1
|
Chen M, Lu L, Yu H, Li C, Zhao N. Integration of Colloidal Quantum Dots with Photonic Structures for Optoelectronic and Optical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101560. [PMID: 34319002 PMCID: PMC8456226 DOI: 10.1002/advs.202101560] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Indexed: 05/05/2023]
Abstract
Colloidal quantum dot (QD), a solution-processable nanoscale optoelectronic building block with well-controlled light absorption and emission properties, has emerged as a promising material system capable of interacting with various photonic structures. Integrated QD/photonic structures have been successfully realized in many optical and optoelectronic devices, enabling enhanced performance and/or new functionalities. In this review, the recent advances in this research area are summarized. In particular, the use of four typical photonic structures, namely, diffraction gratings, resonance cavities, plasmonic structures, and photonic crystals, in modulating the light absorption (e.g., for solar cells and photodetectors) or light emission (e.g., for color converters, lasers, and light emitting diodes) properties of QD-based devices is discussed. A brief overview of QD-based passive devices for on-chip photonic circuit integration is also presented to provide a holistic view on future opportunities for QD/photonic structure-integrated optoelectronic systems.
Collapse
Affiliation(s)
- Mengyu Chen
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Lihua Lu
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
| | - Hui Yu
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Cheng Li
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
- Future DisplayInstitute of XiamenXiamen361005P. R. China
| | - Ni Zhao
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| |
Collapse
|
2
|
Beck FJ, Stavrinadis A, Lasanta T, Szczepanick JP, Konstantatos G. Understanding light trapping by resonant coupling to guided modes and the importance of the mode profile. OPTICS EXPRESS 2016; 24:759-772. [PMID: 26832461 DOI: 10.1364/oe.24.000759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a simple conceptual model describing the absorption enhancement provided by diffraction gratings due to resonant coupling to guided modes in a multi-layered structure. In doing so, we provide insight into why certain guided modes are more strongly excited than others and demonstrate that the spatial overlap of the mode profile with the grating is important. The model is verified by comparison to optical simulations and experimental measurements. We fabricate metal nanoparticle gratings integrated as back contacts in solution-processed PbS colloidal quantum dot photodiodes. The measured photocurrent at the target wavelength is enhanced by 250%, with reference to planar devices, due to resonant coupling to guided modes with strong spatial overlap with the gratings. In comparison, resonant coupling to weakly overlapping modes results in a 25% increase at the same wavelength.
Collapse
|
3
|
Lee Y, Lee J, Lee TK, Park J, Ha M, Kwak SK, Ko H. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26421-26429. [PMID: 26575302 DOI: 10.1021/acsami.5b09947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When semiconducting nanostructures are combined with noble metals, the surface plasmons of the noble metals, in addition to the charge transfer interactions between the semiconductors and noble metals, can be utilized to provide strong surface plasmon effects. Here, we suggest a particle-film plasmonic system in conjunction with tapered ZnO nanowire arrays for ultrasensitive SERS chemical sensors. In this design, the gap plasmons between the metal nanoparticles and the metal films provide significantly improved surface-enhanced Raman spectroscopy (SERS) effects compared to those of interparticle surface plasmons. Furthermore, 3D tapered metal nanostructures with particle-film plasmonic systems enable efficient light trapping and waveguiding effects. To study the effects of various morphologies of ZnO nanostructures on the light trapping and thus the SERS enhancements, we compare the performance of three different ZnO morphologies: ZnO nanocones (NCs), nanonails (NNs), and nanorods (NRs). Finally, we demonstrate that our SERS chemical sensors enable a molecular level of detection capability of benzenethiol (100 zeptomole), rhodamine 6G (10 attomole), and adenine (10 attomole) molecules. This work presents a new design platform based on the 3D antireflective metal/semiconductor heterojunction nanostructures, which will play a critical role in the study of plasmonics and SERS chemical sensors.
