1
|
Blanquart C, Davenet L, Claisse J, Giroud M, Boulmé A, Jeanne E, Tanter M, Correia M, Deffieux T. Monitoring microvascular changes over time with a repositionable 3D ultrasonic capacitive micromachined row-column sensor. SCIENCE ADVANCES 2025; 11:eadr6449. [PMID: 40138408 PMCID: PMC11939045 DOI: 10.1126/sciadv.adr6449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
eHealth devices, including smartwatches and smart scales, have the potential to transform health care by enabling continuous, real-time monitoring of vital signs over extended periods. Existing technologies, however, lack comprehensive monitoring of the microvascular network, which is linked to conditions such as diabetes, hypertension, and small vessel diseases. This study introduces an ultrasound approach using a capacitive micromachined ultrasound transducer row-column array for continuous, ultrasensitive three-dimensional (3D) Doppler imaging of microvascular changes such as hemodynamic variations or vascular remodeling. In vitro tests and in vivo studies with healthy volunteers demonstrated the sensor's ability to image the 3D microvascular network at high resolution over different timescales with automatic registration and to detect microvascular changes with high sensitivity. Integrating this technology into wearable devices could, one day, enhance understanding, monitoring, and possibly early detection of microvascular-related health conditions.
Collapse
Affiliation(s)
- Cyprien Blanquart
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, Paris, France
- MODULEUS, Tours, France
| | - Léa Davenet
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, Paris, France
| | | | | | | | | | - Mickaël Tanter
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, Paris, France
| | | | - Thomas Deffieux
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, Paris, France
| |
Collapse
|
2
|
Chen X, Ma Z, Wang C, Cui J, Fan F, Gao X, Zhu J. Motion Artifact Correction for OCT Microvascular Images Based on Image Feature Matching. JOURNAL OF BIOPHOTONICS 2024; 17:e202400198. [PMID: 39198156 DOI: 10.1002/jbio.202400198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024]
Abstract
Optical coherence tomography angiography (OCTA), a functional extension of optical coherence tomography (OCT), is widely employed for high-resolution imaging of microvascular networks. However, due to the relatively low scan rate of OCT, the artifacts caused by the involuntary bulk motion of tissues severely impact the visualization of microvascular networks. This study proposes a fast motion correction method based on image feature matching for OCT microvascular images. First, the rigid motion-related mismatch between B-scans is compensated through the image feature matching based on the improved oriented FAST and rotated BRIEF algorithm. Then, the axial motion within A-scan lines in each B-scan image is corrected according to the displacement deviation between the detected boundaries achieved by the Scharr operator in a non-rigid transformation manner. Finally, an optimized intensity-based Doppler variance algorithm is developed to enhance the robustness of the OCTA imaging. The experimental results demonstrate the effectiveness of the method.
Collapse
Affiliation(s)
- Xudong Chen
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Zongqing Ma
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Chongyang Wang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Jiaqi Cui
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Fan Fan
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Xinxiao Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiang Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
3
|
Qiu S, Arthur A, Jiang Y, Miao Y, Li Y, Wang J, Tadir Y, Lane F, Chen Z. OCT angiography in the monitoring of vaginal health. APL Bioeng 2023; 7:046112. [PMID: 37946874 PMCID: PMC10631816 DOI: 10.1063/5.0153461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
Fractional-pixel CO2 laser therapy shows promise for treating the genitourinary syndrome of menopause (GSM). Nevertheless, it remains controversial in the field of female pelvic medicine. This is due to the inherent difficulties in obtaining noninvasive biopsies to evaluate the treatment's efficacy and safety objectively. To address this challenge, we developed a noninvasive intravaginal optical coherence tomography (OCT)/OCT angiography (OCTA) endoscopic system, whose probe features a shape identical to the laser treatment probe. This system can provide high-resolution OCT images to identify the microstructure of vaginal tissue and visualize the vasculature network in vivo. We conducted clinical research on 25 post-menopausal patients with GSM. OCT/OCTA scans were acquired at four different locations of the vagina (distal anterior, distal posterior, proximal anterior, and proximal posterior) during the whole laser treatment session. A U-Net deep learning model was applied to segment the vaginal epithelium for assessing vaginal epithelial thickness (VET). Blood vessel density and VET were quantified to monitor the efficacy of fractional-pixel CO2 laser therapy. Statistical correlation analyses between these metrics and other clinical scores were conducted, validating the utility of our system. This OCT/OCTA endoscopic system has great potential to serve as a noninvasive biopsy tool in gynecological studies to screen, evaluate, and guide laser treatment for GSM.
Collapse
Affiliation(s)
| | - Afiba Arthur
- Department of Obstetrics and Gynecology, University of California Irvine Medical Center, Orange, California 92868, USA
| | | | | | | | | | - Yona Tadir
- Beckman Laser Institute, University of California Irvine, Irvine, California 92612, USA
| | - Felicia Lane
- Department of Obstetrics and Gynecology, University of California Irvine Medical Center, Orange, California 92868, USA
| | | |
Collapse
|
4
|
Wang H, Zhang Z, Sittirattanayeunyong S, Hongpaisan J. Association of Apolipoprotein E4-related Microvascular Disease in the Alzheimer's Disease Hippocampal CA1 Stratum Radiatum. Neuroscience 2023; 526:204-222. [PMID: 37385335 PMCID: PMC10528415 DOI: 10.1016/j.neuroscience.2023.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
Current data suggest a hypothesis of vascular pathogenesis for the development and progression of Alzheimer's disease (AD). To investigate this, we studied the association of apolipoprotein E4 (APOE4) gene on microvessels in human autopsy-confirmed AD with and without APOE4, compared with age/sex-matched control (AC) hippocampal CA1 stratum radiatum. AD arterioles (without APOE4 gene) had mild oxidative stress and loss of vascular endothelial growth factor (VEGF) and endothelial cell density, reflecting aging progression. In AD + APOE4, an increase in strong oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG), VEGF, and endothelial cell density were associated with increased diameter of arterioles and perivascular space dilation. In cultured human brain microvascular cells (HBMECs), treatment of ApoE4 protein plus amyloid-β (Aβ) oligomers increased superoxide production and the apoptotic marker cleaved caspase 3, sustained hypoxia inducible factor-1α (HIF-1α) stability that was associated with an increase in MnSOD, VEGF, and cell density. This cell over-proliferation was inhibited with the antioxidants N-acetyl cysteine and MnTMPyP, the HIF-1α inhibitor echinomycin, the VEGFR-2 receptor blocker SU1498, the protein kinase C (PKC) ε knock-down (KD) and the extracellular signal-regulated kinase 1/2 (ERK) inhibitor FR180204. The PKCε KD and echinomycin decreased VEGF and/or ERK. In conclusion, AD capillaries and arterioles in hippocampal CA1 stratum radiatum of non-APOE4 carriers are related with aging, while those in APOE4 carriers with AD are related with pathogenesis of cerebrovascular disease.
Collapse
Affiliation(s)
- Huaixing Wang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Zongxiu Zhang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sorawit Sittirattanayeunyong
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
5
|
Li Y, Blakeley JO, Ly I, Berman Y, Lau J, Wolkenstein P, Bergqvist C, Jia W, Milner TE, Katta N, Durkin AJ, Kennedy GT, Rowland R, Romo CG, Fleming J, Kelly KM. Current and Emerging Imaging Techniques for Neurofibromatosis Type 1-Associated Cutaneous Neurofibromas. J Invest Dermatol 2023; 143:1397-1405. [PMID: 37330718 DOI: 10.1016/j.jid.2023.03.1681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
A consistent set of measurement techniques must be applied to reliably and reproducibly evaluate the efficacy of treatments for cutaneous neurofibromas (cNFs) in people with neurofibromatosis type 1 (NF1). cNFs are neurocutaneous tumors that are the most common tumor in people with NF1 and represent an area of unmet clinical need. This review presents the available data regarding approaches in use or development to identify, measure, and track cNFs, including calipers, digital imaging, and high-frequency ultrasound sonography. We also describe emerging technologies such as spatial frequency domain imaging and the application of imaging modalities such as optical coherence tomography that may enable the detection of early cNFs and prevention of tumor-associated morbidity.
Collapse
Affiliation(s)
- Yingjoy Li
- Department of Dermatology, School of Medicine, University of California, Irvine, California, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yemima Berman
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, Australia
| | - Jonathan Lau
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, Australia; Sydney Medical School, The University of Sydney, Camperdown, Australia
| | - Pierre Wolkenstein
- Faculty of Medicine and Health, Université Paris-Est Créteil Val de Marne, Créteil, France; Department of Dermatology, National Referral Center for Neurofibromatoses, Henri-Mondor Hospital, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France
| | - Christina Bergqvist
- Department of Dermatology, National Referral Center for Neurofibromatoses, Henri-Mondor Hospital, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France
| | - Wangcun Jia
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
| | - Thomas E Milner
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA; Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Nitesh Katta
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
| | - Anthony J Durkin
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA; Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Gordon T Kennedy
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
| | - Rebecca Rowland
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
| | - Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jane Fleming
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, Australia
| | - Kristen M Kelly
- Department of Dermatology, School of Medicine, University of California, Irvine, California, USA; Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA.
| |
Collapse
|
6
|
Zhang Y, Gao W, Xie C. Fourier spatial transform-based method of suppressing motion noises in OCTA. OPTICS LETTERS 2022; 47:4544-4547. [PMID: 36048700 DOI: 10.1364/ol.464501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
A large amount of lateral noise will be generated in blood flow imaging with optical coherence tomography angiography (OCTA) due to the presence of muscle shaking, heartbeat, and respiration, resulting in the deterioration of images. In this paper, to the best of our knowledge, for the first time, the spatial frequency information of motion noise in the blood flow signal region is used to remove the motion noise and false connections in the blood flow signal region. The effectiveness of the proposed adaptive denoising algorithm is verified by the imaging of finger blood flow. It is found that OCTA with different projection methods has improved signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) after applying our algorithm. It is also found that the visual effect of the original blood flow image based on standard deviation projection is better, but mean projection is the most sensitive to the algorithm, and the average SNR and CNR are improved by 5.7 dB and 8.9 dB, respectively.
