1
|
Parakkel RR, Wong D, Li C, Cheong J, Nongpiur ME, Chong RS, Aung T, Schmetterer L, Liu X, Chua J. Retinal Nerve Fiber Layer Damage Assessment in Glaucomatous Eyes Using Retinal Retardance Measured by Polarization-Sensitive Optical Coherence Tomography. Transl Vis Sci Technol 2024; 13:9. [PMID: 38743409 PMCID: PMC11103739 DOI: 10.1167/tvst.13.5.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/20/2024] [Indexed: 05/16/2024] Open
Abstract
Purpose To assess the diagnostic performance and structure-function association of retinal retardance (RR), a customized metric measured by a prototype polarization-sensitive optical coherence tomography (PS-OCT), across various stages of glaucoma. Methods This cross-sectional pilot study analyzed 170 eyes from 49 healthy individuals and 68 patients with glaucoma. The patients underwent PS-OCT imaging and conventional spectral-domain optical coherence tomography (SD-OCT), as well as visual field (VF) tests. Parameters including RR and retinal nerve fiber layer thickness (RNFLT) were extracted from identical circumpapillary regions of the fundus. Glaucomatous eyes were categorized into early, moderate, or severe stages based on VF mean deviation (MD). The diagnostic performance of RR and RNFLT in discriminating glaucoma from controls was assessed using receiver operating characteristic (ROC) curves. Correlations among VF-MD, RR, and RNFLT were evaluated and compared within different groups of disease severity. Results The diagnostic performance of both RR and RNFLT was comparable for glaucoma detection (RR AUC = 0.98, RNFLT AUC = 0.97; P = 0.553). RR showed better structure-function association with VF-MD than RNFLT (RR VF-MD = 0.68, RNFLT VF-MD = 0.58; z = 1.99; P = 0.047) in glaucoma cases, especially in severe glaucoma, where the correlation between VF-MD and RR (r = 0.73) was significantly stronger than with RNFLT (r = 0.43, z = 1.96, P = 0.050). In eyes with early and moderate glaucoma, the structure-function association was similar when using RNFLT and RR. Conclusions RR and RNFLT have similar performance in glaucoma diagnosis. However, in patients with glaucoma especially severe glaucoma, RR showed a stronger correlation with VF test results. Further research is needed to validate RR as an indicator for severe glaucoma evaluation and to explore the benefits of using PS-OCT in clinical practice. Translational Relevance We demonstrated that PS-OCT has the potential to evaluate the status of RNFL structural damage in eyes with severe glaucoma, which is currently challenging in clinics.
Collapse
Affiliation(s)
| | - Damon Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Chi Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
| | - Jocelyn Cheong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Monisha Esther Nongpiur
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Rachel Shujuan Chong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Xinyu Liu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
2
|
Park KS, Shin JG, Eom TJ. Buffered polarization diverse detection for single-camera polarization-sensitive optical coherence tomography. OPTICS LETTERS 2019; 44:5739-5742. [PMID: 31774767 DOI: 10.1364/ol.44.005739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Herein we propose a method to mitigate a position mismatch problem for a spectral-domain polarization-sensitive optical coherence tomography (SD-PS-OCT) system that uses a single line-scan detection scheme. A single detector-based PS-OCT detects two orthogonal polarization components as two adjacent A-scan signals in turns. Thus, two adjacent A-scan signals are not scattered at a fixed point in time (position mismatch problem), resulting in uncorrelated signals between them. To achieve sequential detection of simultaneously scattered light, a buffering single-mode fiber was connected to one of the two ports coming out of the optical switch, provided a proper time delay. A single-mode optical fiber of 2.69 km in length was used to buffer, and its length was determined by a frame rate of the spectrometer used as a detector. With the proposed SD-PS-OCT scheme, the PS-OCT system with a simple configuration, and the minimized position mismatch problem between two polarization components can be set.
