1
|
Liu G, Valvo V, Ahn SW, Thompson D, Deans K, Kang JW, Bhagavatula S, Dominas C, Jonas O. A Two-Photon Microimaging-Microdevice System for Four-Dimensional Imaging of Local Drug Delivery in Tissues. Int J Mol Sci 2021; 22:11752. [PMID: 34769180 PMCID: PMC8584268 DOI: 10.3390/ijms222111752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Advances in the intratumor measurement of drug responses have included a pioneering biomedical microdevice for high throughput drug screening in vivo, which was further advanced by integrating a graded-index lens based two-dimensional fluorescence micro-endoscope to monitor tissue responses in situ across time. While the previous system provided a bulk measurement of both drug delivery and tissue response from a given region of the tumor, it was incapable of visualizing drug distribution and tissue responses in a three-dimensional (3D) way, thus missing the critical relationship between drug concentration and effect. Here we demonstrate a next-generation system that couples multiplexed intratumor drug release with continuous 3D spatial imaging of the tumor microenvironment via the integration of a miniaturized two-photon micro-endoscope. This enables optical sectioning within the live tissue microenvironment to effectively profile the entire tumor region adjacent to the microdevice across time. Using this novel microimaging-microdevice (MI-MD) system, we successfully demonstrated the four-dimensional imaging (3 spatial dimensions plus time) of local drug delivery in tissue phantom and tumors. Future studies include the use of the MI-MD system for monitoring of localized intra-tissue drug release and concurrent measurement of tissue responses in live organisms, with applications to study drug resistance due to nonuniform drug distribution in tumors, or immune cell responses to anti-cancer agents.
Collapse
Affiliation(s)
- Guigen Liu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Veronica Valvo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Sebastian W. Ahn
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Devon Thompson
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Kyle Deans
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Sharath Bhagavatula
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Christine Dominas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| |
Collapse
|
2
|
Liu G, Kang JW, Jonas O. Long-GRIN-Lens Microendoscopy Enabled by Wavefront Shaping for a Biomedical Microdevice: An Analytical Investigation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3392. [PMID: 34207445 PMCID: PMC8234019 DOI: 10.3390/ma14123392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
We analytically investigate the feasibility of long graded-index (GRIN)-lens-based microendoscopes through wavefront shaping. Following the very well-defined ray trajectories in a GRIN lens, mode-dependent phase delay is first determined. Then, the phase compensation needed for obtaining diffraction limited resolution is derived. Finally, the diffraction pattern of the lens output is computed using the Rayleigh-Sommerfeld diffraction theory. We show that diffraction-limited resolution is obtained for a 0.5 mm diameter lens with a length over 1 m. It is also demonstrated that different imaging working distances (WDs) can be realized by modifying the phase compensation. When a short design WD is used, a large imaging numerical aperture (NA) higher than 0.4 is achievable even when a low NA lens (NA = 0.1) is used. The long- and thin-GRIN-lens-based microendoscope investigated here, which is attractive for biomedical applications, is being prioritized for use in a clinical stage microdevice that measures three-dimensional drug responses inside the body. The advance described in this work may enable superior imaging capabilities in clinical applications in which long and flexible imaging probes are favored.
