1
|
Wang Z, Bianco V, Maffettone PL, Ferraro P. Holographic flow scanning cytometry overcomes depth of focus limits and smartly adapts to microfluidic speed. LAB ON A CHIP 2023; 23:2316-2326. [PMID: 37074006 DOI: 10.1039/d3lc00063j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Space-time digital holography (STDH) maps holograms in a hybrid space-time domain to achieve extended field of view, resolution enhanced, quantitative phase-contrast microscopy and velocimetry of flowing objects in a label-free modality. In STDH, area sensors can be replaced by compact and faster linear sensor arrays to augment the imaging throughput and to compress data from a microfluidic video sequence into one single hybrid hologram. However, in order to ensure proper imaging, the velocity of the objects in microfluidic channels has to be well-matched to the acquisition frame rate, which is the major constraint of the method. Also, imaging all the flowing samples in focus at the same time, while avoiding hydrodynamic focusing devices, is a highly desirable goal. Here we demonstrate a novel processing pipeline that addresses non-ideal flow conditions and is capable of returning the correct and extended focus phase contrast mapping of an entire microfluidic experiment in a single image. We apply this novel processing strategy to recover phase imaging of flowing HeLa cells in a lab-on-a-chip platform even when severely undersampled due to too fast flow while ensuring that all cells are in focus.
Collapse
Affiliation(s)
- Zhe Wang
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", P.le Tecchio 80, 80125, Napoli, Italy
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Vittorio Bianco
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", P.le Tecchio 80, 80125, Napoli, Italy
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
2
|
Zhu L, Xiao Z, Chen C, Sun A, He X, Jiang Z, Kong Y, Xue L, Liu C, Wang S. sPhaseStation: a whole slide quantitative phase imaging system based on dual-view transport of intensity phase microscopy. APPLIED OPTICS 2023; 62:1886-1894. [PMID: 37133070 DOI: 10.1364/ao.477375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Whole slide imaging scans a microscope slide into a high-resolution digital image, and it paves the way from pathology to digital diagnostics. However, most of them rely on bright-field and fluorescence imaging with sample labels. In this work, we designed sPhaseStation, which is a dual-view transport of intensity phase microscopy-based whole slide quantitative phase imaging system for label-free samples. sPhaseStation relies on a compact microscopic system with two imaging recorders that can capture both under and over-focus images. Combined with the field of view (FoV) scan, a series of these defocus images in different FoVs can be captured and stitched into two FoV-extended under and over-focus ones, which are used for phase retrieval via solving the transport of intensity equation. Using a 10× micro-objective, sPhaseStation reaches the spatial resolution of 2.19 µm and obtains the phase with high accuracy. Additionally, it acquires a whole slide image of a 3m m×3m m region in 2 min. The reported sPhaseStation could be a prototype of the whole slide quantitative phase imaging device, which may provide a new perspective for digital pathology.
Collapse
|
3
|
Wang Z, Bianco V, Cui Y, Paturzo M, Ferraro P. Long-term holographic phase-contrast time lapse reveals cytoplasmic circulation in dehydrating plant cells. APPLIED OPTICS 2019; 58:7416-7423. [PMID: 31674390 DOI: 10.1364/ao.58.007416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The intracellular dynamics of onion epidermal cells during the dehydration process is observed by holographic microscopy. Both the nucleus and cytoplasm are accurately revealed by quantitative phase imaging while dehydration takes place. Indeed, we notice that the contrast of phase images increases with the decrease in cellular water content. We foresee that such a dehydrating process can be effective for improving phase contrast, thus permitting better imaging of plant cells with the scope of learning more about cellular dynamics and related phenomena. Exploiting this concept, we observe intracellular cytoplasmic circulation and transport of biological material.
Collapse
|
4
|
Wang Z, Bianco V, Cui Y, Paturzo M, Ferraro P. 2D resolution improvement via 1D scanning Space-Time Digital Holography (STDH) in Optofluidics. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201921515001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Space-Time Digital Holography (STDH) exploits the object motion to record the hologram in a hybrid space-time domain. This representation adds new capabilities to conventional DH, such as unlimited extension of the Field of View (FoV) and tunable phase shifting. Here we show that STDH is able to improve the spatial resolution as well. Differently from other super-resolution approaches, stitching between holograms or their spectra is no longer required. Moreover, we introduce a new STDH modality to record and process hybrid space-time representations. This allows improving resolution with one single object scan, paving the way to the use of STDH for super resolution imaging onboard Lab on a Chip devices.
