 4 en-face OCT images of 200 × 200 pixels(2) from the fovea and the optic nerve of a volunteer. We also demonstrate 3D and B-scan OCT images obtained from sets of MS-OCT C-scans, i.e. with no FFT and no intermediate step of generation of A-scans.
Collapse
Affiliation(s)
- Adrian Bradu
- Applied Optics Group, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK
| | - Adrian Gh Podoleanu
- Applied Optics Group, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK
| |
Collapse
|
31
|
Watanabe Y, Takahashi Y, Numazawa H. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:021105. [PMID: 23846119 DOI: 10.1117/1.jbo.19.2.021105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.
Collapse
Affiliation(s)
- Yuuki Watanabe
- Yamagata University, Bio-systems Engineering, Graduate School of Science and Engineering, 4-3-16 Johnan, Yonezawa, Yamagata 992-8510, Japan.
| | | | | |
Collapse
|
32
|
Xu D, Huang Y, Kang JU. Real-time compressive sensing spectral domain optical coherence tomography. OPTICS LETTERS 2014; 39:76-9. [PMID: 24365826 PMCID: PMC4114772 DOI: 10.1364/ol.39.000076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We developed and demonstrated real-time compressive sensing (CS) spectral domain optical coherence tomography (SD-OCT) B-mode imaging at excess of 70 fps. The system was implemented using a conventional desktop computer architecture having three graphics processing units. This result shows speed gain of 459 and 112 times compared to the best CS implementations based on the MATLAB and C++, respectively, and that real-time CS SD-OCT imaging can finally be realized.
Collapse
|
33
|
Huang Y, Ibrahim Z, Tong D, Zhu S, Mao Q, Pang J, Andree Lee WP, Brandacher G, Kang JU. Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:111404. [PMID: 23856833 PMCID: PMC3710915 DOI: 10.1117/1.jbo.18.11.111404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Vascular and microvascular anastomoses are critical components of reconstructive microsurgery, vascular surgery, and transplant surgery. Intraoperative surgical guidance using a surgical imaging modality that provides an in-depth view and three-dimensional (3-D) imaging can potentially improve outcome following both conventional and innovative anastomosis techniques. Objective postoperative imaging of the anastomosed vessel can potentially improve the salvage rate when combined with other clinical assessment tools, such as capillary refill, temperature, blanching, and skin turgor. Compared to other contemporary postoperative monitoring modalities--computed tomography angiograms, magnetic resonance (MR) angiograms, and ultrasound Doppler--optical coherence tomography (OCT) is a noninvasive high-resolution (micron-level), high-speed, 3-D imaging modality that has been adopted widely in biomedical and clinical applications. For the first time, to the best of our knowledge, the feasibility of real-time 3-D phase-resolved Doppler OCT (PRDOCT) as an assisted intra- and postoperative imaging modality for microvascular anastomosis of rodent femoral vessels is demonstrated, which will provide new insights and a potential breakthrough to microvascular and supermicrovascular surgery.
Collapse
Affiliation(s)
- Yong Huang
- Johns Hopkins University, Department of Electrical and Computer Engineering, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Eklund A, Dufort P, Forsberg D, LaConte SM. Medical image processing on the GPU - past, present and future. Med Image Anal 2013; 17:1073-94. [PMID: 23906631 DOI: 10.1016/j.media.2013.05.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 05/07/2013] [Accepted: 05/22/2013] [Indexed: 01/22/2023]
Abstract
Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing, are affordable and energy efficient. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms. This review presents the past and present work on GPU accelerated medical image processing, and is meant to serve as an overview and introduction to existing GPU implementations. The review covers GPU acceleration of basic image processing operations (filtering, interpolation, histogram estimation and distance transforms), the most commonly used algorithms in medical imaging (image registration, image segmentation and image denoising) and algorithms that are specific to individual modalities (CT, PET, SPECT, MRI, fMRI, DTI, ultrasound, optical imaging and microscopy). The review ends by highlighting some future possibilities and challenges.
