1
|
Wang Y, Yang J, Wang Z, Kong X, Sun X, Tian J, Zhang X, Zhao X, Liu Y, Li H, Su Y, Hao X, Xu J. The Development and Progression of Micro-Nano Optics. Front Chem 2022; 10:916553. [PMID: 35795220 PMCID: PMC9251314 DOI: 10.3389/fchem.2022.916553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
Micro-Nano optics is one of the most active frontiers in the current development of optics. It combines the cutting-edge achievements of photonics and nanotechnology, which can realize many brand-new functions on the basis of local electromagnetic interactions and become an indispensable key science and technology of the 21st century. Micro-Nano optics is also an important development direction of the new optoelectronics industry at present. It plays an irreplaceable role in optical communication, optical interconnection, optical storage, sensing imaging, sensing measurement, display, solid-state lighting, biomedicine, security, green energy, and other fields. In this paper, we will summarize the research status of micro-nano optics, and analyze it from four aspects: micro-nano luminescent materials and devices, micro-nano optical waveguide materials and devices, micro-nano photoelectric detection materials and devices, and micro-nano optical structures and devices. Finally, the future development of micro-nano optics will be prospected.
Collapse
Affiliation(s)
- Yong Wang
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
- Qingdao Technology Innovation Center of Remote Sensing and Precise Measurement, Qingdao, China
| | - Jie Yang
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
- Qingdao Technology Innovation Center of Remote Sensing and Precise Measurement, Qingdao, China
| | - Zhiwei Wang
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
- Qingdao Technology Innovation Center of Remote Sensing and Precise Measurement, Qingdao, China
| | - Xiaofei Kong
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
- Qingdao Technology Innovation Center of Remote Sensing and Precise Measurement, Qingdao, China
| | - Xiangyu Sun
- Torch High Technology Industry Development Center, Ministry of Science and Technology, Beijing, China
| | - Jingjing Tian
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
| | - Xiushuo Zhang
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
- Qingdao Technology Innovation Center of Remote Sensing and Precise Measurement, Qingdao, China
| | - Xiaolong Zhao
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
| | - Yanping Liu
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
- Qingdao Technology Innovation Center of Remote Sensing and Precise Measurement, Qingdao, China
| | - Hongsheng Li
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
- Qingdao Technology Innovation Center of Remote Sensing and Precise Measurement, Qingdao, China
| | - Yuqing Su
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
- Qingdao Technology Innovation Center of Remote Sensing and Precise Measurement, Qingdao, China
| | - Xiaorui Hao
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
| | - Jing Xu
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
2
|
Yelistratova E, Demidov V, Frolov M, Fjodorow P, Leonov S. Spectral dependence of principal axes in anti-resonant hollow-core fibers with different numbers of capillaries. OPTICS LETTERS 2022; 47:1590-1593. [PMID: 35363685 DOI: 10.1364/ol.446806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
We report on measurements highlighting the spectral dependence of the principal axes' angular orientation that is present within three hollow-core fibers samples of various geometries. Hollow-core anti-resonant fibers (ARFs) with six, five, and four capillaries are investigated in several transmission windows. It is shown that the six-capillary fiber structure demonstrates a much smaller shift in the principal axes' orientation, in comparison with five- and four-capillary structures. The four-capillary structure has a 90° shift of its principal axes' orientation inside even- and odd-numbered transmission windows. These results corroborate the suggestion that the six-capillary ARF structure is a great candidate for polarization-maintaining operation over a wide spectral bandwidth.
Collapse
|
3
|
Zhao X, Xiang J, Wu X, Li Z. High birefringence, single-polarization, low loss hollow-core anti-resonant fibers. OPTICS EXPRESS 2021; 29:36273-36286. [PMID: 34809042 DOI: 10.1364/oe.439550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
We present a novel hollow-core anti-resonant fiber (HC-ARF) with a cladding ring, two nested resonant tubes and two nested silicon tubes. The cladding ring in the fiber contributes to decrease the fundamental mode (FM) loss of x-polarization and enlarge the polarization-extinction ratio (PER). In addition, the nested silicon tubes can improve birefringence greatly. The combination of cladding ring, nested resonant tubes and nested silicon tubes can make the fiber obtain low FM loss, single-polarization, and high birefringence. Specifically, the proposed HC-ARF exhibits total FM loss of x-polarization, PER, and birefringence of 0.89 dB/km, 4432, 3.07×10-4, respectively, at 1.55 µm. Moreover, the y-bend direction has a great influence on the propagation properties of the fiber. The fiber in the x-bend direction has low total bend-loss of 0.004 dB/m for a small bend radius of 5.8 cm.
Collapse
|
4
|
Meng F, Zhao X, Ding J, Niu Y, