1
|
Zhang C, Huo X, Zhu Y, Higginbotham JN, Cao Z, Lu X, Franklin JL, Vickers KC, Coffey RJ, Senapati S, Wang C, Chang HC. Electrodeposited magnetic nanoporous membrane for high-yield and high-throughput immunocapture of extracellular vesicles and lipoproteins. Commun Biol 2022; 5:1358. [PMID: 36496485 PMCID: PMC9741596 DOI: 10.1038/s42003-022-04321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Superparamagnetic nanobeads offer several advantages over microbeads for immunocapture of nanocarriers (extracellular vesicles, lipoproteins, and viruses) in a bioassay: high-yield capture, reduction in incubation time, and higher capture capacity. However, nanobeads are difficult to "pull-down" because their superparamagnetic feature requires high nanoscale magnetic field gradients. Here, an electrodeposited track-etched membrane is shown to produce a unique superparamagnetic nano-edge ring with multiple edges around nanopores. With a uniform external magnetic field, the induced monopole and dipole of this nano edge junction combine to produce a 10× higher nanobead trapping force. A dense nanobead suspension can be filtered through the magnetic nanoporous membrane (MNM) at high throughput with a 99% bead capture rate. The yield of specific nanocarriers in heterogeneous media by nanobeads/MNM exceeds 80%. Reproducibility, low loss, and concentration-independent capture rates are also demonstrated. This MNM material hence expands the application of nanobead immunocapture to physiological samples.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xiaoye Huo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yini Zhu
- Department of Biology, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - James N Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Zheng Cao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xin Lu
- Department of Biology, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ceming Wang
- Aopia Biosciences, 31351 Medallion Dr, Hayward, CA, 94544, USA.
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Asadchikov VE, Bedin SA, Vasiliev AB, Dyachkova IG, Goldenberg BG, Nazmov VP, Andreev AV, Konovko AA, Reshetov SA. Regular Near-Surface Rod Microstructures and the Generation of Plasmon-Resonance for Detecting Mid-IR Radiation. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521030056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Egatz-Gomez A, Wang C, Klacsmann F, Pan Z, Marczak S, Wang Y, Sun G, Senapati S, Chang HC. Future microfluidic and nanofluidic modular platforms for nucleic acid liquid biopsy in precision medicine. BIOMICROFLUIDICS 2016; 10:032902. [PMID: 27190565 PMCID: PMC4859827 DOI: 10.1063/1.4948525] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/20/2016] [Indexed: 05/05/2023]
Abstract
Nucleic acid biomarkers have enormous potential in non-invasive diagnostics and disease management. In medical research and in the near future in the clinics, there is a great demand for accurate miRNA, mRNA, and ctDNA identification and profiling. They may lead to screening of early stage cancer that is not detectable by tissue biopsy or imaging. Moreover, because their cost is low and they are non-invasive, they can become a regular screening test during annual checkups or allow a dynamic treatment program that adjusts its drug and dosage frequently. We briefly review a few existing viral and endogenous RNA assays that have been approved by the Federal Drug Administration. These tests are based on the main nucleic acid detection technologies, namely, quantitative reverse transcription polymerase chain reaction (PCR), microarrays, and next-generation sequencing. Several of the challenges that these three technologies still face regarding the quantitative measurement of a panel of nucleic acids are outlined. Finally, we review a cluster of microfluidic technologies from our group with potential for point-of-care nucleic acid quantification without nucleic acid amplification, designed to overcome specific limitations of current technologies. We suggest that integration of these technologies in a modular design can offer a low-cost, robust, and yet sensitive/selective platform for a variety of precision medicine applications.