Collapse
Affiliation(s)
- Anders Eklund
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, USA.
| | | | | | | |
Collapse
|
35
|
Hendargo HC, Estrada R, Chiu SJ, Tomasi C, Farsiu S, Izatt JA. Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2013; 4:803-21. [PMID: 23761845 PMCID: PMC3675861 DOI: 10.1364/boe.4.000803] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 05/17/2023]
Abstract
Variance processing methods in Fourier domain optical coherence tomography (FD-OCT) have enabled depth-resolved visualization of the capillary beds in the retina due to the development of imaging systems capable of acquiring A-scan data in the 100 kHz regime. However, acquisition of volumetric variance data sets still requires several seconds of acquisition time, even with high speed systems. Movement of the subject during this time span is sufficient to corrupt visualization of the vasculature. We demonstrate a method to eliminate motion artifacts in speckle variance FD-OCT images of the retinal vasculature by creating a composite image from multiple volumes of data acquired sequentially. Slight changes in the orientation of the subject's eye relative to the optical system between acquired volumes may result in non-rigid warping of the image. Thus, we use a B-spline based free form deformation method to automatically register variance images from multiple volumes to obtain a motion-free composite image of the retinal vessels. We extend this technique to automatically mosaic individual vascular images into a widefield image of the retinal vasculature.
Collapse
Affiliation(s)
| | - Rolando Estrada
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Stephanie J. Chiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Carlo Tomasi
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University, Durham, NC 27708, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
36
|
Cho NH, Jung U, Kim S, Jung W, Oh J, Kang HW, Kim J. High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.3807/josk.2013.17.1.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Xu D, Huang Y, Kang JU. Compressive sensing with dispersion compensation on non-linear wavenumber sampled spectral domain optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2013; 4:1519-32. [PMID: 24049674 PMCID: PMC3771824 DOI: 10.1364/boe.4.001519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/12/2013] [Accepted: 07/21/2013] [Indexed: 05/21/2023]
Abstract
We propose a novel compressive sensing (CS) method on spectral domain optical coherence tomography (SDOCT). By replacing the widely used uniform discrete Fourier transform (UDFT) matrix with a new sensing matrix which is a modification of the non-uniform discrete Fourier transform (NUDFT) matrix, it is shown that undersampled non-linear wavenumber spectral data can be used directly in the CS reconstruction. Thus k-space grid filling and k-linear mask calibration which were proposed to obtain linear wavenumber sampling from the non-linear wavenumber interferometric spectra in previous studies of CS in SDOCT (CS-SDOCT) are no longer needed. The NUDFT matrix is modified to promote the sparsity of reconstructed A-scans by making them symmetric while preserving the value of the desired half. In addition, we show that dispersion compensation can be implemented by multiplying the frequency-dependent correcting phase directly to the real spectra, eliminating the need for constructing complex component of the real spectra. This enables the incorporation of dispersion compensation into the CS reconstruction by adding the correcting term to the modified NUDFT matrix. With this new sensing matrix, A-scan with dispersion compensation can be reconstructed from undersampled non-linear wavenumber spectral data by CS reconstruction. Experimental results show that proposed method can achieve high quality imaging with dispersion compensation.
Collapse
|
38
|
Liu W, Liu T, Song W, Yi J, Zhang HF. Automatic retinal vessel segmentation based on active contours method in Doppler spectral-domain optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:16002. [PMID: 23292611 PMCID: PMC3537324 DOI: 10.1117/1.jbo.18.1.016002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/25/2012] [Accepted: 11/28/2012] [Indexed: 06/01/2023]
Abstract
We achieved fast and automatic retinal vessel segmentation by employing the active contours method in Doppler spectral-domain optical coherence tomography (SD-OCT). In a typical OCT B-scan image, we first extracted the phase variations between adjacent A-lines and removed bulk motion. Then we set the initial contour as the boundary of the whole image and iterated until all of the segmented vessel contours became stabilized. Using a typical office computer, the whole segmentation took no more than 50 s, making real-time retinal vessel segmentation possible. We tested the active contours method segmentation in both controlled phantom and in vivo rodent eye images.