Collapse
|
5
|
Bianco V, Wang Z, Cui Y, Paturzo M, Ferraro P. Resolution gain in space-time digital holography by self-assembling of the object frequencies. OPTICS LETTERS 2018; 43:4248-4251. [PMID: 30160763 DOI: 10.1364/ol.43.004248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Space-time digital holography (STDH) exploits the object motion to record the hologram in a hybrid ST domain. This representation adds new capabilities to conventional DH, e.g., unlimited field of view and variable phase shifting. This is the best candidate for imaging biological samples flowing in microfluidic channels. Here, we show that STDH is able to improve the spatial resolution as well. Different from other super-resolution approaches, stitching between holograms or their spectra is no longer required. Moreover, we introduce a new oblique STDH modality to record and process hybrid ST representations. This allows improving resolution in 2D with one single object scan, paving the way to the use of STDH for super-resolution imaging onboard microfluidic devices.
Collapse
|
6
|
Liu L, Yang G, Liu S, Wang L, Yang X, Qu H, Liu X, Cao L, Pan W, Li H. High-throughput imaging of zebrafish embryos using a linear-CCD-based flow imaging system. BIOMEDICAL OPTICS EXPRESS 2017; 8:5651-5662. [PMID: 29296494 PMCID: PMC5745109 DOI: 10.1364/boe.8.005651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 05/08/2023]
Abstract
High-throughput imaging and screening is essential for biomedical research and drug discovery using miniature model organisms such as zebrafish. This study introduces a high-speed imaging system which illuminates zebrafish embryos flowing through a capillary tube with a sheet of light and captures them using a linear charge-coupled device (CCD). This system can image dozens of zebrafish embryos per second. An image algorithm was developed to recognize each embryo and to perform automatic analysis. We distinguished dead and living embryos according to the gray level distribution and conducted statistics of morphological characteristics of embryos at different growing stages.
Collapse
Affiliation(s)
- Lifeng Liu
- School of Electronic Engineering and Optoelectronics Technology, Nanjing University of Science and Technology, Nanjing 210094, China
- Jiangsu Key Laboratory of Medical Optics, CAS Center for Excellence in Molecular Cell Science, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Guang Yang
- Jiangsu Key Laboratory of Medical Optics, CAS Center for Excellence in Molecular Cell Science, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Shoupeng Liu
- Jiangsu Key Laboratory of Medical Optics, CAS Center for Excellence in Molecular Cell Science, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Linbo Wang
- Jiangsu Key Laboratory of Medical Optics, CAS Center for Excellence in Molecular Cell Science, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xibin Yang
- Jiangsu Key Laboratory of Medical Optics, CAS Center for Excellence in Molecular Cell Science, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Huiming Qu
- School of Electronic Engineering and Optoelectronics Technology, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaofen Liu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Le Cao
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Weijun Pan
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Hui Li
- Jiangsu Key Laboratory of Medical Optics, CAS Center for Excellence in Molecular Cell Science, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
7
|
Bianco V, Mandracchia B, Marchesano V, Pagliarulo V, Olivieri F, Coppola S, Paturzo M, Ferraro P. Endowing a plain fluidic chip with micro-optics: a holographic microscope slide. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17055. [PMID: 30167297 PMCID: PMC6062330 DOI: 10.1038/lsa.2017.55] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 05/12/2023]
Abstract
Lab-on-a-Chip (LoC) devices are extremely promising in that they enable diagnostic functions at the point-of-care. Within this scope, an important goal is to design imaging schemes that can be used out of the laboratory. In this paper, we introduce and test a pocket holographic slide that allows digital holography microscopy to be performed without an interferometer setup. Instead, a commercial off-the-shelf plastic chip is engineered and functionalized with this aim. The microfluidic chip is endowed with micro-optics, that is, a diffraction grating and polymeric lenses, to build an interferometer directly on the chip, avoiding the need for a reference arm and external bulky optical components. Thanks to the single-beam scheme, the system is completely integrated and robust against vibrations, sharing the useful features of any common path interferometer. Hence, it becomes possible to bring holographic functionalities out of the lab, moving complexity from the external optical apparatus to the chip itself. Label-free imaging and quantitative phase contrast mapping of live samples are demonstrated, along with flexible refocusing capabilities. Thus, a liquid volume can be analyzed in one single shot with no need for mechanical scanning systems.