Collapse
|
3
|
Cense B, Miller DT, King BJ, Theelen T, Elsner AE. Measuring polarization changes in the human outer retina with polarization-sensitive optical coherence tomography. JOURNAL OF BIOPHOTONICS 2018; 11:e201700134. [PMID: 29282883 PMCID: PMC6596294 DOI: 10.1002/jbio.201700134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/25/2017] [Accepted: 12/25/2017] [Indexed: 05/02/2023]
Abstract
Morphological changes in the outer retina such as drusen are established biomarkers to diagnose age-related macular degeneration. However, earlier diagnosis might be possible by taking advantage of more subtle changes that accompany tissues that bear polarization-altering properties. To test this hypothesis, we developed a method based on polarization-sensitive optical coherence tomography with which volumetric data sets of the macula were obtained from 10 young (<25 years) and 10 older (>54 years) subjects. All young subjects and 5 of the older subjects had retardance values induced by the retinal pigment epithelium and Bruch's membrane (RPE-BM) complex that were just above the noise floor measurement (5°-13° at 840 nm). In contrast, elevated retardance, up to 180°, was observed in the other 5 older subjects. Analysis of the degree of polarization uniformity (DOPU) demonstrates that reduced DOPU (<0.4) in the RPE is associated with elevated double pass phase retardation (DPPR) below the RPE-BM complex, suggesting that the observed elevated DPPR in older subjects is the result of increased scattering or polarization scrambling. Collectively, our measurements show that the outer retina can undergo dramatic change in its polarization properties with age, and in some cases still retain its clinically normal appearance.
Collapse
Affiliation(s)
- Barry Cense
- Center for Optical Research and Education, Utsunomiya University, Utsunomiya, Japan
| | | | - Brett J. King
- School of Optometry, Indiana University, Bloomington, Indiana
| | - Thomas Theelen
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ann E. Elsner
- School of Optometry, Indiana University, Bloomington, Indiana
| |
Collapse
|
4
|
Fortune B. In vivo imaging methods to assess glaucomatous optic neuropathy. Exp Eye Res 2015; 141:139-53. [PMID: 26048475 DOI: 10.1016/j.exer.2015.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The goal of this review is to summarize the most common imaging methods currently applied for in vivo assessment of ocular structure in animal models of experimental glaucoma with an emphasis on translational relevance to clinical studies of the human disease. The most common techniques in current use include optical coherence tomography and scanning laser ophthalmoscopy. In reviewing the application of these and other imaging modalities to study glaucomatous optic neuropathy, this article is organized into three major sections: 1) imaging the optic nerve head, 2) imaging the retinal nerve fiber layer and 3) imaging retinal ganglion cell soma and dendrites. The article concludes with a brief section on possible future directions.
Collapse
Affiliation(s)
- Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, 1225 NE Second Avenue, Portland, OR 97232, USA.
| |
Collapse
|
5
|
Sugita M, Pircher M, Zotter S, Baumann B, Roberts P, Makihira T, Tomatsu N, Sato M, Vass C, Hitzenberger CK. Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT. BIOMEDICAL OPTICS EXPRESS 2015; 6:1030-54. [PMID: 25798324 PMCID: PMC4361419 DOI: 10.1364/boe.6.001030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 05/18/2023]
Abstract
We present a new semi-automatic processing method for retinal nerve fiber bundle tracing based on polarization sensitive optical coherence tomography (PS-OCT) data sets. The method for tracing is based on a nerve fiber orientation map that covers the fovea and optic nerve head (ONH) regions. In order to generate the orientation map, two types of information are used: optic axis orientation based on polarization data, and complementary information obtained from nerve fiber layer (NFL) local thickness variation to reveal fiber bundle structures around the fovea. The corresponding two orientation maps are fused into a combined fiber orientation map. En face maps of NFL retardation, thickness, and unit-depth-retardation (UDR, equivalent to birefringence) are transformed into "along-trace" maps by using the obtained traces of the nerve fiber bundles. The method is demonstrated in the eyes of healthy volunteers, and as an example of further analyses utilizing this method, maps illustrating the gradients of NFL retardation, thickness, and UDR are demonstrated.
Collapse
Affiliation(s)
- Mitsuro Sugita
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna,
Austria
- Canon Inc., Tokyo,
Japan
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna,
Austria
- Medical Imaging Cluster, Medical University of Vienna, Vienna,
Austria
| | - Stefan Zotter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna,
Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna,
Austria
- Medical Imaging Cluster, Medical University of Vienna, Vienna,
Austria
| | - Philipp Roberts
- Department of Ophthalmology and Optometry, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna,
Austria
| | | | | | | | - Clemens Vass
- Department of Ophthalmology and Optometry, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna,
Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna,
Austria
- Medical Imaging Cluster, Medical University of Vienna, Vienna,
Austria
| |
Collapse
|
6
|
Liu S, Datta A, Ho D, Dwelle J, Wang D, Milner TE, Rylander HG, Markey MK. Effect of image registration on longitudinal analysis of retinal nerve fiber layer thickness of non-human primates using Optical Coherence Tomography (OCT). EYE AND VISION (LONDON, ENGLAND) 2015; 2:3. [PMID: 26605359 PMCID: PMC4657366 DOI: 10.1186/s40662-015-0013-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND In this paper we determined the benefits of image registration on estimating longitudinal retinal nerve fiber layer thickness (RNFLT) changes. METHODS RNFLT maps around the optic nerve head (ONH) of healthy primate eyes were measured using Optical Coherence Tomography (OCT) weekly for 30 weeks. One automatic algorithm based on mutual information (MI) and the other semi-automatic algorithm based on log-polar transform cross-correlation using manually segmented blood vessels (LPCC_MSBV), were used to register retinal maps longitudinally. We compared the precision and recall between manually segmented image pairs for the two algorithms using a linear mixed effects model. RESULTS We found that the precision calculated between manually segmented image pairs following registration by LPCC_MSBV algorithm is significantly better than the one following registration by MI algorithm (p < <0.0001). Trend of the all-rings and temporal, superior, nasal and inferior (TSNI) quadrants average of RNFLT over time in healthy primate eyes are not affected by registration. RNFLT of clock hours 1, 2, and 10 showed significant change over 30 weeks (p = 0.0058, 0.0054, and 0.0298 for clock hours 1, 2 and 10 respectively) without registration, but stayed constant over time with registration. CONCLUSIONS The LPCC_MSBV provides better registration of RNFLT maps recorded on different dates than the automatic MI algorithm. Registration of RNFLT maps can improve clinical analysis of glaucoma progression.
Collapse
Affiliation(s)
- Shuang Liu
- />Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
- />Present address: Clinical Neuroscience Imaging Center (CNIC), Department of Neurology, Yale School of Medicine, New Haven, CT 06510 USA
| | - Anjali Datta
- />Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Derek Ho
- />Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jordan Dwelle
- />Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Daifeng Wang
- />Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Thomas E Milner
- />Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Henry Grady Rylander
- />Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Mia K Markey
- />Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
- />Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
7
|
Abstract
The use of ocular imaging tools to estimate structural and functional damage in glaucoma has become a common clinical practice and a substantial focus of vision research. The evolution of the imaging technologies through increased scanning speed, penetration depth, image registration and development of multimodal devices has the potential to detect the pathology more reliably and in earlier stages. This review is focused on new ocular imaging modalities used for glaucoma diagnosis.
Collapse
Affiliation(s)
- Tigran Kostanyan
- Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gadi Wollstein
- Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joel S Schuman
- Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, PA, USA
| |
Collapse
|
8
|
Wang T, Brewer M, Zhu Q. An overview of optical coherence tomography for ovarian tissue imaging and characterization. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:1-16. [PMID: 25329515 PMCID: PMC4268384 DOI: 10.1002/wnan.1306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Ovarian cancer has the lowest survival rate among all the gynecologic cancers because it is predominantly diagnosed at late stages due to the lack of reliable symptoms and efficacious screening techniques. Optical coherence tomography (OCT) is an emerging technique that provides high-resolution images of biological tissue in real time, and demonstrates great potential for imaging of ovarian tissue. In this article, we review OCT studies for visualization and diagnosis of human ovaries as well as quantitative extraction of ovarian tissue optical properties for classifying normal and malignant ovaries. OCT combined with other imaging modalities to further improve ovarian tissue diagnosis is also reviewed.
Collapse
Affiliation(s)
- Tianheng Wang
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Molly Brewer
- Division of Gynecologic Oncology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Quing Zhu
- Department of Electrical and Computer Engineering & Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Braaf B, Vermeer KA, de Groot M, Vienola KV, de Boer JF. Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions. BIOMEDICAL OPTICS EXPRESS 2014; 5:2736-58. [PMID: 25136498 PMCID: PMC4133002 DOI: 10.1364/boe.5.002736] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 05/18/2023]
Abstract
In polarization-sensitive optical coherence tomography (PS-OCT) the use of single-mode fibers causes unpredictable polarization distortions which can result in increased noise levels and erroneous changes in calculated polarization parameters. In the current paper this problem is addressed by a new Jones matrix analysis method that measures and corrects system polarization distortions as a function of wavenumber by spectral analysis of the sample surface polarization state and deeper located birefringent tissue structures. This method was implemented on a passive-component depth-multiplexed swept-source PS-OCT system at 1040 nm which was theoretically modeled using Jones matrix calculus. High-resolution B-scan images are presented of the double-pass phase retardation, diattenuation, and relative optic axis orientation to show the benefits of the new analysis method for in vivo imaging of the human retina. The correction of system polarization distortions yielded reduced phase retardation noise, and better estimates of the diattenuation and the relative optic axis orientation in weakly birefringent tissues. The clinical potential of the system is shown by en face visualization of the phase retardation and optic axis orientation of the retinal nerve fiber layer in a healthy volunteer and a glaucoma patient with nerve fiber loss.
Collapse
Affiliation(s)
- Boy Braaf
- Rotterdam Ophthalmic Institute, Schiedamse Vest 160, 3011 BH Rotterdam, The Netherlands
- LaserLaB, Department of Physics and Astronomy, VU University, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Koenraad A. Vermeer
- Rotterdam Ophthalmic Institute, Schiedamse Vest 160, 3011 BH Rotterdam, The Netherlands
| | - Mattijs de Groot
- Rotterdam Ophthalmic Institute, Schiedamse Vest 160, 3011 BH Rotterdam, The Netherlands
- LaserLaB, Department of Physics and Astronomy, VU University, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Kari V. Vienola
- Rotterdam Ophthalmic Institute, Schiedamse Vest 160, 3011 BH Rotterdam, The Netherlands
- LaserLaB, Department of Physics and Astronomy, VU University, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Johannes F. de Boer
- Rotterdam Ophthalmic Institute, Schiedamse Vest 160, 3011 BH Rotterdam, The Netherlands
- LaserLaB, Department of Physics and Astronomy, VU University, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Kasaragod D, Makita S, Fukuda S, Beheregaray S, Oshika T, Yasuno Y. Bayesian maximum likelihood estimator of phase retardation for quantitative polarization-sensitive optical coherence tomography. OPTICS EXPRESS 2014; 22:16472-92. [PMID: 24977897 DOI: 10.1364/oe.22.016472] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper presents the theory and numerical implementation of a maximum likelihood estimator for local phase retardation (i.e., birefringence) measured using Jones-matrix-based polarization sensitive optical coherence tomography. Previous studies have shown conventional mean estimations of phase retardation and birefringence are significantly biased in the presence of system noise. Our estimator design is based on a Bayes' rule that relates the distributions of the measured birefringence under a particular true birefringence and the true birefringence under a particular measured birefringence. We used a Monte-Carlo method to calculate the likelihood function that describes the relationship between the distributions and numerically implement the estimator. Our numerical and experimental results show that the proposed estimator was asymptotically unbiased even with low signal-to-noise ratio and/or for the true phase retardations close to the edge of the measurement range. The estimator revealed detailed clinical features when applied to the in vivo anterior human eye.