Collapse
Affiliation(s)
- Guigen Liu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA;
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA;
| |
Collapse
|
3
|
Glover B, Teare J, Patel N. The Status of Advanced Imaging Techniques for Optical Biopsy of Colonic Polyps. Clin Transl Gastroenterol 2020; 11:e00130. [PMID: 32352708 PMCID: PMC7145035 DOI: 10.14309/ctg.0000000000000130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
The progressive miniaturization of photonic components presents the opportunity to obtain unprecedented microscopic images of colonic polyps in real time during endoscopy. This information has the potential to act as "optical biopsy" to aid clinical decision-making, including the possibility of adopting new paradigms such as a "resect and discard" approach for low-risk lesions. The technologies discussed in this review include confocal laser endomicroscopy, optical coherence tomography, multiphoton microscopy, Raman spectroscopy, and hyperspectral imaging. These are in different stages of development and clinical readiness, but all show the potential to produce reliable in vivo discrimination of different tissue types. A structured literature search of the imaging techniques for colorectal polyps has been conducted. The significant developments in endoscopic imaging were identified for each modality, and the status of current development was discussed. Of the advanced imaging techniques discussed, confocal laser endomicroscopy is in clinical use and, under optimal conditions with an experienced operator, can provide accurate histological assessment of tissue. The remaining techniques show potential for incorporation into endoscopic equipment and practice, although further component development is needed, followed by robust prospective validation of accuracy. Optical coherence tomography illustrates tissue "texture" well and gives good assessment of mucosal thickness and layers. Multiphoton microscopy produces high-resolution images at a subcellular resolution. Raman spectroscopy and hyperspectral imaging are less developed endoscopically but provide a tissue "fingerprint" which can distinguish between tissue types. Molecular imaging may become a powerful adjunct to other techniques, with its ability to precisely label specific molecules within tissue and thereby enhance imaging.
Collapse
Affiliation(s)
- Ben Glover
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Julian Teare
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nisha Patel
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
4
|
Li L, Kang D, Huang Z, Zhan Z, Feng C, Zhou Y, Tu H, Zhuo S, Chen J. Multimodal multiphoton imaging for label-free monitoring of early gastric cancer. BMC Cancer 2019; 19:295. [PMID: 30940105 PMCID: PMC6444446 DOI: 10.1186/s12885-019-5497-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background Early gastric cancer is associated with a much better prognosis than advanced disease, and strategies to improve prognosis is strictly dependent on earlier detection and accurate diagnosis. Therefore, a label-free, non-invasive imaging technique that allows the precise identification of morphologic changes in early gastric cancer would be of considerable clinical interest. Methods In this study, multiphoton microscopy (MPM) using two-photon excited fluorescence combined with second-harmonic generation was used for the identification of early gastric cancer. Results This microscope was able to directly reveal improved cellular detail and stromal changes during the development of early gastric cancer. Furthermore, two features were quantified from MPM images to assess the cell change in size and stromal collagen change as gastric lesion developed from normal to early cancer. Conclusions These results clearly show that multiphoton microscopy can be used to examine early gastric cancer at the cellular level without the need for exogenous contrast agents. This study would be helpful for early diagnosis and treatment of gastric cancer, and may provide the groundwork for further exploration into the application of multiphoton microscopy in clinical practice.
Collapse
Affiliation(s)
- Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350007, People's Republic of China.
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Zicheng Huang
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, 362002, People's Republic of China
| | - Zhenlin Zhan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Changyin Feng
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Yongjian Zhou
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Shuangmu Zhuo
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| |
Collapse
|
5
|
Hong SM, Hwang SW, Wang T, Park CW, Ryu YM, Jung JH, Shin JH, Kim SY, Lee JL, Kim CW, Yoon G, Kim KH, Myung SJ, Choi KY. Increased nicotinamide adenine dinucleotide pool promotes colon cancer progression by suppressing reactive oxygen species level. Cancer Sci 2018; 110:629-638. [PMID: 30457689 PMCID: PMC6361564 DOI: 10.1111/cas.13886] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) exists in an oxidized form (NAD+) and a reduced form (NADH). NAD+ plays crucial roles in cancer metabolism, including in cellular signaling, energy production and redox regulation. However, it remains unclear whether NAD(H) pool size (NAD+ and NADH) could be used as biomarker for colon cancer progression. Here, we showed that the NAD(H) pool size and NAD+/NADH ratio both increased during colorectal cancer (CRC) progression due to activation of the NAD+ salvage pathway mediated by nicotinamide phosphoribosyltransferase (NAMPT). The NAMPT expression was upregulated in adenoma and adenocarcinoma tissues from CRC patients. The NADH fluorescence intensity measured by two‐photon excitation fluorescence (TPEF) microscopy was consistently increased in CRC cell lines, azoxymethane/dextran sodium sulfate (AOM/DSS)‐induced CRC tissues and tumor tissues from CRC patients. The increases in the NAD(H) pool inhibited the accumulation of excessive reactive oxygen species (ROS) levels and FK866, a specific inhibitor of NAMPT, treatment decreased the CRC nodule size by increasing ROS levels in AOM/DSS mice. Collectively, our results suggest that NAMPT‐mediated upregulation of the NAD(H) pool protects cancer cells against detrimental oxidative stress and that detecting NADH fluorescence by TPEF microscopy could be a potential method for monitoring CRC progression.