Collapse
Affiliation(s)
- Ana Egatz-Gomez
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Ceming Wang
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Flora Klacsmann
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Zehao Pan
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Steve Marczak
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Yunshan Wang
- Electrical and Computer Engineering, University of Utah , Salt Lake City, Utah 84112, USA
| | - Gongchen Sun
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| |
Collapse
|
4
|
Hartley JS, Hlaing MM, Seniutinas G, Juodkazis S, Stoddart PR. Black silicon as a platform for bacterial detection. BIOMICROFLUIDICS 2015; 9:061101. [PMID: 26576207 PMCID: PMC4636504 DOI: 10.1063/1.4934966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 05/26/2023]
Abstract
Surface-enhanced Raman scattering (SERS) shows promise for identifying single bacteria, but the short range nature of the effect makes it most sensitive to the cell membrane, which provides limited information for species-level identification. Here, we show that a substrate based on black silicon can be used to impale bacteria on nanoscale SERS-active spikes, thereby producing spectra that convey information about the internal composition of the bacterial capsule. This approach holds great potential for the development of microfluidic devices for the removal and identification of single bacteria in important clinical diagnostics and environmental monitoring applications.
Collapse
Affiliation(s)
- Jennifer S Hartley
- Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| | - M Myintzu Hlaing
- Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| | | | | | - Paul R Stoddart
- Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| |
Collapse
|
5
|
Wang Y, Chang TC, Stoddart PR, Chang HC. Diffraction-limited ultrasensitive molecular nano-arrays with singular nano-cone scattering. BIOMICROFLUIDICS 2014; 8:021101. [PMID: 24738011 PMCID: PMC3971819 DOI: 10.1063/1.4869694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/15/2014] [Indexed: 05/07/2023]
Abstract
Large-library fluorescent molecular arrays remain limited in sensitivity (1 × 10(6) molecules) and dynamic range due to background auto-fluorescence and scattering noise within a large (20-100 μm) fluorescent spot. We report an easily fabricated silica nano-cone array platform, with a detection limit of 100 molecules and a dynamic range that spans 6 decades, due to point (10 nm to 1 μm) illumination of preferentially absorbed tagged targets by singular scattering off wedged cones. Its fluorescent spot reaches diffraction-limited submicron dimensions, which are 10(4) times smaller in area than conventional microarrays, with comparable reduction in detection limit and amplification of dynamic range.
Collapse
Affiliation(s)
- Yunshan Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ting-Chou Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Paul R Stoddart
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
6
|
Liu S, Yan Y, Wang Y, Senapati S, Chang HC. Plasmonic hotspots of dynamically assembled nanoparticles in nanocapillaries: Towards a micro ribonucleic acid profiling platform. BIOMICROFLUIDICS 2013; 7:61102. [PMID: 24396534 PMCID: PMC3869822 DOI: 10.1063/1.4832095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/05/2013] [Indexed: 05/05/2023]
Abstract
Plasmonic hot spots, generated by controlled 20-nm Au nanoparticle (NP) assembly, are shown to suppress fluorescent quenching effects of metal NPs, such that hair-pin FRET (Fluorescence resonance energy transfer) probes can achieve label-free ultra-sensitive quantification. The micron-sized assembly is a result of intense induced NP dipoles by focused electric fields through conic nanocapillaries. The efficient NP aggregate antenna and the voltage-tunable NP spacing for optimizing hot spot intensity endow ultra-sensitivity and large dynamic range (fM to pM). The large shear forces during assembly allow high selectivity (2-mismatch discrimination) and rapid detection (15 min) for a DNA mimic of microRNA.
Collapse
Affiliation(s)
- Shoupeng Liu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yu Yan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yunshan Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
7
|
Wang Y, Cheng X, Chang HC. Celebrating singularities: Mathematics and chemical engineering. AIChE J 2013. [DOI: 10.1002/aic.14123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yunshan Wang
- Dept. of Chemical and Biomolecular Engineering; University of Notre Dame; Notre Dame; IN; 46556
| | - Xinguang Cheng
- Dept. of Chemical and Biomolecular Engineering; University of Notre Dame; Notre Dame; IN; 46556
| | - Hsueh-Chia Chang
- Dept. of Chemical and Biomolecular Engineering; University of Notre Dame; Notre Dame; IN; 46556
| |
Collapse
|