Collapse
|
7
|
Sharma AL, Wang H, Zhang Z, Millien G, Tyagi M, Hongpaisan J. HIV Promotes Neurocognitive Impairment by Damaging the Hippocampal Microvessels. Mol Neurobiol 2022; 59:4966-4986. [PMID: 35665894 PMCID: PMC10071835 DOI: 10.1007/s12035-022-02890-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Current evidence suggests that mild cerebrovascular changes could induce neurodegeneration and contribute to HIV-associated neurocognitive disease (HAND) in HIV patients. We investigated both the quantitative and qualitative impact of HIV infection on brain microvessels, especially on hippocampal microvessels, which are crucial for optimal O2 supply, and thus for maintaining memory and cognitive abilities. The results obtained using cultured human brain microvascular endothelial cells (HBMEC) were reproduced using a suitable mouse model and autopsied human HIV hippocampus. In HBMEC, we found significantly higher oxidative stress-dependent apoptotic cell loss following 5 h of treatment of GST-Tat (1 µg/ml) compared to GST (1 µg/ml) control. We noticed complete recovery of HBMEC cells after 24 h of GST-Tat treatment, due to temporal degradation or inactivation of GST-Tat. Interestingly, we found a sustained increase in mitochondrial oxidative DNA damage marker 8-OHdG, as well as an increase in hypoxia-inducible factor hypoxia-inducible factor-1α (HIF-1α). In our mouse studies, upon short-term injection of GST-Tat, we found the loss of small microvessels (mostly capillaries) and vascular endothelial growth factor (VEGF), but not large microvessels (arterioles and venules) in the hippocampus. In addition to capillary loss, in the post-mortem HIV-infected human hippocampus, we observed large microvessels with increased wall cells and perivascular tissue degeneration. Together, our data show a crucial role of Tat in inducing HIF-1α-dependent inhibition of mitochondrial transcriptional factor A (TFAM) and dilated perivascular space. Thus, our results further define the underlying molecular mechanism promoting mild cerebrovascular disease, neuropathy, and HAND pathogenesis in HIV patients.
Collapse
Affiliation(s)
- Adhikarimayum Lakhikumar Sharma
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Huaixing Wang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Zongxiu Zhang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Guetchyn Millien
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Mudit Tyagi
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA.
| | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA.
| |
Collapse
|
8
|
Traumatic vessel injuries initiating hemostasis generate high shear conditions. Blood Adv 2022; 6:4834-4846. [PMID: 35728058 PMCID: PMC9631664 DOI: 10.1182/bloodadvances.2022007550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Various types of lesions in small and large mouse and human vessels result in high shear rates and elongational flows. The relative hydrodynamic resistance of the vessel and wound explains a decrease in shear rate with increase in injury size.
Blood flow is a major regulator of hemostasis and arterial thrombosis. The current view is that low and intermediate flows occur in intact healthy vessels, whereas high shear levels (>2000 s−1) are reached in stenosed arteries, notably during thrombosis. To date, the shear rates occurring at the edge of a lesion in an otherwise healthy vessel are nevertheless unknown. The aim of this work was to measure the shear rates prevailing in wounds in a context relevant to hemostasis. Three models of vessel puncture and transection were developed and characterized for a study that was implemented in mice and humans. Doppler probe measurements supplemented by a computational model revealed that shear rates at the edge of a wound reached high values, with medians of 22 000 s−1, 25 000 s−1, and 7000 s−1 after puncture of the murine carotid artery, aorta, or saphenous vein, respectively. Similar shear levels were observed after transection of the mouse spermatic artery. These results were confirmed in a human venous puncture model, where shear rates in a catheter implanted in the cubital vein reached 2000 to 27 000 s−1. In all models, the high shear conditions were accompanied by elevated levels of elongational flow exceeding 1000 s−1. In the puncture model, the shear rates decreased steeply with increasing injury size. This phenomenon could be explained by the low hydrodynamic resistance of the injuries as compared with that of the downstream vessel network. These findings show that high shear rates (>3000 s−1) are relevant to hemostasis and not exclusive to arterial thrombosis.
Collapse
|
9
|
Deng X, Liu K, Zhu T, Guo D, Yin X, Yao L, Ding Z, Ye J, Li P. Dynamic inverse SNR-decorrelation OCT angiography with GPU acceleration. BIOMEDICAL OPTICS EXPRESS 2022; 13:3615-3628. [PMID: 35781971 PMCID: PMC9208597 DOI: 10.1364/boe.459632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 05/02/2023]
Abstract
Dynamic OCT angiography (OCTA) is an attractive approach for monitoring stimulus-evoked hemodynamics; however, a 4D (3D space and time) dataset requires a long acquisition time and has a large data size, thereby posing a great challenge to data processing. This study proposed a GPU-based real-time data processing pipeline for dynamic inverse SNR-decorrelation OCTA (ID-OCTA), offering a measured line-process rate of 133 kHz for displaying OCT and OCTA cross-sections in real time. Real-time processing enabled automatic optimization of angiogram quality, which improved the vessel SNR, contrast-to-noise ratio, and connectivity by 14.37, 14.08, and 9.76%, respectively. Furthermore, motion-contrast 4D angiographic imaging of stimulus-evoked hemodynamics was achieved within a single trail in the mouse retina. Consequently, a flicker light stimulus evoked an apparent dilation of the retinal arterioles and venules and an elevation of the decorrelation value in the retinal plexuses. Therefore, GPU ID-OCTA enables real-time and high-quality angiographic imaging and is particularly suitable for hemodynamic studies.
Collapse
Affiliation(s)
- Xiaofeng Deng
- State Key Laboratory of Modern Optical
Instrumentation, College of Optical Science and
Engineering, Zhejiang University, Hangzhou 310027,
China
- These authors contributed equally to this
work
| | - Kaiyuan Liu
- State Key Laboratory of Modern Optical
Instrumentation, College of Optical Science and
Engineering, Zhejiang University, Hangzhou 310027,
China
- These authors contributed equally to this
work
| | - Tiepei Zhu
- Eye center of the Second Affiliated
Hospital, College of Medicine, Zhejiang
University, Hangzhou, Zhejiang 310003, China
| | - Dayou Guo
- State Key Laboratory of Modern Optical
Instrumentation, College of Optical Science and
Engineering, Zhejiang University, Hangzhou 310027,
China
| | - Xiaoting Yin
- State Key Laboratory of Modern Optical
Instrumentation, College of Optical Science and
Engineering, Zhejiang University, Hangzhou 310027,
China
| | - Lin Yao
- State Key Laboratory of Modern Optical
Instrumentation, College of Optical Science and
Engineering, Zhejiang University, Hangzhou 310027,
China
| | - Zhihua Ding
- State Key Laboratory of Modern Optical
Instrumentation, College of Optical Science and
Engineering, Zhejiang University, Hangzhou 310027,
China
| | - Juan Ye
- Eye center of the Second Affiliated
Hospital, College of Medicine, Zhejiang
University, Hangzhou, Zhejiang 310003, China
| | - Peng Li
- State Key Laboratory of Modern Optical
Instrumentation, College of Optical Science and
Engineering, Zhejiang University, Hangzhou 310027,
China
- Jiaxing Key Laboratory of
Photonic Sensing & Intelligent Imaging, Jiaxing
314000, China
- Intelligent Optics &
Photonics Research Center, Jiaxing Research Institute, Zhejiang
University, Jiaxing 314000, China
| |
Collapse
|
10
|
Fan F, Zhang J, Zhu L, Ma Z, Zhu J. Improving cerebral microvascular image quality of optical coherence tomography angiography with deep learning-based segmentation. JOURNAL OF BIOPHOTONICS 2021; 14:e202100171. [PMID: 34382744 DOI: 10.1002/jbio.202100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Optical coherence tomography angiography (OCTA) can map the microvascular networks of the cerebral cortices with micrometer resolution and millimeter penetration. However, the high scattering of the skull and the strong noise in the deep imaging region will distort the vasculature projections and decrease the OCTA image quality. Here, we proposed a deep learning-based segmentation method based on a U-Net convolutional neural network to extract the cortical region from the OCT image. The vascular networks were then visualized by three OCTA algorithms. The image quality of the vasculature projections was assessed by two metrics, including the peak signal-to-noise ratio (PSNR) and the contrast-to-noise ratio (CNR). The results show the accuracy of the cortical segmentation was 96.07%. The PSNR and CNR values increased significantly in the projections of the selected cortical regions. The OCTA incorporating the deep learning-based cortical segmentation can efficiently improve the image quality and enhance the vasculature clarity.