Collapse
Affiliation(s)
- Sun M Hong
- Department of Biochemistry and Department of Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon, Korea
| | - Sung W Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Taejun Wang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Chang W Park
- Biokogen Inc. F255, Korea National Food Cluster, Iksan, Jeonbuk, Korea
| | - Yeon-Mi Ryu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Jin-Hak Jung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Ji H Shin
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong L Lee
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chan W Kim
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gyesoon Yoon
- Department of Biochemistry and Department of Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon, Korea
| | - Ki H Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Seung-Jae Myung
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Kwan Y Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
6
|
Horrer A, Haas J, Freudenberger K, Gauglitz G, Kern DP, Fleischer M. Compact plasmonic optical biosensors based on nanostructured gradient index lenses integrated into microfluidic cells. NANOSCALE 2017; 9:17378-17386. [PMID: 29095450 DOI: 10.1039/c7nr04097k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on a compact and cost-effective integrated label-free biosensor configuration which is based on the refractive index sensitivity of the localized surface plasmon resonance (LSPR) of gold nanostructures. Aiming for compactification and miniaturization of the sensor, arrays of nanodiscs were fabricated on the planar surface of a gradient index (GRIN) lens, which acts as a substrate as well as an imaging objective for the light scattered by the gold structures. Integration of the lens into a microfluidic flow cell enabled the controlled exchange of liquid media at the sensor surface. The light scattered by the nanostructures was investigated spatially and spectrally resolved making use of the imaging properties of the GRIN lens. Dynamic spectral analysis during refractive index changes was conducted, revealing high sensitivities of up to 372 nm per refractive index unit for the shift of the LSPR. Biosensing capabilities were demonstrated by the detection of binding of an analyte by means of a testosterone-immunoassay.
Collapse
Affiliation(s)
- A Horrer
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Li L, Jiang L, Chen Z, Kang D, Yang Z, Liu X, Jiang W, Zhuo S, Guan G, Zhou Y, Chen J. Nonlinear optical microscopy for label-free detection of gastrointestinal neuroendocrine tumors. Lasers Med Sci 2016; 31:1285-91. [PMID: 27299572 DOI: 10.1007/s10103-016-1964-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/13/2016] [Indexed: 12/29/2022]
Abstract
Neuroendocrine tumors (NETs), which are rare and slow-growing neoplasms, pose a diagnostic challenge as they are clinically silent at the time of presentation. Here, gastrointestinal neuroendocrine tumors were researched by nonlinear microscopy, and results demonstrate that this technique has the capability to identify neuroendocrine tumors in the absence of labels and can, in particular, detect rare neuroendocrine tumor cells, vascular invasion, desmoplastic reaction, and fibroelastosis induced by neuroendocrine tumors. These conclusions highlight the possibility of nonlinear optical microscopy as a diagnostic tool for label-freely differentiating neuroendocrine tumors by these histopathologic features.