Collapse
Affiliation(s)
- Wenzhong Liu
- Northwestern University, Department of Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Tan Liu
- Northwestern University, Department of Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Wei Song
- Northwestern University, Department of Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208
- Harbin Institute of Technology, Department of Physics, 92 West Da-Zhi Street Nangang District, Harbin, Heilongjiang 150080, China
| | - Ji Yi
- Northwestern University, Department of Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Hao F. Zhang
- Northwestern University, Department of Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208
- Northwestern University, Feinberg School of Medicine, Department of Ophthalmology, 45 North Michigan Avenue, Suite 440, Chicago, Illinois 60611
| |
Collapse
|
39
|
Choi DH, Hiro-Oka H, Shimizu K, Ohbayashi K. Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second. BIOMEDICAL OPTICS EXPRESS 2012; 3:3067-86. [PMID: 23243560 PMCID: PMC3521307 DOI: 10.1364/boe.3.003067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/18/2012] [Accepted: 10/21/2012] [Indexed: 05/22/2023]
Abstract
An ultrafast frequency domain optical coherence tomography system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 MHz. Two optical demultiplexers at a center wavelength of 1310 nm were used for linear-k spectral dispersion and simultaneous differential signal detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, respectively. Using FPGAs for FFT and a GPU for volume rendering, a real-time 4D display was demonstrated at a rate up to 41 volumes/second for an image size of 256 (axial) × 128 × 128 (lateral) voxels.
Collapse
Affiliation(s)
- Dong-hak Choi
- Center for Natural Science, Kitasato University, Kitasato 1-15-1,
Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hideaki Hiro-Oka
- Center for Natural Science, Kitasato University, Kitasato 1-15-1,
Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kimiya Shimizu
- Department of Ophthalmology, Kitasato University, Kitasato1-15-1,
Minamiku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kohji Ohbayashi
- Graduate School of Medical Sciences, Kitasato University,
Kitasato1-15-1, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
40
|
Huang Y, Liu X, Kang JU. Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units. BIOMEDICAL OPTICS EXPRESS 2012; 3:2162-74. [PMID: 23024910 PMCID: PMC3447558 DOI: 10.1364/boe.3.002162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 05/04/2023]
Abstract
We present real-time 3D (2D cross-sectional image plus time) and 4D (3D volume plus time) phase-resolved Doppler OCT (PRDOCT) imaging based on configuration of dual graphics processing units (GPU). A GPU-accelerated phase-resolving processing algorithm was developed and implemented. We combined a structural image intensity-based thresholding mask and average window method to improve the signal-to-noise ratio of the Doppler phase image. A 2D simultaneous display of the structure and Doppler flow images was presented at a frame rate of 70 fps with an image size of 1000 × 1024 (X × Z) pixels. A 3D volume rendering of tissue structure and flow images-each with a size of 512 × 512 pixels-was presented 64.9 milliseconds after every volume scanning cycle with a volume size of 500 × 256 × 512 (X × Y × Z) voxels, with an acquisition time window of only 3.7 seconds. To the best of our knowledge, this is the first time that an online, simultaneous structure and Doppler flow volume visualization has been achieved. Maximum system processing speed was measured to be 249,000 A-scans per second with each A-scan size of 2048 pixels.
Collapse
|
41
|
Francis AW, Kagemann L, Wollstein G, Ishikawa H, Folz S, Overby DR, Sigal IA, Wang B, Schuman JS. Morphometric analysis of aqueous humor outflow structures with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53:5198-207. [PMID: 22499987 PMCID: PMC3727668 DOI: 10.1167/iovs.11-9229] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To describe morphometric details of the human aqueous humor (AH) outflow microvasculature visualized with 360-degree virtual castings during active AH outflow in cadaver eyes and to compare these structures with corrosion casting studies. METHODS The conventional AH outflow pathways of donor eyes (n = 7) and eyes in vivo (n = 3) were imaged with spectral-domain optical coherence tomography (SD-OCT) and wide-bandwidth superluminescent diode array during active AH outflow. Digital image contrast was adjusted to isolate AH microvasculature, and images were viewed in a 3D viewer. Additional eyes (n = 3) were perfused with mock AH containing fluorescent tracer microspheres to compare microvasculature patterns. RESULTS Observations revealed components of the conventional outflow pathway from Schlemm's canal (SC) to the superficial intrascleral venous plexus (ISVP). The superficial ISVP in both our study and corrosion casts were composed of interconnected venules (10-50 μm) forming a hexagonal meshwork. Larger radial arcades (50-100 μm) drained the region nearest SC and converged with larger tortuous vessels (>100 μm). A 360-degree virtual casting closely approximated corrosion casting studies. Tracer studies corroborated our findings. Tracer decorated several larger vessels (50-100 μm) extending posteriorly from the limbus in both raw and contrast-enhanced fluorescence images. Smaller tracer-labeled vessels (30-40 μm) were seen branching between larger vessels and exhibited a similar hexagonal network pattern. CONCLUSIONS SD-OCT is capable of detailed morphometric analysis of the conventional outflow pathway in vivo or ex vivo with details comparable to corrosion casting techniques.