Collapse
Affiliation(s)
- Fan Fan
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Jisheng Zhang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Lianqing Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Zongqing Ma
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Jiang Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
11
|
Doppler Optical Coherence Tomography for Otology Applications: From Phantom Simulation to In Vivo Experiment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In otology, visualization and vibratory analysis have been crucial to enhance the success of diagnosis and surgical operation. Optical coherence tomography (OCT) has been employed in otology to obtain morphological structure of tissues non-invasively, owing to the ability of measuring the entire region of tympanic membrane, which compensates the limitations of conventional methods. As a functional extension of OCT, Doppler OCT, which enables the measurement of the motion information with structural data of tissue, has been applied in otology. Over the years, Doppler OCT systems have been evolved in various forms to enhance the measuring sensitivity of phase difference. In this review, we provide representative algorithms of Doppler OCT and various applications in otology from preclinical analysis to clinical experiments and discuss future developments.
Collapse
|
12
|
Shin I, Oh WY. Visualization of two-dimensional transverse blood flow direction using optical coherence tomography angiography. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200253R. [PMID: 33331149 PMCID: PMC7739998 DOI: 10.1117/1.jbo.25.12.126003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/24/2020] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Evaluation of vessel patency and blood flow direction is important in various medical situations, including diagnosis and monitoring of ischemic diseases, and image-guided vascular surgeries. While optical coherence tomography angiography (OCTA) is the most widely used functional extension of optical coherence tomography that visualizes three-dimensional vasculature, inability to provide information of blood flow direction is one of its limitations. AIM We demonstrate two-dimensional (2D) transverse blood flow direction imaging in en face OCTA. APPROACH A series of triangular beam scans for the fast axis was implemented in the horizontal direction for the first volume scan and in the vertical direction for the following volume scan, and the inter A-line OCTA was performed for the blood flow direction imaging while the stepwise pattern was used for each slow axis scan. The decorrelation differences between the forward and the backward inter A-line OCTA were calculated for the horizontal and the vertical fast axis scans, and the ratio of the horizontal and the vertical decorrelation differences was utilized to show the 2D transverse flow direction information. RESULTS OCTA flow direction imaging was verified using flow phantoms with various flow orientations and speeds, and we identified the flow speed range relative to the scan speed for reliable flow direction measurement. We demonstrated the visualization of 2D transverse blood flow orientations in mouse brain vascular networks in vivo. CONCLUSIONS The proposed OCTA imaging technique that provides information of 2D transverse flow direction can be utilized in various clinical applications and preclinical studies.
Collapse
Affiliation(s)
- Inho Shin
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology, KI for Health Science and Technology, Daejeon, Republic of Korea
| | - Wang-Yuhl Oh
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology, KI for Health Science and Technology, Daejeon, Republic of Korea
- Address all correspondence to Wang-Yuhl Oh,
| |
Collapse
|
13
|
Chen R, Yao L, Liu K, Cao T, Li H, Li P. Improvement of Decorrelation-Based OCT Angiography by an Adaptive Spatial-Temporal Kernel in Monitoring Stimulus-Evoked Hemodynamic Responses. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4286-4296. [PMID: 32790625 DOI: 10.1109/tmi.2020.3016334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Complex decorrelation-based OCT angiography (OCTA) has the potential for monitoring hemodynamic activities in a label-free, high-resolution, and quantitative manner. To improve the measurement dynamic range and uncertainty of blood flow, an adaptive spatial-temporal (ST) kernel was proposed for decorrelation estimation and it was validated through a theoretical simulation and experimental measurements. The ensemble size in the decorrelation computation was effectively enlarged by collecting samples of the phasor pair in both the spatial and temporal dimensions. The spatial sub-kernel size was adaptively changed to suppress the influence of bulk motion in the temporal dimension by solving a maximum entropy model. Using the flow phantom, it was observed that the decorrelation dynamic range presented an increase of ~49% and the uncertainty exhibited a decrease of ~40% and ~38% in the saturation and background limits, respectively. In monitoring the stimulus-evoked hemodynamic response, the extended dynamic range enabled an improvement of ~180% in the separability between different stimulation modes. Furthermore, the suppressed uncertainty and motion artifacts allowed a reliable temporal analysis of the hemodynamic response. The proposed adaptive ST-kernel will greatly promote the development of decorrelation-based quantitative OCTA in hemodynamic studies.
Collapse
|
14
|
Zhu J, Liu J, Zhu L, Wang C, Fan F, Yang Q, Zhang F. Optical coherence tomography angiography for mapping cerebral microvasculature based on normalized differentiation analysis. JOURNAL OF BIOPHOTONICS 2020; 13:e202000245. [PMID: 32639617 DOI: 10.1002/jbio.202000245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Optical coherence tomography angiography (OCTA) is a label-free, noninvasive biomedical imaging modality for mapping microvascular networks and quantifying blood flow velocities in vivo. Simple computation and fast processing are critical for the OCTA in some applications. Herein, we report on a normalized differentiation method for mapping cerebral microvasculature with the advantages of simple analysis and high image quality, benefitting from computation of differentiation and characteristics of normalization. Normalized differentiation values are validated to have a nearly linear relationship with flow velocities in a range using a flow phantom. The measurements in a rat cerebral cortex show that the OCTA based on the normalized differentiation analysis can generate microvascular images with high quality and monitor spatiotemporal dynamics of blood flow with simple computation and fast processing before and after localized ischemia induced by arterial occlusion.
Collapse
Affiliation(s)
- Jiang Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Jianting Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Lianqing Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing, China
| | - Chongyang Wang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Fan Fan
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Qiang Yang
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Fan Zhang
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
15
|
Liu J, Zhu J, Zhu L, Yang Q, Fan F, Zhang F. Quantitative assessment of optical coherence tomography angiography algorithms for neuroimaging. JOURNAL OF BIOPHOTONICS 2020; 13:e202000181. [PMID: 32542943 DOI: 10.1002/jbio.202000181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Optical coherence tomography (OCT) angiography can noninvasively map microvascular networks and quantify blood flow in a cerebral cortex with a resolution of 1 to 10 μm and a penetration depth of 2 to 3 mm incorporating OCT signals and angiography algorithms. Different angiography algorithms have been developed in recent years; however, the performance of the algorithms has not been assessed quantitatively for neuroimaging applications. In this paper, we developed four metrics including vascular connectivity, contrast-to-noise ratio, signal-to-noise ratio and processing time to quantitatively assess the performance of OCT angiography algorithms in image quality and computation speed. After the imaging of a rat cortex using an OCT system, the cerebral microvascular networks were visualized by seven algorithms, and the performance of the algorithms was quantified and compared. Quantitative performance assessment of the algorithms can provide suggestions for the selection of appropriate OCT angiography algorithms in neuroimaging.
Collapse
Affiliation(s)
- Jianting Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Jiang Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Lianqing Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing, China
| | - Qiang Yang
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Fan Fan
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Fan Zhang
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
16
|
Chen PH, Chen YJ, Chen YF, Yeh YC, Chang KW, Hou MC, Kuo WC. Quantification of structural and microvascular changes for diagnosing early-stage oral cancer. BIOMEDICAL OPTICS EXPRESS 2020; 11:1244-1256. [PMID: 32206406 PMCID: PMC7075615 DOI: 10.1364/boe.384608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 05/15/2023]
Abstract
Changes in mucosal microvascular networks, called intraepithelial papillary capillary loops (IPCL), are an important key factor for diagnosing early-stage oral cancer in vivo. Nevertheless, there are a lack of tools to quantify these changes objectively. This is the first study to quantify the IPCL changes in vivo to differentiate benign or malignant oral lesions by the optical coherence tomography (OCT) technique. K14-EGFP-miR-211-GFP transgenic mice were inducted by 4-Nitroquinoline-1-oxide to produce oral carcinogenesis in different stages, including normal, premalignancy and cancer. The results showed significant differentiation between benign or malignant lesions by OCT quantitative parameters, including epithelial thickness, IPCL density, radius and tortuosity.
Collapse
Affiliation(s)
- Ping-Hsien Chen
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan
- These authors contributed equally to this work
| | - Yu-Ju Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan
- These authors contributed equally to this work
| | - Yi-Fen Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Chen Yeh
- Department of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ming-Chih Hou
- Department of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Chuan Kuo
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
17
|
Nitkunanantharajah S, Zahnd G, Olivo M, Navab N, Mohajerani P, Ntziachristos V. Skin Surface Detection in 3D Optoacoustic Mesoscopy Based on Dynamic Programming. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:458-467. [PMID: 31329549 DOI: 10.1109/tmi.2019.2928393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optoacoustic (photoacoustic) mesoscopy offers unique capabilities in skin imaging and resolves skin features associated with detection, diagnosis, and management of disease. A critical first step in the quantitative analysis of clinical optoacoustic images is to identify the skin surface in a rapid, reliable, and automated manner. Nevertheless, most common edge- and surface-detection algorithms cannot reliably detect the skin surface on 3D raster-scan optoacoustic mesoscopy (RSOM) images, due to discontinuities and diffuse interfaces in the image. We present herein a novel dynamic programming approach that extracts the skin boundary as a 2D surface in one single step, as opposed to consecutive extraction of several independent 1D contours. A domain-specific energy function is introduced, taking into account the properties of volumetric optoacoustic mesoscopy images. The accuracy of the proposed method is validated on scans of the volar forearm of 19 volunteers with different skin complexions, for which the skin surface has been traced manually to provide a reference. In addition, the robustness and the limitations of the method are demonstrated on data where the skin boundaries are low-contrast or ill-defined. The automatic skin surface detection method can improve the speed and accuracy in the analysis of quantitative features seen on the RSOM images and accelerate the clinical translation of the technique. Our method can likely be extended to identify other types of surfaces in the RSOM and other imaging modalities.