Collapse
|
11
|
Abstract
PURPOSE Compare performance of normalized reflectance index (NRI) and retinal nerve fiber layer thickness (RNFLT) parameters determined from optical coherence tomography (OCT) images for glaucoma and glaucoma suspect diagnosis. METHODS Seventy-five eyes from 71 human subjects were studied: 33 controls, 24 glaucomatous, and 18 glaucoma-suspects. RNFLT and NRI maps were measured using 2 custom-built OCT systems and the commercial instrument RTVue. Using area under the receiver operating characteristic curve, RNFLT and NRI measured in 7 RNFL locations were analyzed to distinguish between control, glaucomatous, and glaucoma-suspect eyes. RESULTS The mean NRI of the control group was significantly larger than the means of glaucomatous and glaucoma-suspect groups in most RNFL locations for all 3 OCT systems (P<0.05 for all comparisons). NRI performs significantly better than RNFLT at distinguishing between glaucoma-suspect and control eyes using RTVue OCT (P=0.008). The performances of NRI and RNFLT for classifying glaucoma-suspect versus control eyes were statistically indistinguishable for PS-OCT-EIA (P=0.101) and PS-OCT-DEC (P=0.227). The performances of NRI and RNFLT for classifying glaucomatous versus control eyes were statistically indistinguishable (PS-OCT-EIA: P=0.379; PS-OCT-DEC: P=0.338; RTVue OCT: P=0.877). CONCLUSIONS NRI is a promising measure for distinguishing between glaucoma-suspect and control eyes and may indicate disease in the preperimetric stage. Results of this pilot clinical study warrant a larger study to confirm the diagnostic power of NRI for diagnosing preperimetric glaucoma.
Collapse
|
12
|
Yin B, Wang B, Rylander HG, Milner TE. Degradation in the degree of polarization in human retinal nerve fiber layer. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:16001. [PMID: 24390374 PMCID: PMC3881105 DOI: 10.1117/1.jbo.19.1.016001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 05/21/2023]
Abstract
Using a fiber-based swept-source (SS) polarization-sensitive optical coherence tomography (PS-OCT) system, we investigate the degree of polarization (DOP) of light backscattered from the retinal nerve fiber layer (RNFL) in normal human subjects. Algorithms for processing data were developed to analyze the deviation in phase retardation and intensity of backscattered light in directions parallel and perpendicular to the nerve fiber axis (fast and slow axes of RNFL). Considering superior, inferior, and nasal quadrants, we observe the strongest degradation in the DOP with increasing RNFL depth in the temporal quadrant. Retinal ganglion cell axons in normal human subjects are known to have the smallest diameter in the temporal quadrant, and the greater degradation observed in the DOP suggests that higher polarimetric noise may be associated with neural structure in the temporal RNFL. The association between depth degradation in the DOP and RNFL structural properties may broaden the utility of PS-OCT as a functional imaging technique.
Collapse
Affiliation(s)
- Biwei Yin
- University of Texas at Austin, Departments of Electrical and Computer Engineering, 1 University Station C0803, Austin, Texas 78712
- Address all correspondence to: Biwei Yin, E-mail:
| | - Bingqing Wang
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station, C0800, Austin, Texas 78712
| | - Henry G. Rylander
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station, C0800, Austin, Texas 78712
| | - Thomas E. Milner
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station, C0800, Austin, Texas 78712
| |
Collapse
|
13
|
Wang B, Yin B, Dwelle J, Rylander HG, Markey MK, Milner TE. Path-length-multiplexed scattering-angle-diverse optical coherence tomography for retinal imaging. OPTICS LETTERS 2013; 38:4374-7. [PMID: 24177097 PMCID: PMC3903005 DOI: 10.1364/ol.38.004374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A low-resolution path-length-multiplexed scattering angle diverse optical coherence tomography (PM-SAD-OCT) is constructed to investigate the scattering properties of the retinal nerve fiber layer (RNFL). Low-resolution PM-SAD-OCT retinal images acquired from a healthy human subject show the variation of RNFL scattering properties at retinal locations around the optic nerve head. The results are consistent with known retinal ganglion cell neural anatomy and principles of light scattering. Application of PM-SAD-OCT may provide potentially valuable diagnostic information for clinical retinal imaging.