Collapse
Affiliation(s)
- Youngoh Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Jiwon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Tae Kyung Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Jonghwa Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Minjung Ha
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Hyunhyub Ko
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| |
Collapse
|
4
|
García de Arquer FP, Lasanta T, Bernechea M, Konstantatos G. Tailoring the Electronic Properties of Colloidal Quantum Dots in Metal-Semiconductor Nanocomposites for High Performance Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2636-2641. [PMID: 25656448 DOI: 10.1002/smll.201403359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Metallic nanoparticles tailor the electronic properties of PbS colloidal quantum dots in a post-synthetic, all solution-processable approach. The Fermi level of the resulting nanocomposites can be tuned from p- to n-type due to remote charge transfer and electron trap state passivation. This concurrently reduces dark current, improves time response, and increases sensitivity in PbS photoconductors, yielding an over-two-fold increase in detectivity.
Collapse
Affiliation(s)
- F Pelayo García de Arquer
- ICFO - Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain
| | - Tania Lasanta
- ICFO - Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain
| | - María Bernechea
- ICFO - Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain
| | - Gerasimos Konstantatos
- ICFO - Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain
| |
Collapse
|
5
|
Mahpeykar SM, Xiong Q, Wang X. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes. OPTICS EXPRESS 2014; 22 Suppl 6:A1576-A1588. [PMID: 25607315 DOI: 10.1364/oe.22.0a1576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The application of nanostructured indium-doped tin oxide (ITO) electrodes as diffraction gratings for light absorption enhancement in colloidal quantum dot solar cells is numerically investigated using finite-difference time-domain (FDTD) simulation. Resonant coupling of the incident diffracted light with supported waveguide modes in light absorbing layer at particular wavelengths predicted by grating far-field projection analysis is shown to provide superior near-infrared light trapping for nanostructured devices as compared to the planar structure. Among various technologically feasible nanostructures, the two-dimensional nano-branch array is demonstrated as the most promising polarization-independent structure and proved to be able to maintain its performance despite structural imperfections common in fabrication.
Collapse
|
6
|
Chen M, Shao L, Kershaw SV, Yu H, Wang J, Rogach AL, Zhao N. Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. ACS NANO 2014; 8:8208-16. [PMID: 25020202 DOI: 10.1021/nn502510u] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The near-field effects of noble metal nanoparticles can be utilized to enhance the performance of inorganic/organic photosensing devices, such as solar cells and photodetectors. In this work, we developed a well-controlled fabrication strategy to incorporate Au nanostructures into HgTe quantum dot (QD)/ZnO heterojunction photodiode photodetectors. Through an electrostatic immobilization and dry transfer protocol, a layer of Au nanorods with uniform distribution and controllable density is embedded at different depths in the ZnO layer for systematic comparison. More than 80 and 240% increments of average short-circuit current density (Jsc) are observed in the devices with Au nanorods covered by ∼7.5 and ∼4.5 nm ZnO layers, respectively. A periodic finite-difference time-domain (FDTD) simulation model is developed to analyze the depth-dependent property and confirm the mechanism of plasmon-enhanced light absorption in the QD layer. The wavelength-dependent external quantum efficiency spectra suggest that the exciton dissociation and charge extraction efficiencies are also enhanced by the Au nanorods, likely due to local electric field effects. The photodetection performance of the photodiodes is characterized, and the results show that the plasmonic structure improves the overall infrared detectivity of the HgTe QD photodetectors without affecting their temporal response. Our fabrication strategy and theoretical and experimental findings provide useful insight into the applications of metal nanostructures to enhance the performance of organic/inorganic hybrid optoelectronic devices.
Collapse
|
7
|
Mihi A, Beck FJ, Lasanta T, Rath AK, Konstantatos G. Imprinted electrodes for enhanced light trapping in solution processed solar cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:443-448. [PMID: 24173655 DOI: 10.1002/adma.201303674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/14/2013] [Indexed: 06/02/2023]
Abstract
A simple approach is demonstrated to combine a light trapping scheme and a conductive substrate for solution processed solar cells. By means of soft lithography, a new light-trapping architecture can be integrated as the bottom electrode for emerging thin-film solar-cell technologies without added costs, fully compatible with low-temperature processes, and yielding an enhancement in the photocurrent without altering the rest of the electrical performance of the device.