Collapse
Affiliation(s)
- Vittorio Bianco
- Institute of Applied Sciences and Intelligent Systems—Italian National Research Council (ISASI-CNR), Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| | - Biagio Mandracchia
- Institute of Applied Sciences and Intelligent Systems—Italian National Research Council (ISASI-CNR), Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
- Università degli Studi di Napoli ‘Federico II’, P.le Tecchio 80, Napoli 80100, Italy
| | - Valentina Marchesano
- Institute of Applied Sciences and Intelligent Systems—Italian National Research Council (ISASI-CNR), Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| | - Vito Pagliarulo
- Institute of Applied Sciences and Intelligent Systems—Italian National Research Council (ISASI-CNR), Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| | - Federico Olivieri
- Institute of Applied Sciences and Intelligent Systems—Italian National Research Council (ISASI-CNR), Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
- Università degli Studi di Napoli ‘Federico II’, P.le Tecchio 80, Napoli 80100, Italy
| | - Sara Coppola
- Institute of Applied Sciences and Intelligent Systems—Italian National Research Council (ISASI-CNR), Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| | - Melania Paturzo
- Institute of Applied Sciences and Intelligent Systems—Italian National Research Council (ISASI-CNR), Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems—Italian National Research Council (ISASI-CNR), Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| |
Collapse
|
8
|
Mandracchia B, Bianco V, Wang Z, Mugnano M, Bramanti A, Paturzo M, Ferraro P. Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting. LAB ON A CHIP 2017; 17:2831-2838. [PMID: 28722051 DOI: 10.1039/c7lc00414a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the current trend of miniaturization and simplification of imaging flow cytometry, Lab-on-a-Chip (LoC) microfluidic devices represent an innovative and cost-effective solution. In this framework, we propose for the first time a novel platform based on the compactness of a holographic microscope slide (HMS) in combination with the new computational features of space-time digital holography (STDH) that uses a 1D linear sensor array (LSA) instead of 2D CCD or CMOS cameras to respond to real diagnostic needs. In this LoC platform, computational methods, holography, and microfluidics are intertwined in order to provide an imaging system with a reduced amount of optical components and capability to achieve reliable cell counting even in the absence of very accurate flow control. STDH exploits the sample motion into the microfluidic channel to obtain an unlimited field-of-view along the flow direction, independent of the magnification factor. Furthermore, numerical refocusing typical of a holographic modality allows imaging and visualization of the entire volume of the channel, thus avoiding loss of information due to the limited depth of focus of standard microscopes. Consequently, we believe that this platform could open new perspectives for enhancing the throughput by 3D volumetric imaging.
Collapse
Affiliation(s)
- Biagio Mandracchia
- Institute of Applied Sciences and Intelligent Systems-Italian National Research Council (ISASI-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Singh DK, Ahrens CC, Li W, Vanapalli SA. Label-free fingerprinting of tumor cells in bulk flow using inline digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2017; 8:536-554. [PMID: 28270966 PMCID: PMC5330580 DOI: 10.1364/boe.8.000536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/19/2023]
Abstract
Large-scale and label-free phenotyping of cells holds great promise in medicine, especially in cancer diagnostics and prognosis. Here, we introduce inline digital holography microscopy for volumetric imaging of cells in bulk flow and fingerprinting of flowing tumor cells based on two metrics, in-focus scattered intensity and cell diameter. Using planar distribution of immobilized particles, we identify the optimal recording distance and microscope objective magnification that minimizes the error in measurement of particle position, size and scattered intensity. Using the optimized conditions and the two metrics, we demonstrate the capacity to enumerate and fingerprint more than 100,000 cells. Finally, we highlight the power of our label-free and high throughput technology by characterizing breast tumor cell lines with different metastatic potentials and distinguishing drug resistant ovarian cancer cells from their parental cell line.