Collapse
Affiliation(s)
- Andrew W. Francis
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Larry Kagemann
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Gadi Wollstein
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Hiroshi Ishikawa
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Steven Folz
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Darryl R. Overby
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Ian A. Sigal
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Bo Wang
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Joel S. Schuman
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| |
Collapse
|
42
|
Kang JU, Huang Y, Zhang K, Ibrahim Z, Cha J, Lee WPA, Brandacher G, Gehlbach PL. Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:081403-1. [PMID: 23224164 PMCID: PMC3381017 DOI: 10.1117/1.jbo.17.8.081403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/03/2012] [Accepted: 03/12/2012] [Indexed: 05/20/2023]
Abstract
The authors describe the development of an ultrafast three-dimensional (3D) optical coherence tomography (OCT) imaging system that provides real-time intraoperative video images of the surgical site to assist surgeons during microsurgical procedures. This system is based on a full-range complex conjugate free Fourier-domain OCT (FD-OCT). The system was built in a CPU-GPU heterogeneous computing architecture capable of video OCT image processing. The system displays at a maximum speed of 10 volume/s for an image volume size of 160 × 80 × 1024(X × Y × Z) pixels. We have used this system to visualize and guide two prototypical microsurgical maneuvers: microvascular anastomosis of the rat femoral artery and ultramicrovascular isolation of the retinal arterioles of the bovine retina. Our preliminary experiments using 3D-OCT-guided microvascular anastomosis showed optimal visualization of the rat femoral artery (diameter<0.8 mm), instruments, and suture material. Real-time intraoperative guidance helped facilitate precise suture placement due to optimized views of the vessel wall during anastomosis. Using the bovine retina as a model system, we have performed "ultra microvascular" feasibility studies by guiding handheld surgical micro-instruments to isolate retinal arterioles (diameter ~0.1 mm). Isolation of the microvessels was confirmed by successfully passing a suture beneath the vessel in the 3D imaging environment.
Collapse
Affiliation(s)
- Jin U Kang
- Johns Hopkins University, Department of Electrical and Computer Engineering, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang Y, Oh CM, Oliveira MC, Islam MS, Ortega A, Park BH. GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm. OPTICS EXPRESS 2012; 20:14797-813. [PMID: 22772175 PMCID: PMC3443681 DOI: 10.1364/oe.20.014797] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present a GPU accelerated multi-functional spectral domain optical coherence tomography system at 1300 nm. The system is capable of real-time processing and display of every intensity image, comprised of 512 pixels by 2048 A-lines acquired at 20 frames per second. The update rate for all four images with size of 512 pixels by 2048 A-lines simultaneously (intensity, phase retardation, flow and en face view) is approximately 10 frames per second. Additionally, we report for the first time the characterization of phase retardation and diattenuation by a sample comprised of a stacked set of polarizing film and wave plate. The calculated optic axis orientation, phase retardation and diattenuation match well with expected values. The speed of each facet of the multi-functional OCT CPU-GPU hybrid acquisition system, intensity, phase retardation, and flow, were separately demonstrated by imaging a horseshoe crab lateral compound eye, a non-uniformly heated chicken muscle, and a microfluidic device. A mouse brain with thin skull preparation was imaged in vivo and demonstrated the capability of the system for live multi-functional OCT visualization.