Collapse
Affiliation(s)
- Agustín Mihi
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain
| | | | | | | | | |
Collapse
|
8
|
Mendes MJ, Hernández E, López E, García-Linares P, Ramiro I, Artacho I, Antolín E, Tobías I, Martí A, Luque A. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells. NANOTECHNOLOGY 2013; 24:345402. [PMID: 23912379 DOI: 10.1088/0957-4484/24/34/345402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A colloidal deposition technique is presented to construct long-range ordered hybrid arrays of self-assembled quantum dots and metal nanoparticles. Quantum dots are promising for novel opto-electronic devices but, in most cases, their optical transitions of interest lack sufficient light absorption to provide a significant impact in their implementation. A potential solution is to couple the dots with localized plasmons in metal nanoparticles. The extreme confinement of light in the near-field produced by the nanoparticles can potentially boost the absorption in the quantum dots by up to two orders of magnitude.In this work, light extinction measurements are employed to probe the plasmon resonance of spherical gold nanoparticles in lead sulfide colloidal quantum dots and amorphous silicon thin-films. Mie theory computations are used to analyze the experimental results and determine the absorption enhancement that can be generated by the highly intense near-field produced in the vicinity of the gold nanoparticles at their surface plasmon resonance.The results presented here are of interest for the development of plasmon-enhanced colloidal nanostructured photovoltaic materials, such as colloidal quantum dot intermediate-band solar cells.
Collapse
Affiliation(s)
- Manuel J Mendes
- Instituto de Energía Solar, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense 30, E-28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Paz-Soldan D, Lee A, Thon SM, Adachi MM, Dong H, Maraghechi P, Yuan M, Labelle AJ, Hoogland S, Liu K, Kumacheva E, Sargent EH. Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. NANO LETTERS 2013; 13:1502-8. [PMID: 23444829 DOI: 10.1021/nl304604y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in spectrally tuned, solution-processed plasmonic nanoparticles have provided unprecedented control over light's propagation and absorption via engineering at the nanoscale. Simultaneous parallel progress in colloidal quantum dot photovoltaics offers the potential for low-cost, large-area solar power; however, these devices suffer from poor quantum efficiency in the more weakly absorbed infrared portion of the sun's spectrum. Here, we report a plasmonic-excitonic solar cell that combines two classes of solution-processed infrared materials that we tune jointly. We show through experiment and theory that a plasmonic-excitonic design using gold nanoshells with optimized single particle scattering-to-absorption cross-section ratios leads to a strong enhancement in near-field absorption and a resultant 35% enhancement in photocurrent in the performance-limiting near-infrared spectral region.
Collapse
Affiliation(s)
- Daniel Paz-Soldan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hägglund C, Apell SP. Plasmonic Near-Field Absorbers for Ultrathin Solar Cells. J Phys Chem Lett 2012; 3:1275-1285. [PMID: 26286771 DOI: 10.1021/jz300290d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
If the active layer of efficient solar cells could be made 100 times thinner than in today's thin film devices, their economic competitiveness would greatly benefit. However, conventional solar cell materials do not have the optical capability to allow for such thickness reductions without a substantial loss of light absorption. To address this challenge, the use of plasmon resonances in metal nanostructures to trap light and create charge carriers in a nearby semiconductor material is an interesting opportunity. In this Perspective, recent progress with regards to ultrathin (∼10 nm) plasmonic nanocomposites is reviewed. Their optimal internal geometry for plasmon near-field induced absorption is discussed, and a zero thickness effective medium representation is used to optimize stacks including an Al back reflector for photovoltaics. This shows that high conversion efficiencies (>20%) are possible even when taking surface scattering effects and thin passivating layers inserted between the metal and semiconductor into account.
Collapse
Affiliation(s)
- Carl Hägglund
- †Department of Chemical Engineering, Stanford University, Stanford, California, 94305, United States
| | - S Peter Apell
- ‡Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
11
|
|