Collapse
Affiliation(s)
- Lianhuang Li
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Liwei Jiang
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.,Department of Physics, Chung Yuan Christian University, Chung-Li, 32023, Taiwan
| | - Zhifen Chen
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhenrong Yang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xing Liu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Weizhong Jiang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shuangmu Zhuo
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Guoxian Guan
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yongjian Zhou
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Jianxin Chen
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
8
|
Atry F, Pashaie R. Analysis of intermediary scan-lens and tube-lens mechanisms for optical coherence tomography. APPLIED OPTICS 2016; 55:646-53. [PMID: 26836064 DOI: 10.1364/ao.55.000646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Combining an optical coherence tomography (OCT) scanner with other techniques such as optogenetic neurostimulation or fluorescence imaging requires integrating auxiliary components into the optical path of the setup. Due to the short scanning distance of most OCT objectives, adding scan and tube lenses in the device is essential to open space between the back-focal-plane of the objective and center of mass of the mirrors in the galvanometer. The effect of the scan and tube lenses on the focal spot size of the scanner using off-the-shelf components are theoretically explored for three different designs in this paper. Two lens mechanisms were implemented and tested in a custom-built OCT scanner to experimentally measure point-spread functions. Based on our analysis, proper form of a four-element semi-Plössl lens provides a superior performance compared with an achromatic doublet when used as a scan/tube lens. The former lens design provides close to diffraction-limited resolution for scan angles up to 6.4°; however, due to aberrations in an achromatic doublet, the later design offers diffraction-limited resolution confined to 2° scan angles.
Collapse
|
9
|
Ahn J, Choe K, Wang T, Hwang Y, Song E, Kim KH, Kim P. In vivo longitudinal cellular imaging of small intestine by side-view endomicroscopy. BIOMEDICAL OPTICS EXPRESS 2015; 6:3963-72. [PMID: 26504646 PMCID: PMC4605055 DOI: 10.1364/boe.6.003963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 05/02/2023]
Abstract
Visualization of cellular dynamics in the gastrointestinal tract of living mouse model to investigate the pathophysiology has been a long-pursuing goal. Especially, for chronic disease such as Crohn's disease, a longitudinal observation of the luminal surface of the small intestine in the single mouse is highly desirable to investigate the complex pathogenesis in sequential time points. In this work, by utilizing a micro-GRIN lens based side-view endomicroscope integrated into a video-rate confocal microscopy system, we successfully performed minimally-invasive in vivo cellular-level visualization of various fluorescent cells and microvasculature in the small intestinal villi. Also, with a transgenic mouse universally expressing photoconvertible protein, Kaede, we demonstrated repetitive cellular-level confocal endoscopic visualization of same area in the small intestinal lumen of a single mouse, which revealed the continuous homeostatic renewal of the small intestinal epithelium.
Collapse
Affiliation(s)
- Jinhyo Ahn
- Graduate School of Nanoscience and Technology (GSNT), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 305-701, South Korea
| | - Kibaek Choe
- Graduate School of Nanoscience and Technology (GSNT), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 305-701, South Korea
| | - Taejun Wang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Yoonha Hwang
- Graduate School of Nanoscience and Technology (GSNT), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 305-701, South Korea
| | - Eunjoo Song
- Graduate School of Nanoscience and Technology (GSNT), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 305-701, South Korea
| | - Ki Hean Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology (GSNT), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 305-701, South Korea
| |
Collapse
|
10
|
Wang T, McElroy A, Halaney D, Vela D, Fung E, Hossain S, Phipps J, Wang B, Yin B, Feldman MD, Milner TE. Dual-modality fiber-based OCT-TPL imaging system for simultaneous microstructural and molecular analysis of atherosclerotic plaques. BIOMEDICAL OPTICS EXPRESS 2015; 6:1665-78. [PMID: 26137371 PMCID: PMC4467709 DOI: 10.1364/boe.6.001665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 05/25/2023]
Abstract
New optical imaging techniques that provide contrast to study both the anatomy and composition of atherosclerotic plaques can be utilized to better understand the formation, progression and clinical complications of human coronary artery disease. We present a dual-modality fiber-based optical imaging system for simultaneous microstructural and molecular analysis of atherosclerotic plaques that combines optical coherence tomography (OCT) and two-photon luminescence (TPL) imaging. Experimental results from ex vivo human coronary arteries show that OCT and TPL optical contrast in recorded OCT-TPL images is complimentary and in agreement with histological analysis. Molecular composition (e.g., lipid and oxidized-LDL) detected by TPL imaging can be overlaid onto plaque microstructure depicted by OCT, providing new opportunities for atherosclerotic plaque identification and characterization.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Austin McElroy