Collapse
|
44
|
Lee KKC, Mariampillai A, Yu JXZ, Cadotte DW, Wilson BC, Standish BA, Yang VXD. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit. BIOMEDICAL OPTICS EXPRESS 2012; 3:1557-64. [PMID: 22808428 PMCID: PMC3395481 DOI: 10.1364/boe.3.001557] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 05/20/2023]
Abstract
Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second.
Collapse
Affiliation(s)
- Kenneth K. C. Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Adrian Mariampillai
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Joe X. Z. Yu
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
| | - David W. Cadotte
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
- Instite of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Brian C. Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Beau A. Standish
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
| | - Victor X. D. Yang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
- Department of Medical Imaging, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Wang L, Hofer B, Guggenheim JA, Povazay B. Graphics processing unit-based dispersion encoded full-range frequency-domain optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:077007. [PMID: 22894520 DOI: 10.1117/1.jbo.17.7.077007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dispersion encoded full-range (DEFR) frequency-domain optical coherence tomography (FD-OCT) and its enhanced version, fast DEFR, utilize dispersion mismatch between sample and reference arm to eliminate the ambiguity in OCT signals caused by non-complex valued spectral measurement, thereby numerically doubling the usable information content. By iteratively suppressing asymmetrically dispersed complex conjugate artifacts of OCT-signal pulses the complex valued signal can be recovered without additional measurements, thus doubling the spatial signal range to cover the full positive and negative sampling range. Previously the computational complexity and low processing speed limited application of DEFR to smaller amounts of data and did not allow for interactive operation at high resolution. We report a graphics processing unit (GPU)-based implementation of fast DEFR, which significantly improves reconstruction speed by a factor of more than 90 in respect to CPU-based processing and thereby overcomes these limitations. Implemented on a commercial low-cost GPU, a display line rate of ∼21,000 depth scans/s for 2048 samples/depth scan using 10 iterations of the fast DEFR algorithm has been achieved, sufficient for real-time visualization in situ.
Collapse
Affiliation(s)
- Ling Wang
- Cardiff University, School of Optometry & Vision Sciences, Maindy Road, Cardiff, CF24 4LU, United Kingdom
| | | | | | | |
Collapse
|
46
|
Kuo WC, Kim J, Shemonski ND, Chaney EJ, Spillman DR, Boppart SA. Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system. BIOMEDICAL OPTICS EXPRESS 2012; 3:1149-61. [PMID: 22741064 PMCID: PMC3370958 DOI: 10.1364/boe.3.001149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 05/03/2023]
Abstract
Advances in optical imaging modalities, such as optical coherence tomography (OCT), enable us to observe tissue microstructure at high resolution and in real time. Currently, core-needle biopsies are guided by external imaging modalities such as ultrasound imaging and x-ray computed tomography (CT) for breast and lung masses, respectively. These image-guided procedures are frequently limited by spatial resolution when using ultrasound imaging, or by temporal resolution (rapid real-time feedback capabilities) when using x-ray CT. One feasible approach is to perform OCT within small gauge needles to optically image tissue microstructure. However, to date, no system or core-needle device has been developed that incorporates both three-dimensional OCT imaging and tissue biopsy within the same needle for true OCT-guided core-needle biopsy. We have developed and demonstrate an integrated core-needle biopsy system that utilizes catheter-based 3-D OCT for real-time image-guidance for target tissue localization, imaging of tissue immediately prior to physical biopsy, and subsequent OCT imaging of the biopsied specimen for immediate assessment at the point-of-care. OCT images of biopsied ex vivo tumor specimens acquired during core-needle placement are correlated with corresponding histology, and computational visualization of arbitrary planes within the 3-D OCT volumes enables feedback on specimen tissue type and biopsy quality. These results demonstrate the potential for using real-time 3-D OCT for needle biopsy guidance by imaging within the needle and tissue during biopsy procedures.