Collapse
|
18
|
|
19
|
Zhu J, He X, Chen Z. Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues. APPLIED SPECTROSCOPY REVIEWS 2019; 54:457-481. [PMID: 31749516 PMCID: PMC6867804 DOI: 10.1080/05704928.2018.1467436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biomechanical properties of soft tissues are important indicators of tissue functions which can be used for clinical diagnosis and disease monitoring. Elastography, incorporating the principles of elasticity measurements into imaging modalities, provides quantitative assessment of elastic properties of biological tissues. Benefiting from high-resolution, noninvasive and three-dimensional optical coherence tomography (OCT), optical coherence elastography (OCE) is an emerging optical imaging modality to characterize and map biomechanical properties of soft tissues. Recently, acoustic radiation force (ARF) OCE has been developed for elasticity measurements of ocular tissues, detection of vascular lesions and monitoring of blood coagulation based on remote and noninvasive ARF excitation to both internal and superficial tissues. Here, we describe the advantages of the ARF-OCE technique, the measurement methods in ARF-OCE, the applications in biomedical detection, current challenges and advances. ARF-OCE technology has the potential to become a powerful tool for in vivo elasticity assessment of biological samples in a non-contact, non-invasive and high-resolution nature.
Collapse
Affiliation(s)
- Jiang Zhu
- Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
| | - Xingdao He
- Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
- Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
20
|
Andleeb F, Ullah H. Optical coherence tomography in early detection of malignancies. MINERVA BIOTECNOL 2018. [DOI: 10.23736/s1120-4826.18.02466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Gao W. Quantitative depth-resolved microcirculation imaging with optical coherence tomography angiography (Part ΙΙ): Microvascular network imaging. Microcirculation 2018; 25:e12376. [DOI: 10.1111/micc.12376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/11/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Wanrong Gao
- Department of Optical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu China
- MIIT Key Laboratory of Advanced Solid Laser; Nanjing University of Science and Technology; Nanjing Jiangsu China
| |
Collapse
|
22
|
Kuo WC, Kuo YM, Syu JP, Wang HL, Lai CM, Chen JW, Lo YC, Chen YY. The use of intensity-based Doppler variance method for single vessel response to functional neurovascular activation. JOURNAL OF BIOPHOTONICS 2018; 11:e201800017. [PMID: 29688625 DOI: 10.1002/jbio.201800017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/19/2018] [Indexed: 05/09/2023]
Abstract
This study presents 1 use of optical coherence tomography (OCT) angiography technique to examine neurovascular coupling effect. Repeated B-scans OCT recording is performed on the rat somatosensory cortex with cranial window preparation while its contralateral forepaw is electrically stimulated to activate the neurons in rest. We use an intensity-based Doppler variance (IBDV) algorithm mapped cerebral blood vessels in the cortex, and the temporal alteration in blood perfusion during neurovascular activation is analyzed using the proposed IBDV quantitative parameters. By using principal component analysis-based Fuzzy C Means clustering method, the stimulus-evoked vasomotion patterns were classified into 3 categories. We found that the response time of small vessels (resting diameter 14.9 ±6.6 μm), middle vessels (resting diameter 21.1 ±7.9 μm) and large vessels (resting diameter 50.7 ±6.5 μm) to achieve 5% change of vascular dilation after stimulation was 1.5, 2 and 5.5 seconds, respectively. Approximately 5% peak change of relative blood flow (RBF) in both small and middle vessels was observed. The large vessels react slowly and their responses nearly 4 seconds delayed, but no significant change in RBF of the large vessels was seen.
Collapse
Affiliation(s)
- Wen-Chuan Kuo
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yue-Ming Kuo
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Pu Syu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Han-Lin Wang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ming Lai
- Department of Electronic Engineering, Ming-Chuan University, Taoyuan, Taiwan
| | - Jia-Wei Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Chen PH, Wu CH, Chen YF, Yeh YC, Lin BH, Chang KW, Lai PY, Hou MC, Lu CL, Kuo WC. Combination of structural and vascular optical coherence tomography for differentiating oral lesions of mice in different carcinogenesis stages. BIOMEDICAL OPTICS EXPRESS 2018; 9:1461-1476. [PMID: 29675295 PMCID: PMC5905899 DOI: 10.1364/boe.9.001461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 05/28/2023]
Abstract
Differentiating between early malignancy and benign lesions in oral cavities is difficult using current optical tools. As has been shown in previous studies, microvascular changes in squamous epithelium can be regarded as a key marker for diagnosis. We propose the combination of structural and vascular optical coherence tomography (OCT) imaging for the investigation of disease related changes. Progressive thickness changes of epithelium and the destruction of underlying lamina propria was observed during cancer development in a 4- nitroquinoline-1-oxide (4NQO) mouse model. At the same time, microvascular changes in hyperplasia, dysplasia, carcinoma in situ and advanced cancer were observed. Findings from OCT imaging were compared with histology.
Collapse
Affiliation(s)
- Ping-Hisen Chen
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, School of Medicine National Yang-Ming University School, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan
| | - Chien-Hsien Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Fen Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Bo-Han Lin
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Pei-Yu Lai
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan
| | - Ming-Chih Hou
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, School of Medicine National Yang-Ming University School, Taipei 112, Taiwan
- Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ching-Liang Lu
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, School of Medicine National Yang-Ming University School, Taipei 112, Taiwan
| | - Wen-Chuan Kuo
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
24
|
Wang L, Xu ME, Luo L, Zhou Y, Si P. Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability. Sci Rep 2018; 8:2802. [PMID: 29434327 PMCID: PMC5809410 DOI: 10.1038/s41598-018-21274-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
For three-dimensional bio-printed cell-laden hydrogel tissue constructs, the well-designed internal porous geometry is tailored to obtain the desired structural and cellular properties. However, significant differences often exist between the designed and as-printed scaffolds because of the inherent characteristics of hydrogels and cells. In this study, an iterative feedback bio-printing (IFBP) approach based on optical coherence tomography (OCT) for the fabrication of cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability was proposed. A custom-made swept-source OCT (SS-OCT) system was applied to characterize the printed scaffolds quantitatively. Based on the obtained empirical linear formula from the first experimental feedback loop, we defined the most appropriate design constraints and optimized the printing process to improve the geometrical fidelity. The effectiveness of IFBP was verified from the second run using gelatin/alginate hydrogel scaffolds laden with C3A cells. The mismatch of the morphological parameters greatly decreased from 40% to within 7%, which significantly optimized the cell viability, proliferation, and morphology, as well as the representative expression of hepatocyte markers, including CYP3A4 and albumin, of the printed cell-laden hydrogel scaffolds. The demonstrated protocol paves the way for the mass fabrication of cell-laden hydrogel scaffolds, engineered tissues, and scaled-up applications of the 3D bio-printing technique.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Ming-En Xu
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Li Luo
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yongyong Zhou
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Peijian Si
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
25
|
Fu L, Su Y, Wang Y, Chen L, Li W, Wang H, Li Z, Steve Yao X. Rapid measurement of transversal flow velocity vector with high spatial resolution using speckle decorrelation optical coherence tomography. OPTICS LETTERS 2017; 42:3545-3548. [PMID: 28914896 DOI: 10.1364/ol.42.003545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
We propose and demonstrate a novel method that uses only three sets of B-scans to accurately determine both the direction and the speed of a transversal flow using speckle decorrelation optical coherence tomography. Our tri-scan method has the advantages of high measurement speed, high spatial resolution, and insensitivity to the flow speed. By introducing error maps, we show that the flow angle inaccuracy can be minimized by choosing the measurement result with a lesser error between results obtained from the x- and y-scans. Finally, we demonstrate that the flow angle measurement accuracy can be further improved for the high-speed flows by increasing the speed of the x- and y-scans.
Collapse
|
26
|
Li E, Makita S, Hong YJ, Kasaragod D, Yasuno Y. Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:1290-1305. [PMID: 28663829 PMCID: PMC5480544 DOI: 10.1364/boe.8.001290] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 05/18/2023]
Abstract
A custom made dermatological Jones matrix optical coherence tomography (JM-OCT) is presented. It uses a passive-polarization-delay component based swept-source JM-OCT configuration, but is specially designed for in vivo human skin measurement. The center wavelength of its probe beam is 1310 nm and the A-line rate is 49.6 kHz. The JM-OCT is capable of simultaneously providing birefringence (local retardation) tomography, degree-of-polarization-uniformity tomography, complex-correlation-based optical coherence angiography, and conventional scattering OCT. To evaluate the performance of this JM-OCT, we measured in vivo human skin at several locations. Using the four kinds of OCT contrasts, the morphological characteristics and optical properties of different skin types were visualized.
Collapse
Affiliation(s)
- En Li
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Young-Joo Hong
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Deepa Kasaragod
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| |
Collapse
|
27
|
Tsai MT, Tsai TY, Shen SC, Ng CY, Lee YJ, Lee JD, Yang CH. Evaluation of Laser-Assisted Trans-Nail Drug Delivery with Optical Coherence Tomography. SENSORS (BASEL, SWITZERLAND) 2016; 16:E2111. [PMID: 27973451 PMCID: PMC5191091 DOI: 10.3390/s16122111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023]
Abstract
The nail provides a functional protection to the fingertips and surrounding tissue from external injuries. The nail plate consists of three layers including dorsal, intermediate, and ventral layers. The dorsal layer consists of compact, hard keratins, limiting topical drug delivery through the nail. In this study, we investigate the application of fractional CO₂ laser that produces arrays of microthermal ablation zones (MAZs) to facilitate drug delivery in the nails. We utilized optical coherence tomography (OCT) for real-time monitoring of the laser-skin tissue interaction, sparing the patient from an invasive surgical sampling procedure. The time-dependent OCT intensity variance was used to observe drug diffusion through an induced MAZ array. Subsequently, nails were treated with cream and liquid topical drugs to investigate the feasibility and diffusion efficacy of laser-assisted drug delivery. Our results show that fractional CO₂ laser improves the effectiveness of topical drug delivery in the nail plate and that OCT could potentially be used for in vivo monitoring of the depth of laser penetration as well as real-time observations of drug delivery.
Collapse
Affiliation(s)
- Meng-Tsan Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| | - Ting-Yen Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Su-Chin Shen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chau Yee Ng
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ya-Ju Lee
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Jiann-Der Lee
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Neurosurgery, Chang Gung Memorial Hospital, LinKou 33305, Taiwan.
| | - Chih-Hsun Yang
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
28
|
Sowa MG, Kuo WC, Ko ACT, Armstrong DG. Review of near-infrared methods for wound assessment. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:091304. [PMID: 27087164 DOI: 10.1117/1.jbo.21.9.091304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Wound management is a challenging and costly problem that is growing in importance as people are living longer. Instrumental methods are increasingly being relied upon to provide objective measures of wound assessment to help guide management. Technologies that employ near-infrared (NIR) light form a prominent contingent among the existing and emerging technologies. We review some of these technologies. Some are already established, such as indocyanine green fluorescence angiography, while we also speculate on others that have the potential to be clinically relevant to wound monitoring and assessment. These various NIR-based technologies address clinical wound management needs along the entire healing trajectory of a wound.
Collapse
Affiliation(s)
- Michael G Sowa
- National Research Council Canada, Medical Devices Portfolio, 435 Ellice Avenue, Winnipeg, Manitoba R3B 1Y6, Canada
| | - Wen-Chuan Kuo
- National Yang-Ming University, Institute of Biophotonics, No.155, Sec.2, Linong Street, Taipei 112, Taiwan
| | - Alex C-T Ko
- National Research Council Canada, Medical Devices Portfolio, 435 Ellice Avenue, Winnipeg, Manitoba R3B 1Y6, Canada
| | - David G Armstrong
- University of Arizona College of Medicine, Vascular/Endovascular, P.O. Box 245072, Tucson, Arizona 85724-5072, United States
| |
Collapse
|
29
|
Men J, Huang Y, Solanki J, Zeng X, Alex A, Jerwick J, Zhang Z, Tanzi RE, Li A, Zhou C. Optical Coherence Tomography for Brain Imaging and Developmental Biology. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6803213. [PMID: 27721647 PMCID: PMC5049888 DOI: 10.1109/jstqe.2015.2513667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) is a promising research tool for brain imaging and developmental biology. Serving as a three-dimensional optical biopsy technique, OCT provides volumetric reconstruction of brain tissues and embryonic structures with micrometer resolution and video rate imaging speed. Functional OCT enables label-free monitoring of hemodynamic and metabolic changes in the brain in vitro and in vivo in animal models. Due to its non-invasiveness nature, OCT enables longitudinal imaging of developing specimens in vivo without potential damage from surgical operation, tissue fixation and processing, and staining with exogenous contrast agents. In this paper, various OCT applications in brain imaging and developmental biology are reviewed, with a particular focus on imaging heart development. In addition, we report findings on the effects of a circadian gene (Clock) and high-fat-diet on heart development in Drosophila melanogaster. These findings contribute to our understanding of the fundamental mechanisms connecting circadian genes and obesity to heart development and cardiac diseases.
Collapse
Affiliation(s)
- Jing Men
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Yongyang Huang
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Jitendra Solanki
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Xianxu Zeng
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Aneesh Alex
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Jason Jerwick
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Zhan Zhang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 02129
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 02129
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| |
Collapse
|
30
|
Choi WJ, Qin W, Chen CL, Wang J, Zhang Q, Yang X, Gao BZ, Wang RK. Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels. BIOMEDICAL OPTICS EXPRESS 2016; 7:2709-28. [PMID: 27446700 PMCID: PMC4948624 DOI: 10.1364/boe.7.002709] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 05/17/2023]
Abstract
Optical microangiography (OMAG) is a powerful optical angio-graphic tool to visualize micro-vascular flow in vivo. Despite numerous demonstrations for the past several years of the qualitative relationship between OMAG and flow, no convincing quantitative relationship has been proven. In this paper, we attempt to quantitatively correlate the OMAG signal with flow. Specifically, we develop a simplified analytical model of the complex OMAG, suggesting that the OMAG signal is a product of the number of particles in an imaging voxel and the decorrelation of OCT (optical coherence tomography) signal, determined by flow velocity, inter-frame time interval, and wavelength of the light source. Numerical simulation with the proposed model reveals that if the OCT amplitudes are correlated, the OMAG signal is related to a total number of particles across the imaging voxel cross-section per unit time (flux); otherwise it would be saturated but its strength is proportional to the number of particles in the imaging voxel (concentration). The relationship is validated using microfluidic flow phantoms with various preset flow metrics. This work suggests OMAG is a promising quantitative tool for the assessment of vascular flow.
Collapse
Affiliation(s)
- Woo June Choi
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
- These authors contributed equally to this work
| | - Wan Qin
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
- These authors contributed equally to this work
| | - Chieh-Li Chen
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
| | - Jingang Wang
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
| | - Qinqin Zhang
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
| | - Xiaoqi Yang
- Department of Bioengineering and COMSET, Clemson University, Clemson, SC 29634, USA
| | - Bruce Z. Gao
- Department of Bioengineering and COMSET, Clemson University, Clemson, SC 29634, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
| |
Collapse
|
31
|
Wang L, Xu M, Zhang L, Zhou Q, Luo L. Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:894-910. [PMID: 27231597 PMCID: PMC4866464 DOI: 10.1364/boe.7.000894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 05/13/2023]
Abstract
Reconstructing and quantitatively assessing the internal architecture of opaque three-dimensional (3D) bioprinted hydrogel scaffolds is difficult but vital to the improvement of 3D bioprinting techniques and to the fabrication of functional engineered tissues. In this study, swept-source optical coherence tomography was applied to acquire high-resolution images of hydrogel scaffolds. Novel 3D gelatin/alginate hydrogel scaffolds with six different representative architectures were fabricated using our 3D bioprinting system. Both the scaffold material networks and the interconnected flow channel networks were reconstructed through volume rendering and binarisation processing to provide a 3D volumetric view. An image analysis algorithm was developed based on the automatic selection of the spatially-isolated region-of-interest. Via this algorithm, the spatially-resolved morphological parameters including pore size, pore shape, strut size, surface area, porosity, and interconnectivity were quantified precisely. Fabrication defects and differences between the designed and as-produced scaffolds were clearly identified in both 2D and 3D; the locations and dimensions of each of the fabrication defects were also defined. It concludes that this method will be a key tool for non-destructive and quantitative characterization, design optimisation and fabrication refinement of 3D bioprinted hydrogel scaffolds. Furthermore, this method enables investigation into the quantitative relationship between scaffold structure and biological outcome.
Collapse
Affiliation(s)
- Ling Wang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Mingen Xu
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China; Hangzhou Regenovo Corporation, Hangzhou 310018, China;
| | - LieLie Zhang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - QingQing Zhou
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Li Luo
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
32
|
Qi L, Zhu J, Hancock AM, Dai C, Zhang X, Frostig RD, Chen Z. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:601-15. [PMID: 26977365 PMCID: PMC4771474 DOI: 10.1364/boe.7.000601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 05/03/2023]
Abstract
Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement.
Collapse
Affiliation(s)
- Li Qi
- Institute of Optical Communication Engineering and College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
- Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
| | - Jiang Zhu
- Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA
| | - Aneeka M. Hancock
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California, USA
- The Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, USA
| | - Cuixia Dai
- Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
| | - Xuping Zhang
- Institute of Optical Communication Engineering and College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Ron D. Frostig
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California, USA
- The Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
33
|
Huang S, Piao Z, Zhu J, Lu F, Chen Z. In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:76003. [PMID: 26169790 PMCID: PMC4572094 DOI: 10.1117/1.jbo.20.7.076003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/12/2015] [Indexed: 05/21/2023]
Abstract
Microvascular network of the retina plays an important role in diagnosis and monitoring of various retinal diseases. We propose a three-dimensional (3-D) segmentation method with intensity-based Doppler variance (IBDV) based on swept-source optical coherence tomography. The automatic 3-D segmentation method is used to obtain seven surfaces of intraretinal layers. The microvascular network of the retina, which is acquired by the IBDV method, can be divided into six layers. The microvascular network of the six individual layers is visualized, and the morphology and contrast images can be improved by using the segmentation method. This method has potential for earlier diagnosis and precise monitoring in retinal vascular diseases.
Collapse
Affiliation(s)
- Shenghai Huang
- Wenzhou Medical University, School of Optometry and Ophthalmology, 270 Xueyuan Road, Wenzhou 325027, China
- University of California, Irvine, Beckman Laser Institute, 1002 Health Sciences Road East, Irvine, California 92612, United States
| | - Zhonglie Piao
- University of California, Irvine, Beckman Laser Institute, 1002 Health Sciences Road East, Irvine, California 92612, United States
| | - Jiang Zhu
- University of California, Irvine, Beckman Laser Institute, 1002 Health Sciences Road East, Irvine, California 92612, United States
| | - Fan Lu
- Wenzhou Medical University, School of Optometry and Ophthalmology, 270 Xueyuan Road, Wenzhou 325027, China
| | - Zhongping Chen
- Wenzhou Medical University, School of Optometry and Ophthalmology, 270 Xueyuan Road, Wenzhou 325027, China
- University of California, Irvine, Beckman Laser Institute, 1002 Health Sciences Road East, Irvine, California 92612, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California 92697, United States
- Address all correspondence to: Zhongping Chen, E-mail:
| |
Collapse
|
34
|
Watanabe Y, Takakura K, Kurotani R, Abe H. Optical coherence tomography imaging for analysis of follicular development in ovarian tissue. APPLIED OPTICS 2015; 54:6111-6115. [PMID: 26193160 DOI: 10.1364/ao.54.006111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe the application of optical coherence tomography (OCT) for noninvasive analysis of follicular development in mouse ovaries. Ovaries contain many follicles and oocytes. Quantification of follicles at various developmental stages is an indication of the ability of an ovary to provide oocytes capable of fertilization. Three-dimensional structural OCT images identified each developmental stage, from a primary follicle (50 μm in diameter) to an antral follicle (350 μm in diameter), in the ovary of a 25.5-day-old mouse. We discovered time-varying OCT signals at the oocytes that differentiated them from surrounding tissues. These signals were clearly enhanced by interframe intensity-based Doppler OCT techniques. The OCT technology was effective in analyzing the development of follicles and oocytes in ovaries.
Collapse
|
35
|
Schwarz M, Omar M, Buehler A, Aguirre J, Ntziachristos V. Implications of ultrasound frequency in optoacoustic mesoscopy of the skin. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:672-7. [PMID: 25361501 DOI: 10.1109/tmi.2014.2365239] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Raster-scan optoacoustic mesoscopy (RSOM) comes with high potential for in vivo diagnostic imaging in dermatology, since it allows for high resolution imaging of the natural chromophores melanin, and hemoglobin at depths of several millimeters. We have applied ultra-wideband RSOM, in the 10-160 MHz frequency band, to image healthy human skin at distinct locations. We analyzed the anatomical information contained at different frequency ranges of the optoacoustic (photoacoustic) signals in relation to resolving features of different skin layers in vivo. We further compared results obtained from glabrous and hairy skin and identify that frequencies above 60 MHz are necessary for revealing the epidermal thickness, a prerequisite for determining the invasion depth of melanoma in future studies. By imaging a benign nevus we show that the applied RSOM system provides strong contrast of melanin-rich structures. We further identify the spectral bands responsible for imaging the fine structures in the stratum corneum, assessing dermal papillae, and resolving microvascular structures in the horizontal plexus.
Collapse
|
36
|
Liu X, Kirby M, Zhao F. Motion analysis and removal in intensity variation based OCT angiography. BIOMEDICAL OPTICS EXPRESS 2014; 5:3833-47. [PMID: 25426314 PMCID: PMC4242021 DOI: 10.1364/boe.5.003833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 05/18/2023]
Abstract
In this work, we investigated how bulk motion degraded the quality of optical coherence tomography (OCT) angiography that was obtained through calculating interframe signal variation, i.e., interframe signal variation based optical coherence angiography (isvOCA). We demonstrated theoretically and experimentally that the spatial average of isvOCA signal had an explicit functional dependency on bulk motion. Our result suggested that the bulk motion could lead to an increased background in angiography image. Based on our motion analysis, we proposed to reduce image artifact induced by transient bulk motion in isvOCA through adaptive thresholding. The motion artifact reduced angiography was demonstrated in a 1.3μm spectral domain OCT system. We implemented signal processing using graphic processing unit for real-time imaging and conducted in vivo microvasculature imaging on human skin. Our results clearly showed that the adaptive thresholding method was highly effective in the motion artifact removal for OCT angiography.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ USA
| | - Mitchell Kirby
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI USA
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI USA
| |
Collapse
|
37
|
Yang CH, Tsai MT, Shen SC, Ng CY, Jung SM. Feasibility of ablative fractional laser-assisted drug delivery with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:3949-59. [PMID: 25426321 PMCID: PMC4242029 DOI: 10.1364/boe.5.003949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/07/2014] [Accepted: 10/11/2014] [Indexed: 05/20/2023]
Abstract
Fractional resurfacing creates hundreds of microscopic wounds in the skin without injuring surrounding tissue. This technique allows rapid wound healing owing to small injury regions, and has been proven as an effective method for repairing photodamaged skin. Recently, ablative fractional laser (AFL) treatment has been demonstrated to facilitate topical drug delivery into skin. However, induced fractional photothermolysis depends on several parameters, such as incident angle, exposure energy, and spot size of the fractional laser. In this study, we used fractional CO2 laser to induce microscopic ablation array on the nail for facilitating drug delivery through the nail. To ensure proper energy delivery without damaging tissue structures beneath the nail plate, optical coherence tomography (OCT) was implemented for quantitative evaluation of induced microscopic ablation zone (MAZ). Moreover, to further study the feasibility of drug delivery, normal saline was dripped on the exposure area of fingernail and the speckle variance in OCT signal was used to observe water diffusion through the ablative channels into the nail plate. In conclusion, this study establishes OCT as an effective tool for the investigation of fractional photothermolysis and water/drug delivery through microscopic ablation channels after nail fractional laser treatment.
Collapse
Affiliation(s)
- Chih-Hsun Yang
- Department of Dermatology, Chang Gung Memorial Hospital, 5 Fusing St., Kwei-Shan, Tao- Yuan, 33302,
Taiwan
- College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
| | - Meng-Tsan Tsai
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
- Graduate Institute of Electro-Optical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
| | - Su-Chin Shen
- College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, 5 Fusing St. Kwei-Shan, Tao- Yuan, 33302
Taiwan
| | - Chau Yee Ng
- Department of Dermatology, Chang Gung Memorial Hospital, 5 Fusing St., Kwei-Shan, Tao- Yuan, 33302,
Taiwan
- College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
| | - Shih-Ming Jung
- College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
- Department of Pathology, Chang Gung Memorial Hospital, 5 Fusing St., Kwei-Shan, Tao- Yuan, 33302
Taiwan
| |
Collapse
|
38
|
Geyer SH, Nöhammer MM, Mathä M, Reissig L, Tinhofer IE, Weninger WJ. High-resolution episcopic microscopy (HREM): a tool for visualizing skin biopsies. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1356-64. [PMID: 25198556 DOI: 10.1017/s1431927614013063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We evaluate the usefulness of digital volume data produced with the high-resolution episcopic microscopy (HREM) method for visualizing the three-dimensional (3D) arrangement of components of human skin, and present protocols designed for processing skin biopsies for HREM data generation. A total of 328 biopsies collected from normally appearing skin and from a melanocytic nevus were processed. Cuboidal data volumes with side lengths of ~2×3×6 mm3 and voxel sizes of 1.07×1.07×1.5 µm3 were produced. HREM data fit ideally for visualizing the epidermis at large, and for producing highly detailed volume and surface-rendered 3D representations of the dermal and hypodermal components at a structural level. The architecture of the collagen fiber bundles and the spatial distribution of nevus cells can be easily visualized with volume-rendering algorithms. We conclude that HREM has great potential to serve as a routine tool for researching and diagnosing skin pathologies.
Collapse
Affiliation(s)
- Stefan H Geyer
- 1MRC National Institute for Medical Research,London,NW7 1AA,UK
| | - Maria M Nöhammer
- 2Centre for Anatomy and Cell Biology,Medical University of Vienna,Waehringer Street 13,A-1090 Vienna,Austria
| | - Markus Mathä
- 2Centre for Anatomy and Cell Biology,Medical University of Vienna,Waehringer Street 13,A-1090 Vienna,Austria
| | - Lukas Reissig
- 2Centre for Anatomy and Cell Biology,Medical University of Vienna,Waehringer Street 13,A-1090 Vienna,Austria
| | - Ines E Tinhofer
- 2Centre for Anatomy and Cell Biology,Medical University of Vienna,Waehringer Street 13,A-1090 Vienna,Austria
| | - Wolfgang J Weninger
- 2Centre for Anatomy and Cell Biology,Medical University of Vienna,Waehringer Street 13,A-1090 Vienna,Austria
| |
Collapse
|
39
|
Lin AJ, Liu G, Castello NA, Yeh JJ, Rahimian R, Lee G, Tsay V, Durkin AJ, Choi B, LaFerla FM, Chen Z, Green KN, Tromberg BJ. Optical imaging in an Alzheimer's mouse model reveals amyloid- β-dependent vascular impairment. NEUROPHOTONICS 2014; 1:011005. [PMID: 25133200 PMCID: PMC4132842 DOI: 10.1117/1.nph.1.1.011005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Alzheimer's disease (AD) and cerebrovascular disease are often comorbid conditions, but the relationship between amyloid-β and in vivo vascular pathophysiology is poorly understood. We utilized a multimodal, multiscale optical imaging approach, including spatial frequency domain imaging, Doppler optical coherence tomography, and confocal microscopy, to quantify AD-dependent changes in a triple transgenic mouse model (3xTg-AD) and age-matched controls. From three months of age (naïve) to 20 months (severe AD), the brain tissue concentration of total and oxy-hemoglobin (Total Hb, ctO2Hb) decreased 50 and 70%, respectively, in 3xTg-AD mice. Compared to age-matched controls, significant differences in brain hemoglobin concentrations occurred as early as eight months (Total Hb: 126 ± 5 μM versus 108 ± 4 μM; ctO2Hb: 86 ± 5 μM versus 70 ± 3 μM; for control and AD, respectively). These changes were linked to a 29% vascular volume fraction decrease and 35% vessel density reduction in the 20-month-old 3xTg-AD versus age-matched controls. Vascular reduction coincided with increased brain concentration of amyloid-β protein, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS) at eight and 20 months compared to the three-month baseline. Our results suggest that amyloid-β blocks the normally reparative effects of upregulated VEGF and eNOS, and may accelerate in vivo vascular pathophysiology in AD.
Collapse
Affiliation(s)
- Alexander J. Lin
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612
- University of California Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine, California 92697-2715
| | - Gangjun Liu
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612
| | - Nicholas A. Castello
- University of California Irvine, Institute for Memory Impairments and Neurological Disorders, 2642 Biological Sciences III Irvine, California 92697-4545
- University of California Irvine, Department of Neurobiology and Behavior, 2205 McGaugh Hall, Irvine, California 92697-4550
| | - James J. Yeh
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612
| | - Rombod Rahimian
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612
| | - Grace Lee
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612
| | - Victoria Tsay
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612
| | - Anthony J. Durkin
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612
- University of California Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine, California 92697-2715
| | - Frank M. LaFerla
- University of California Irvine, Institute for Memory Impairments and Neurological Disorders, 2642 Biological Sciences III Irvine, California 92697-4545
- University of California Irvine, Department of Neurobiology and Behavior, 2205 McGaugh Hall, Irvine, California 92697-4550
| | - Zhongping Chen
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612
- University of California Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine, California 92697-2715
| | - Kim N. Green
- University of California Irvine, Institute for Memory Impairments and Neurological Disorders, 2642 Biological Sciences III Irvine, California 92697-4545
- University of California Irvine, Department of Neurobiology and Behavior, 2205 McGaugh Hall, Irvine, California 92697-4550
| | - Bruce J. Tromberg
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612
- University of California Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine, California 92697-2715
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
40
|
Choi WJ, Reif R, Yousefi S, Wang RK. Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:36010. [PMID: 24623159 PMCID: PMC3951585 DOI: 10.1117/1.jbo.19.3.036010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 05/18/2023]
Abstract
Optical microangiography based on optical coherence tomography (OCT) is prone to noise that arises from a static tissue region. Here, we propose a method that can significantly reduce this noise. The method is developed based on an approach that uses the magnitude information of OCT signals to produce tissue microangiograms, especially suitable for the case where a swept-source OCT system is deployed. By combined use of two existing OCT microangiography methods-ultrahigh-sensitive optical microangiography (UHS-OMAG) and correlation mapping OCT (cmOCT)-the final tissue microangiogram is generated by masking UHS-OMAG image using the binary representation of cmOCT image. We find that this process masks the residual static artifacts while preserving the vessel structures. The noise rejection capability of the masked approach (termed as mOMAG) is tested on a tissue-like flow phantom as well as an in vivo human skin tissue. Compared to UHS-OMAG and cmOCT, we demonstrate that the proposed method is capable of achieving improved signal-to-noise ratio in providing microcirculation images. Finally, we show its clinical potential by quantitatively assessing the vascular difference between a burn scar and a normal skin of human subject in vivo.
Collapse
Affiliation(s)
- Woo June Choi
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
| | - Roberto Reif
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
| | - Siavash Yousefi
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
- Address all correspondence to: Ruikang K. Wang, E-mail:
| |
Collapse
|
41
|
Watanabe Y, Takahashi Y, Numazawa H. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:021105. [PMID: 23846119 DOI: 10.1117/1.jbo.19.2.021105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.
Collapse
Affiliation(s)
- Yuuki Watanabe
- Yamagata University, Bio-systems Engineering, Graduate School of Science and Engineering, 4-3-16 Johnan, Yonezawa, Yamagata 992-8510, Japan.
| | | | | |
Collapse
|
42
|
Liu G, Jia W, Nelson JS, Chen Z. In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin. Lasers Surg Med 2013; 45:628-32. [PMID: 24155140 PMCID: PMC3928824 DOI: 10.1002/lsm.22194] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES Port-wine stain (PWS) is a congenital, progressive vascular malformation of the dermis. The use of optical coherence tomography (OCT) for the characterization of blood vessels in PWS skin has been demonstrated by several groups. In the past few years, advances in OCT technology have greatly increased imaging speed. Sophisticated numerical algorithms have improved the sensitivity of Doppler OCT dramatically. These improvements have enabled the noninvasive, high-resolution, three-dimensional functional imaging of PWS skin. Here, we demonstrate high-resolution, three-dimensional, microvasculature imaging of PWS and normal skin using Doppler OCT technique. STUDY DESIGN/MATERIALS AND METHODS The OCT system uses a swept source laser which has a central wavelength of 1,310 nm, an A-line rate of 50 kHz and a total average power of 16 mW. The system uses a handheld imaging probe and has an axial resolution of 9.3 µm in air and a lateral resolution of approximately 15 µm. Images were acquired from PWS subjects at the Beckman Laser Institute and Medical Clinic. Microvasculature of the PWS skin and normal skin were obtained from the PWS subject. RESULTS High-resolution, three-dimensional microvasculature of PWS and normal skin were obtained. Many enlarged PWS vessels are detected in the dermis down to 1.0 mm below the PWS skin surface. In one subject, the blood vessel diameters range from 40 to 90 µm at the epidermal-dermal junction and increase up to 300-500 µm at deeper regions 700-1,000 µm below skin surface. The blood vessels close to the epidermal-dermal junction are more uniform, in terms of diameter. The more tortuous and dilated PWS blood vessels are located at deeper regions 600-1,000 µm below the skin surface. In another subject example, the PWS skin blood vessels are dilated at very superficial layers at a depth less than 500 µm below the skin surface. The PWS skin vessel diameters range from 60 to 650 µm, with most vessels having a diameter of around 200 µm. CONCLUSIONS OCT can be used to quantitatively image in vivo skin micro-vasculature. Analysis of the PWS and normal skin blood vessels were performed and the results can provide quantitative information to optimize laser treatment on an individual patient basis.
Collapse
Affiliation(s)
- Gangjun Liu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92617
- Department of Biomedical Engineering, University of California, Irvine, California 92612
| | - Wangcun Jia
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92617
| | - J. Stuart Nelson
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92617
- Department of Biomedical Engineering, University of California, Irvine, California 92612
- Department of Surgery, University of California, Irvine, California 92697
| | - Zhongping Chen
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92617
- Department of Biomedical Engineering, University of California, Irvine, California 92612
| |
Collapse
|
43
|
Liu G, Jia W, Nelson JS, Chen Z. In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin. Lasers Surg Med 2013. [PMID: 24155140 DOI: 10.1002/lsm.v45.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND OBJECTIVES Port-wine stain (PWS) is a congenital, progressive vascular malformation of the dermis. The use of optical coherence tomography (OCT) for the characterization of blood vessels in PWS skin has been demonstrated by several groups. In the past few years, advances in OCT technology have greatly increased imaging speed. Sophisticated numerical algorithms have improved the sensitivity of Doppler OCT dramatically. These improvements have enabled the noninvasive, high-resolution, three-dimensional functional imaging of PWS skin. Here, we demonstrate high-resolution, three-dimensional, microvasculature imaging of PWS and normal skin using Doppler OCT technique. STUDY DESIGN/MATERIALS AND METHODS The OCT system uses a swept source laser which has a central wavelength of 1,310 nm, an A-line rate of 50 kHz and a total average power of 16 mW. The system uses a handheld imaging probe and has an axial resolution of 9.3 µm in air and a lateral resolution of approximately 15 µm. Images were acquired from PWS subjects at the Beckman Laser Institute and Medical Clinic. Microvasculature of the PWS skin and normal skin were obtained from the PWS subject. RESULTS High-resolution, three-dimensional microvasculature of PWS and normal skin were obtained. Many enlarged PWS vessels are detected in the dermis down to 1.0 mm below the PWS skin surface. In one subject, the blood vessel diameters range from 40 to 90 µm at the epidermal-dermal junction and increase up to 300-500 µm at deeper regions 700-1,000 µm below skin surface. The blood vessels close to the epidermal-dermal junction are more uniform, in terms of diameter. The more tortuous and dilated PWS blood vessels are located at deeper regions 600-1,000 µm below the skin surface. In another subject example, the PWS skin blood vessels are dilated at very superficial layers at a depth less than 500 µm below the skin surface. The PWS skin vessel diameters range from 60 to 650 µm, with most vessels having a diameter of around 200 µm. CONCLUSIONS OCT can be used to quantitatively image in vivo skin micro-vasculature. Analysis of the PWS and normal skin blood vessels were performed and the results can provide quantitative information to optimize laser treatment on an individual patient basis.
