1
|
Pinsard M, Schmeltz M, van der Kolk J, Patten SA, Ibrahim H, Ramunno L, Schanne-Klein MC, Légaré F. Elimination of imaging artifacts in second harmonic generation microscopy using interferometry. BIOMEDICAL OPTICS EXPRESS 2019; 10:3938-3952. [PMID: 31452986 PMCID: PMC6701527 DOI: 10.1364/boe.10.003938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 05/26/2023]
Abstract
Conventional second harmonic generation (SHG) microscopy might not clearly reveal the structure of complex samples if the interference between all scatterers in the focal volume results in artefactual patterns. We report here the use of interferometric second harmonic generation (I-SHG) microscopy to efficiently remove these artifacts from SHG images. Interfaces between two regions of opposite polarity are considered because they are known to produce imaging artifacts in muscle for instance. As a model system, such interfaces are first studied in periodically-poled lithium niobate (PPLN), where an artefactual incoherent SH signal is obtained because of irregularities at the interfaces, that overshadow the sought-after coherent contribution. Using I-SHG allows to remove the incoherent part completely without any spatial filtering. Second, I-SHG is also proven to resolve the double-band pattern expected in muscle where standard SHG exhibits in some regions artefactual single-band patterns. In addition to removing the artifacts at the interfaces between antiparallel domains in both structures (PPLN and muscle), I-SHG also increases their visibility by up to a factor of 5. This demonstrates that I-SHG is a powerful technique to image biological samples at enhanced contrast while suppressing artifacts.
Collapse
Affiliation(s)
- Maxime Pinsard
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications (INRS-EMT); 1650 Boul. Lionel-Boulet, Varennes (QC), J3X 1S2, Canada
| | - Margaux Schmeltz
- Laboratoire d'Optique et Biosciences (LOB), École Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Jarno van der Kolk
- Department of Physics and Centre for Research in Photonics, University of Ottawa, Ottawa (ON), K1N 6N5, Canada
| | | | - Heide Ibrahim
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications (INRS-EMT); 1650 Boul. Lionel-Boulet, Varennes (QC), J3X 1S2, Canada
| | - Lora Ramunno
- Department of Physics and Centre for Research in Photonics, University of Ottawa, Ottawa (ON), K1N 6N5, Canada
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences (LOB), École Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - François Légaré
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications (INRS-EMT); 1650 Boul. Lionel-Boulet, Varennes (QC), J3X 1S2, Canada
| |
Collapse
|
2
|
Dempsey WP, Hodas NO, Ponti A, Pantazis P. Determination of the source of SHG verniers in zebrafish skeletal muscle. Sci Rep 2015; 5:18119. [PMID: 26657568 PMCID: PMC4676038 DOI: 10.1038/srep18119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/12/2015] [Indexed: 01/24/2023] Open
Abstract
SHG microscopy is an emerging microscopic technique for medically relevant imaging because certain endogenous proteins, such as muscle myosin lattices within muscle cells, are sufficiently spatially ordered to generate detectable SHG without the use of any fluorescent dye. Given that SHG signal is sensitive to the structural state of muscle sarcomeres, SHG functional imaging can give insight into the integrity of muscle cells in vivo. Here, we report a thorough theoretical and experimental characterization of myosin-derived SHG intensity profiles within intact zebrafish skeletal muscle. We determined that “SHG vernier” patterns, regions of bifurcated SHG intensity, are illusory when sarcomeres are staggered with respect to one another. These optical artifacts arise due to the phase coherence of SHG signal generation and the Guoy phase shift of the laser at the focus. In contrast, two-photon excited fluorescence images obtained from fluorescently labeled sarcomeric components do not contain such illusory structures, regardless of the orientation of adjacent myofibers. Based on our results, we assert that complex optical artifacts such as SHG verniers should be taken into account when applying functional SHG imaging as a diagnostic readout for pathological muscle conditions.
Collapse
Affiliation(s)
- William P Dempsey
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Nathan O Hodas
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aaron Ponti
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Periklis Pantazis
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| |
Collapse
|
3
|
Georgiev T, Zapiec B, Förderer M, Fink RHA, Vogel M. Colocalization properties of elementary Ca(2+) release signals with structures specific to the contractile filaments and the tubular system of intact mouse skeletal muscle fibers. J Struct Biol 2015; 192:366-375. [PMID: 26431893 DOI: 10.1016/j.jsb.2015.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022]
Abstract
Ca(2+) regulates several important intracellular processes. We combined second harmonic generation (SHG) and two photon excited fluorescence microscopy (2PFM) to simultaneously record the SHG signal of the myosin filaments and localized elementary Ca(2+) release signals (LCSs). We found LCSs associated with Y-shaped structures of the myosin filament pattern (YMs), so called verniers, in intact mouse skeletal muscle fibers under hypertonic treatment. Ion channels crucial for the Ca(2+) regulation are located in the tubular system, a system that is important for Ca(2+) regulation and excitation-contraction coupling. We investigated the tubular system of intact, living mouse skeletal muscle fibers using 2PFM and the fluorescent Ca(2+) indicator Fluo-4 dissolved in the external solution or the membrane dye di-8-ANEPPS. We simultaneously measured the SHG signal from the myosin filaments of the skeletal muscle fibers. We found that at least a subset of the YMs observed in SHG images are closely juxtaposed with Y-shaped structures of the transverse tubules (YTs). The distances of corresponding YMs and YTs yield values between 1.3 μm and 4.1 μm including pixel uncertainty with a mean distance of 2.52±0.10 μm (S.E.M., n=41). Additionally, we observed that some of the linear-shaped areas in the tubular system are colocalized with linear-shaped areas in the SHG images.