Collapse
Affiliation(s)
- Wei-Cheng Kuo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical Engineering, National Taiwan University, 106 Taiwan
| | - Jongsik Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nathan D. Shemonski
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Departments of Bioengineering and Internal Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
47
|
Ultra-fast displaying Spectral Domain Optical Doppler Tomography system using a Graphics Processing Unit. SENSORS 2012; 12:6920-9. [PMID: 22969328 PMCID: PMC3435957 DOI: 10.3390/s120606920] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 11/18/2022]
Abstract
We demonstrate an ultrafast displaying Spectral Domain Optical Doppler Tomography system using Graphics Processing Unit (GPU) computing. The calculation of FFT and the Doppler frequency shift is accelerated by the GPU. Our system can display processed OCT and ODT images simultaneously in real time at 120 fps for 1,024 pixels × 512 lateral A-scans. The computing time for the Doppler information was dependent on the size of the moving average window, but with a window size of 32 pixels the ODT computation time is only 8.3 ms, which is comparable to the data acquisition time. Also the phase noise decreases significantly with the window size. Since the performance of a real-time display for OCT/ODT is very important for clinical applications that need immediate diagnosis for screening or biopsy. Intraoperative surgery can take much benefit from the real-time display flow rate information from the technology. Moreover, the GPU is an attractive tool for clinical and commercial systems for functional OCT features as well.
Collapse
|
48
|
Cadotte DW, Mariampillai A, Cadotte A, Lee KKC, Kiehl TR, Wilson BC, Fehlings MG, Yang VXD. Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility. BIOMEDICAL OPTICS EXPRESS 2012; 3:911-919. [PMID: 22567584 PMCID: PMC3342196 DOI: 10.1364/boe.3.000911] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/24/2012] [Accepted: 03/31/2012] [Indexed: 05/29/2023]
Abstract
Optical coherence tomography (OCT) has the combined advantage of high temporal (µsec) and spatial (<10µm) resolution. These features make it an attractive tool to study the dynamic relationship between neural activity and the surrounding blood vessels in the spinal cord, a topic that is poorly understood. Here we present work that aims to optimize an in vivo OCT imaging model of the rodent spinal cord. In this study we image the microvascular networks of both rats and mice using speckle variance OCT. This is the first report of depth resolved imaging of the in vivo spinal cord using an entirely endogenous contrast mechanism.
Collapse
Affiliation(s)
- David W. Cadotte
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Adrian Mariampillai
- Biophotonics and Bioengineering Laboratory, Ryerson University, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Adam Cadotte
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kenneth K. C. Lee
- Biophotonics and Bioengineering Laboratory, Ryerson University, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Tim-Rasmus Kiehl
- Department of Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Brian C. Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Victor X. D. Yang
- Biophotonics and Bioengineering Laboratory, Ryerson University, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
- Department of Medical Imaging, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Watanabe Y. Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:050503. [PMID: 22612118 DOI: 10.1117/1.jbo.17.5.050503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The author presents a graphics processing unit (GPU) programming for real-time Fourier domain optical coherence tomography (FD-OCT) with fixed-pattern noise removal by subtracting mean and median. In general, the fixed-pattern noise can be removed by the averaged spectrum from the many spectra of an actual measurement. However, a mean-spectrum results in artifacts as residual lateral lines caused by a small number of high-reflective points on a sample surface. These artifacts can be eliminated from OCT images by using medians instead of means. However, median calculations that are based on a sorting algorithm can generate a large amount of computation time. With the developed GPU programming, highly reflective surface regions were obtained by calculating the standard deviation of the Fourier transformed data in the lateral direction. The medians and means were then subtracted at the observed regions and other regions, such as backgrounds. When the median calculation was less than 256 positions out of a total 512 depths in an OCT image with 1024 A-lines, the GPU processing rate was faster than that of the line scan camera (46.9 kHz). Therefore, processed OCT images can be displayed in real-time using partial medians.
Collapse
|
50
|
Jung US, Cho NH, Kim SH, Jeong HS, Kim JH, Ahn YC. Simple Spectral Calibration Method and Its Application Using an Index Array for Swept Source Optical Coherence Tomography. ACTA ACUST UNITED AC 2011. [DOI: 10.3807/josk.2011.15.4.386] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|