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - David Halaney
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA ; South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Deborah Vela
- Texas Heart Institute, Houston, Texas 77030, USA
| | - Edmund Fung
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Shafat Hossain
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Jennifer Phipps
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Bingqing Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Biwei Yin
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Marc D Feldman
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA ; South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Thomas E Milner
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| |
Collapse
|
11
|
Wang S, Chen J, Yang Y, Jiang W, Feng C, Guan G, Zhuo S, Chen Z. Assessment of Tumor Invasion Depth in Colorectal Carcinoma Using Multiphoton Microscopy. IEEE PHOTONICS JOURNAL 2015; 7:1-8. [DOI: 10.1109/jphot.2015.2420615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Li L, Chen Z, Wang X, Li H, Jiang W, Zhuo S, Guan G, Chen J. Detection of morphologic alterations in rectal carcinoma following preoperative radiochemotherapy based on multiphoton microscopy imaging. BMC Cancer 2015; 15:142. [PMID: 25885576 PMCID: PMC4373096 DOI: 10.1186/s12885-015-1157-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 03/03/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Preoperative radiochemotherapy improves outcomes in patients with locally advanced rectal carcinoma, and has been used increasingly in patient management. However, there is a strong clinical need to assess tumor response to neoadjuvant treatment, and a non-invasive technique that allows the precise identification of morphologic changes in tumors would be of considerable clinical interest. METHODS In this study, we used multiphoton microscopy (MPM) to detect morphologic alterations in rectal adenocarcinomas in patients treated with preoperative radiochemotherapy. RESULTS MPM was able to identify histopathologic alterations in rectal cancer following preoperative radiochemotherapy, and allowed the qualitative assessment of treatment efficacy and feasibility in relation to dose or strategy. CONCLUSION These findings may provide the groundwork for evaluating tumor response to neoadjuvant treatment, thus allowing the tailoring of effective treatment doses and strategies.
Collapse
Affiliation(s)
- Lianhuang Li
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
| | - Zhifen Chen
- Department of Colorectal Surgery, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, 350001, China.
| | - Xingfu Wang
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350001, China.
| | - Hongsheng Li
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
| | - Weizhong Jiang
- Department of Colorectal Surgery, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, 350001, China.
| | - Shuangmu Zhuo
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
| | - Guoxian Guan
- Department of Colorectal Surgery, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, 350001, China.
| | - Jianxin Chen
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
13
|
Higgins LM, Pierce MC. Design and characterization of a handheld multimodal imaging device for the assessment of oral epithelial lesions. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:086004. [PMID: 25104410 PMCID: PMC4125204 DOI: 10.1117/1.jbo.19.8.086004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/27/2014] [Accepted: 07/07/2014] [Indexed: 05/18/2023]
Abstract
A compact handpiece combining high resolution fluorescence (HRF) imaging with optical coherence tomography (OCT) was developed to provide real-time assessment of oral lesions. This multimodal imaging device simultaneously captures coregistered en face images with subcellular detail alongside cross-sectional images of tissue microstructure. The HRF imaging acquires a 712 × 594 μm² field-of-view at the sample with a spatial resolution of 3.5 μm. The OCT images were acquired to a depth of 1.5 mm with axial and lateral resolutions of 9.3 and 8.0 μm, respectively. HRF and OCT images are simultaneously displayed at 25 fps. The handheld device was used to image a healthy volunteer, demonstrating the potential for in vivo assessment of the epithelial surface for dysplastic and neoplastic changes at the cellular level, while simultaneously evaluating submucosal involvement. We anticipate potential applications in real-time assessment of oral lesions for improved surveillance and surgical guidance.
Collapse
Affiliation(s)
- Laura M. Higgins
- Rutgers, The State University of New Jersey, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, New Jersey 08854, United States
- Address all correspondence to: Laura M. Higgins, E-mail:
| | - Mark C. Pierce
- Rutgers, The State University of New Jersey, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|