1
|
Marus M, Mukha Y, Wong HT, Chan TL, Smirnov A, Hubarevich A, Hu H. Tsuchime-like Aluminum Film to Enhance Absorption in Ultra-Thin Photovoltaic Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2650. [PMID: 37836291 PMCID: PMC10574175 DOI: 10.3390/nano13192650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Ultra-thin solar cells enable materials to be saved, reduce deposition time, and promote carrier collection from materials with short diffusion lengths. However, light absorption efficiency in ultra-thin solar panels remains a limiting factor. Most methods to increase light absorption in ultra-thin solar cells are either technically challenging or costly, given the thinness of the functional layers involved. We propose a cost-efficient and lithography-free solution to enhance light absorption in ultra-thin solar cells-a Tsuchime-like self-forming nanocrater (T-NC) aluminum (Al) film. T-NC Al film can be produced by the electrochemical anodization of Al, followed by etching the nanoporous alumina. Theoretical studies show that T-NC film can increase the average absorbance by 80.3%, depending on the active layer's thickness. The wavelength range of increased absorption varies with the active layer thickness, with the peak of absolute absorbance increase moving from 620 nm to 950 nm as the active layer thickness increases from 500 nm to 10 µm. We have also shown that the absorbance increase is retained regardless of the active layer material. Therefore, T-NC Al film significantly boosts absorbance in ultra-thin solar cells without requiring expensive lithography, and regardless of the active layer material.
Collapse
Affiliation(s)
- Mikita Marus
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Yauhen Mukha
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Him-Ting Wong
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
| | - Tak-Lam Chan
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
| | - Aliaksandr Smirnov
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Aliaksandr Hubarevich
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Haibo Hu
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
- Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
2
|
Gedvilas M, Ratautas K, Kacar E, Stankevičienė I, Jagminienė A, Norkus E, Li Pira N, Račiukaitis G. Colour-Difference Measurement Method for Evaluation of Quality of Electrolessly Deposited Copper on Polymer after Laser-Induced Selective Activation. Sci Rep 2016; 6:22963. [PMID: 26960432 PMCID: PMC4785367 DOI: 10.1038/srep22963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022] Open
Abstract
In this work a novel colour-difference measurement method for the quality evaluation of copper deposited on a polymer is proposed. Laser-induced selective activation (LISA) was performed onto the surface of the polycarbonate/acrylonitrile butadiene styrene (PC/ABS) polymer by using nanosecond laser irradiation. The laser activated PC/ABS polymer was copper plated by using the electroless copper plating (ECP) procedure. The sheet resistance measured by using a four-point probe technique was found to decrease by the power law with the colour-difference of the sample images after LISA and ECP procedures. The percolation theory of the electrical conductivity of the insulator conductor mixture has been adopted in order to explain the experimental results. The new proposed method was used to determine an optimal set of the laser processing parameters for best plating conditions.
Collapse
Affiliation(s)
- Mindaugas Gedvilas
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - Karolis Ratautas
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - Elif Kacar
- Kocaeli University, Faculty of Arts and Sciences, Department of Physics, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Ina Stankevičienė
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - Aldona Jagminienė
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - Eugenijus Norkus
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - Nello Li Pira
- Group Materials Labs, Centro Ricerche Fiat S.C.p.A., Strada Torino 50, 10043 Orbassano (TO), Italy
| | - Gediminas Račiukaitis
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
3
|
Marus M, Hubarevich A, Wang H, Stsiapanau A, Smirnov A, Sun XW, Fan W. Comparative analysis of opto-electronic performance of aluminium and silver nano-porous and nano-wired layers. OPTICS EXPRESS 2015; 23:26794-26799. [PMID: 26480190 DOI: 10.1364/oe.23.026794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The comparison of optical and electronic properties between squarely and hexagonally arranged nano-porous layers and uniformly arranged nano-wired layers of aluminium and silver was presented. The nano-wired configuration exhibit 20 and 10% higher average transmittance in visible wavelength range in comparison to square and hexagonal nano-porous designs, respectively. The insignificant difference of the transmittance for aluminium and silver nano-porous and nano-wired layers is observed, when interpore/interwire distance is larger than wavelengths of incoming light. This difference becomes considerable at the interpore/interwire distance less than wavelengths of incoming light: silver nano-porous and nano-wired layers possess up to 27% higher transmittance in comparison to aluminium layers.
Collapse
|