Collapse
Affiliation(s)
| | - Caroline C. Ahrens
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
10
|
Almoro PF, Pham QD, Serrano-Garcia DI, Hasegawa S, Hayasaki Y, Takeda M, Yatagai T. Enhanced intensity variation for multiple-plane phase retrieval using a spatial light modulator as a convenient tunable diffuser. OPTICS LETTERS 2016; 41:2161-2164. [PMID: 27176952 DOI: 10.1364/ol.41.002161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the multiple-plane phase retrieval method, a tedious-to-fabricate phase diffuser plate is used to increase the axial intensity variation for a nonstagnating iterative reconstruction of a smooth object wavefront. Here we show that a spatial light modulator (SLM) can be used as an easily controllable diffuser for phase retrieval. The polarization modulation at the SLM facilitates independent formation of orthogonally polarized scattered and specularly reflected beams. Through an analyzer, the polarization states are filtered enabling beam interference, thereby efficiently encoding the phase information in the axially diverse speckle intensity measurements. The technique is described using wave propagation and Jones calculus, and demonstrated experimentally on technical and biological samples.
Collapse
|
11
|
Servin M, Padilla M, Garnica G. 360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation. OPTICS EXPRESS 2016; 24:168-179. [PMID: 26832248 DOI: 10.1364/oe.24.000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.
Collapse
|
12
|
Dekiff M, Berssenbrügge P, Kemper B, Denz C, Dirksen D. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology. BIOMEDICAL OPTICS EXPRESS 2015; 6:4825-40. [PMID: 26713197 PMCID: PMC4679257 DOI: 10.1364/boe.6.004825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 05/17/2023]
Abstract
A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured.
Collapse
Affiliation(s)
- Markus Dekiff
- Department of Prosthetic Dentistry and Biomaterials, University of Münster, Waldeyerstraße 30, 48149 Münster,
Germany
| | - Philipp Berssenbrügge
- Department of Prosthetic Dentistry and Biomaterials, University of Münster, Waldeyerstraße 30, 48149 Münster,
Germany
| | - Björn Kemper
- Biomedical Technology Center of the Medical Faculty, University of Münster, Mendelstraße 17, 48129 Münster,
Germany
| | - Cornelia Denz
- Institute of Applied Physics, University of Münster, Corrensstraße 2, 48149 Münster,
Germany
| | - Dieter Dirksen
- Department of Prosthetic Dentistry and Biomaterials, University of Münster, Waldeyerstraße 30, 48149 Münster,
Germany
| |
Collapse
|
13
|
Bianco V, Paturzo M, Marchesano V, Gallotta I, Di Schiavi E, Ferraro P. Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector. LAB ON A CHIP 2015; 15:2117-24. [PMID: 25832808 DOI: 10.1039/c5lc00143a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Simple and effective imaging strategies are of utmost interest for applications on a lab-on-chip scale. In fact, the majority of diagnostic tools for medical as well as biotechnological studies still employ image-based approaches. Having onboard the chip a compact but powerful imaging apparatus with multiple imaging capabilities, such as 3D dynamic focusing along the optical axis, unlimited field of view (FoV) and double outputs, namely, intensity and quantitative phase-contrast maps of biological objects, is of extreme importance for the next generation of Lab-on-a-Chip (LoC) devices. Here we present a coherent 3D microscopy approach with a holographic modality that is specifically suitable for studying biological samples while they simply flow along microfluidic paths. The LoC device is equipped with a compact linear array detector to capture and generate a new conceptual type of a digital hologram in the space-time domain, named here as Space-Time Digital Hologram (STDH). The reported results show that the method is a promising diagnostic tool for optofluidic investigations of biological specimens.
Collapse
Affiliation(s)
- V Bianco
- CNR-Istituto di Cibernetica "E. Caianiello", Via Campi Flegrei 34, I-80078, Pozzuoli (NA), Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Tayebi B, Jafarfard MR, Sharif F, Song YS, Har D, Kim DY. Large step-phase measurement by a reduced-phase triple-illumination interferometer. OPTICS EXPRESS 2015; 23:11264-11271. [PMID: 25969222 DOI: 10.1364/oe.23.011264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a reduced-phase triple-illumination interferometer (RPTII) as a novel single-shot technique to increase the precision of dual-illumination optical phase unwrapping techniques. The technique employs two measurement ranges to record both low-precision unwrapped and high-precision wrapped phases. To unwrap the high-precision phase, a hierarchical optical phase unwrapping algorithm is used with the low-precision unwrapped phase. The feasibility of this technique is demonstrated by measuring a stepped object with a height 2100 times greater than the wavelength of the source. The phase is reconstructed without applying any numerical unwrapping algorithms, and its noise level is decreased by a factor of ten.
Collapse
|