Collapse
Affiliation(s)
- Tihomir Georgiev
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| | - Bolek Zapiec
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt am Main, Germany
| | - Moritz Förderer
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Rainer H A Fink
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Martin Vogel
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Ibrahim A, Hage CH, Souissi A, Leray A, Héliot L, Souissi S, Vandenbunder B. Label-free microscopy and stress responses reveal the functional organization of Pseudodiaptomus marinus copepod myofibrils. J Struct Biol 2015; 191:224-35. [PMID: 26057347 DOI: 10.1016/j.jsb.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 01/25/2023]
Abstract
Pseudodiaptomus marinus copepods are small crustaceans living in estuarine areas endowed with exceptional swimming and adaptative performances. Since the external cuticle acts as an impermeable barrier for most dyes and molecular tools for labeling copepod proteins with fluorescent tags are not available, imaging cellular organelles in these organisms requires label free microscopy. Complementary nonlinear microscopy techniques have been used to investigate the structure and the response of their myofibrils to abrupt changes of temperature or/and salinity. In contrast with previous observations in vertebrates and invertebrates, the flavin autofluorescence which is a signature of mitochondria activity and the Coherent Anti-Stokes Raman Scattering (CARS) pattern assigned to T-tubules overlapped along myofibrils with the second harmonic generation (SHG) striated pattern generated by myosin tails in sarcomeric A bands. Temperature jumps from 18 to 4 °C or salinity jumps from 30 to 15 psu mostly affected flavin autofluorescence. Severe salinity jumps from 30 to 0 psu dismantled myofibril organization with major changes both in the SHG and CARS patterns. After a double stress (from 18 °C/30 psu to 4° C/0 psu) condensed and distended regions appeared within single myofibrils, with flavin autofluorescence bands located between sarcomeric A bands. These results shed light on the interactions between the different functional compartments which provide fast acting excitation-contraction coupling and adequate power supply in copepods muscles.
Collapse
Affiliation(s)
- Ali Ibrahim
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France; Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Charles Henri Hage
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Anissa Souissi
- Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Aymeric Leray
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Laurent Héliot
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Sami Souissi
- Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Bernard Vandenbunder
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| |
Collapse
|
5
|
Recher G, Coumailleau P, Rouède D, Tiaho F. Structural origin of the drastic modification of second harmonic generation intensity pattern occurring in tail muscles of climax stages xenopus tadpoles. J Struct Biol 2015; 190:1-10. [PMID: 25770062 DOI: 10.1016/j.jsb.2015.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/08/2015] [Accepted: 03/04/2015] [Indexed: 01/27/2023]
Abstract
Second harmonic generation (SHG) microscopy is a powerful tool for studying submicron architecture of muscles tissues. Using this technique, we show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of premetamorphic xenopus tadpole tail muscles is converted to double frequency (2f) sarcomeric SHG-IP in metamorphic climax stages due to massive physiological muscle proteolysis. This conversion was found to rise from 7% in premetamorphic muscles to about 97% in fragmented muscular apoptotic bodies. Moreover a 66% conversion was also found in non-fragmented metamorphic tail muscles. Also, a strong correlation between predominant 2f sarcomeric SHG-IPs and myofibrillar misalignment is established with electron microscopy. Experimental and theoretical results demonstrate the higher sensitivity and the supra resolution power of SHG microscopy over TPEF to reveal 3D myofibrillar misalignment. From this study, we suggest that 2f sarcomeric SHG-IP could be used as signature of triad defect and disruption of excitation-contraction coupling. As the mechanism of muscle proteolysis is similar to that found in mdx mouse muscles, we further suggest that xenopus tadpole tail resorption at climax stages could be used as an alternative or complementary model of Duchene muscular dystrophy.
Collapse
Affiliation(s)
- Gaëlle Recher
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Pascal Coumailleau
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France
| | - Denis Rouède
- IPR, CNRS, UMR-CNRS UR1-6251, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France
| | - François Tiaho
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France.
| |
Collapse
|
6
|
Rouède D, Coumailleau P, Schaub E, Bellanger JJ, Blanchard-Desce M, Tiaho F. Myofibrillar misalignment correlated to triad disappearance of mdx mouse gastrocnemius muscle probed by SHG microscopy. BIOMEDICAL OPTICS EXPRESS 2014; 5:858-875. [PMID: 24688819 PMCID: PMC3959848 DOI: 10.1364/boe.5.000858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
We show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of control muscles is converted to double frequency sarcomeric SHG-IP in preserved mdx mouse gastrocnemius muscles in the vicinity of necrotic fibers. These double frequency sarcomeric SHG-IPs are often spatially correlated to double frequency sarcomeric two-photon excitation fluorescence (TPEF) emitted from Z-line and I-bands and to one centered spot SHG angular intensity pattern (SHG-AIP) suggesting that these patterns are signature of myofibrillar misalignement. This latter is confirmed with transmission electron microscopy (TEM). Moreover, a good spatial correlation between SHG signature of myofibrillar misalignment and triad reduction is established. Theoretical simulation of sarcomeric SHG-IP is used to demonstrate the correlation between change of SHG-IP and -AIP and myofibrillar misalignment. The extreme sensitivity of SHG microscopy to reveal the submicrometric organization of A-band thick filaments is highlighted. This report is a first step toward future studies aimed at establishing live SHG signature of myofibrillar misalignment involving excitation contraction defects due to muscle damage and disease.
Collapse
Affiliation(s)
- Denis Rouède
- IPR, CNRS, UMR-CNRS UR1- 6251, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | - Pascal Coumailleau
- IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | - Emmanuel Schaub
- IPR, CNRS, UMR-CNRS UR1- 6251, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | | | | | - François Tiaho
- IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| |
Collapse
|