Collapse
Affiliation(s)
- Gangjun Liu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California, 92617; Department of Biomedical Engineering, University of California, Irvine, California, 92612
| | | | | | | |
Collapse
|
44
|
Tsai MT, Yang CH, Shen SC, Lee YJ, Chang FY, Feng CS. Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2013; 4:2362-75. [PMID: 24298400 PMCID: PMC3829533 DOI: 10.1364/boe.4.002362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 05/28/2023]
Abstract
Fractional photothermolysis induced by non-ablative fractional lasers (NAFLs) or ablative fractional lasers (AFLs) can remodel the skin, regenerate collagen, and remove tumor tissue. However, fractional laser treatments may result in severe side effects, and multiple treatments are required to achieve the expected outcome. Thus, the treatment outcome and downtime after fractional laser treatments are key issues to determine the following treatment strategy. In this study, an optical coherence tomography (OCT) system was implemented for in vivo studies of wound healing after NAFL and AFL treatments. According to the OCT scanning results, the laser-induced photothermolysis including volatilization and coagulation could be morphologically identified. To continue monitoring the wound healing process, the treated regions were scanned with OCT at different time points, and the en-face images at various tissue depths were extracted from three-dimensional OCT images. Furthermore, to quantitatively evaluate the morphological changes at different tissue depths during wound healing, an algorithm was developed to distinguish the backscattering properties of untreated and treated tissues. The results showed that the coagulation damage induced by the NAFLs could be rapidly healed in 6 days. In contrast, the tissue volatilization induced by AFLs required a longer recovery time of 14 days. In conclusion, this study establishes the feasibility of this methodology as a means of clinically monitoring treatment outcomes and wound healing after fractional laser treatments.
Collapse
Affiliation(s)
- Meng-Tsan Tsai
- Department of Electrical Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Chih-Hsun Yang
- Department of Dermatology, Chang Gung Memorial Hospital, 5 Fusing Street, Kwei-Shan, Tao-Yaun 33302, Taiwan
- College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Su-Chin Shen
- Department of Ophthalmology, Chang Gung Memorial Hospital, 5 Fusing Street, Kwei-Shan, Tao-Yaun 33302, Taiwan
- College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Ya-Ju Lee
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, 88, Sec. 4, Ting-Chou Rd., Taipei 116, Taiwan
| | - Feng-Yu Chang
- Department of Electrical Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Cheng-Shin Feng
- Department of Electrical Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| |
Collapse
|
45
|
Tokayer J, Jia Y, Dhalla AH, Huang D. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2013; 4:1909-24. [PMID: 24156053 PMCID: PMC3799655 DOI: 10.1364/boe.4.001909] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 05/05/2023]
Abstract
The split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was recently developed as a method for imaging blood flow in the human retina without the use of phase information. In order to enable absolute blood velocity quantification, in vitro phantom experiments are performed to correlate the SSADA signal at multiple time scales with various preset velocities. A linear model relating SSADA measurements to absolute flow velocities is derived using the phantom data. The operating range for the linear model is discussed along with its implication for velocity quantification with SSADA in a clinical setting.
Collapse
Affiliation(s)
- Jason Tokayer
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Al-Hafeez Dhalla
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- New England Eye Center, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David Huang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
46
|
Xu X, Geng J, Liu G, Chen Z. Evaluation of optical coherence tomography for the measurement of the effects of activators and anticoagulants on the blood coagulation in vitro. IEEE Trans Biomed Eng 2013; 60:2100-6. [PMID: 23392340 PMCID: PMC3888882 DOI: 10.1109/tbme.2013.2245329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optical properties of human blood during coagulation were studied using optical coherence tomography (OCT) and the parameter of clotting time derived from the 1/e light penetration depth (d(1/e)) versus time was developed in our previous work. In this study, in order to know if a new OCT test can characterize the blood-coagulation process under different treatments in vitro, the effects of two different activators (calcium ions and thrombin) and anticoagulants, i.e., acetylsalicylic acid (ASA, a well-known drug aspirin) and melagatran (a direct thrombin inhibitor), at various concentrations are evaluated. A swept-source OCT system with a 1300 nm center wavelength is used for detecting the blood-coagulation process in vitro under a static condition. A dynamic study of d1/e reveals a typical behavior due to coagulation induced by both calcium ions and thrombin, and the clotting time is concentration-dependent. Dose-dependent ASA and melagatran prolong the clotting times. ASA and melagatran have different effects on blood coagulation. As expected, melagatran is much more effective than ASA in anticoagulation by the OCT measurements. The OCT assay appears to be a simple method for the measurement of blood coagulation to assess the effects of activators and anticoagulants, which can be used for activator and anticoagulant screening.
Collapse
Affiliation(s)
- Xiangqun Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China ()
| | - Jinhai Geng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China ()
| | - Gangjun Liu
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, CA 92617 USA ()
| | - Zhongping Chen
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, CA 92617 USA ()
| |
Collapse
|
47
|
Liu G, Chen Z. Capturing the vital vascular fingerprint with optical coherence tomography. APPLIED OPTICS 2013; 52:5473-7. [PMID: 23913068 PMCID: PMC3893144 DOI: 10.1364/ao.52.005473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Using fingerprints as a method to identify an individual has been accepted in forensics since the nineteenth century, and the fingerprint has become one of the most widely used biometric characteristics. Most of the modern fingerprint recognition systems are based on the print pattern of the finger surface and are not robust against spoof attaching. We demonstrate a novel vital vascular fingerprint system using Doppler optical coherence tomography that provides highly sensitive and reliable personal identification. Because the system is based on blood flow, which only exists in a livng person, the technique is robust against spoof attaching.
Collapse
Affiliation(s)
- Gangjun Liu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Zhongping Chen
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Corresponding author:
| |
Collapse
|
48
|
Ahsen OO, Tao YK, Potsaid BM, Sheikine Y, Jiang J, Grulkowski I, Tsai TH, Jayaraman V, Kraus MF, Connolly JL, Hornegger J, Cable A, Fujimoto JG. Swept source optical coherence microscopy using a 1310 nm VCSEL light source. OPTICS EXPRESS 2013; 21:18021-33. [PMID: 23938673 PMCID: PMC3756222 DOI: 10.1364/oe.21.018021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 05/18/2023]
Abstract
We demonstrate high speed, swept source optical coherence microscopy (OCM) using a MEMS tunable vertical cavity surface-emitting laser (VCSEL) light source. The light source had a sweep rate of 280 kHz, providing a bidirectional axial scan rate of 560 kHz. The sweep bandwidth was 117 nm centered at 1310 nm, corresponding to an axial resolution of 13.1 µm in air, corresponding to 8.1 µm (9.6 µm spectrally shaped) in tissue. Dispersion mismatch from different objectives was compensated numerically, enabling magnification and field of view to be easily changed. OCM images were acquired with transverse resolutions between 0.86 µm - 3.42 µm using interchangeable 40X, 20X and 10X objectives with ~600 µm x 600 µm, ~1 mm x 1 mm and ~2 mm x 2 mm field-of-view (FOV), respectively. Parasitic variations in path length with beam scanning were corrected numerically. These features enable swept source OCM to be integrated with a wide range of existing scanning microscopes. Large FOV mosaics were generated by serially acquiring adjacent overlapping microscopic fields and combining them in post-processing. Fresh human colon, thyroid and kidney specimens were imaged ex vivo and compared to matching histology sections, demonstrating the ability of OCM to image tissue specimens.
Collapse
Affiliation(s)
- Osman O Ahsen
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yousefi S, Qin J, Wang RK. Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo. BIOMEDICAL OPTICS EXPRESS 2013; 4:1214-28. [PMID: 23847744 PMCID: PMC3704100 DOI: 10.1364/boe.4.001214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 05/07/2023]
Abstract
In this paper, we propose a super-resolution spectral estimation technique to quantify microvascular hemodynamics using optical microangiography (OMAG) based on optical coherence tomography (OCT). The proposed OMAG technique uses both amplitude and phase information of the OCT signals which makes it sensitive to the axial and transverse flows. The scanning protocol for the proposed method is identical to three-dimensional ultrahigh sensitive OMAG, and is applicable for in vivo measurements. In contrast to the existing capillary flow quantification methods, the proposed method is less sensitive to tissue motion and does not have aliasing problems due fast flow within large blood vessels. This method is analogous to power Doppler in ultrasonography and estimates the number of red blood cells passing through the beam as opposed to the velocity of the particles. The technique is tested both qualitatively and quantitatively by using OMAG to image microcirculation within mouse ear flap in vivo.
Collapse
|
50
|
Abstract
We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed.
Collapse
Affiliation(s)
- Gangjun Liu
- Beckman Laser Institute, University of California, Irvine, USA
- Department of Biomedical Engineering, University of California, Irvine, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, USA
- Department of Biomedical Engineering, University of California, Irvine, USA
| |
Collapse
|