Collapse
Affiliation(s)
- Bingqing Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Biwei Yin
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jordan Dwelle
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - H. Grady Rylander
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Mia K. Markey
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas E. Milner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
14
|
Dwelle J, Liu S, Wang B, McElroy A, Ho D, Markey MK, Milner T, Rylander HG. Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates. Invest Ophthalmol Vis Sci 2012; 53:4380-95. [PMID: 22570345 DOI: 10.1167/iovs.11-9130] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We identified candidate optical coherence tomography (OCT) markers for early glaucoma diagnosis. Time variation of retinal nerve fiber layer (RNFL) thickness, phase retardation, birefringence, and reflectance using polarization sensitive optical coherence tomography (PS-OCT) were measured in three non-human primates with induced glaucoma in one eye. We characterized time variation of RNFL thickness, phase retardation, birefringence, and reflectance with elevated intraocular pressure (IOP). METHODS One eye of each of three non-human primates was laser treated to increase IOP. Each primate was followed for a 30-week period. PS-OCT measurements were recorded at weekly intervals. Reflectance index (RI) is introduced to characterize RNFL reflectance. Associations between elevated IOP and RNFL thickness, phase retardation, birefringence, and reflectance were characterized in seven regions (entire retina, inner and outer rings, and nasal, temporal, superior and inferior quadrants) by linear and non-linear mixed-effects models. RESULTS Elevated IOP was achieved in three non-human primate eyes with an average increase of 13 mm Hg over the study period. Elevated IOP was associated with decreased RNFL thickness in the nasal region (P = 0.0002), decreased RNFL phase retardation in the superior (P = 0.046) and inferior (P = 0.021) regions, decreased RNFL birefringence in the nasal (P = 0.002) and inferior (P = 0.029) regions, and loss of RNFL reflectance in the outer rings (P = 0.018). When averaged over the entire retinal area, only RNFL reflectance showed a significant decrease (P = 0.028). CONCLUSIONS Of the measured parameters, decreased RNFL reflectance was the most robust correlate with glaucomatous damage. Candidate cellular mechanisms are considered for decreased RNFL reflectance, including mitochondrial dysfunction and retinal ganglion cell apoptosis.
Collapse
Affiliation(s)
- Jordan Dwelle
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang Y, Wang T, Wang X, Sanders M, Brewer M, Zhu Q. Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization. BIOMEDICAL OPTICS EXPRESS 2012; 3:1548-56. [PMID: 22808427 PMCID: PMC3395480 DOI: 10.1364/boe.3.001548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 05/02/2023]
Abstract
In this report, optical scattering coefficient and phase retardation quantitatively estimated from polarization-sensitive OCT (PSOCT) were used for ovarian tissue characterization. A total of 33 ex vivo ovaries (normal: n = 26, malignant: n = 7) obtained from 18 patients were investigated. A specificity of 100% and a sensitivity of 86% were achieved by using estimated scattering coefficient alone; and a specificity of 100% and a sensitivity of 43% were obtained by using phase retardation alone. However, a superior specificity of 100% and sensitivity of 100% were achieved if these two parameters were used together for classifying normal and malignant ovaries. Quantitative measurement of collagen content obtained from Sirius red histology sections shows that it correlates with estimated scattering coefficient and phase retardation. Our initial results demonstrate that quantitative analysis of PSOCT could be a potentially valuable method for distinguishing normal from malignant ovarian tissues during minimally invasive surgery and help guide surgical intervention.
Collapse
Affiliation(s)
- Yi Yang
- University of Connecticut, Dept. of Electrical and Computer Engineering, Storrs, CT 06269, USA
- The first two authors contributed equally to this work
| | - Tianheng Wang
- University of Connecticut, Dept. of Electrical and Computer Engineering, Storrs, CT 06269, USA
- The first two authors contributed equally to this work
| | - Xiaohong Wang
- University of Connecticut Health Center, Division of Pathology, Farmington, CT 06030, USA
| | - Melinda Sanders
- University of Connecticut Health Center, Division of Pathology, Farmington, CT 06030, USA
| | - Molly Brewer
- University of Connecticut, Dept. of Electrical and Computer Engineering, Storrs, CT 06269, USA
- University of Connecticut Health Center, Division of Gynecologic Oncology, Farmington, CT 06030, USA
| | - Quing Zhu
- University of Connecticut, Dept. of Electrical and Computer Engineering, Storrs, CT 06269, USA
| |
Collapse
|
16
|
Kocaoglu OP, Cense B, Jonnal RS, Wang Q, Lee S, Gao W, Miller DT. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics. Vision Res 2011; 51:1835-44. [PMID: 21722662 DOI: 10.1016/j.visres.2011.06.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 01/09/2023]
Abstract
Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye.
Collapse
Affiliation(s)
- Omer P Kocaoglu
- School of Optometry, Indiana University, 800 E. Atwater Avenue, Bloomington, IN 47405, United States.
| | | | | | | | | | | | | |
Collapse
|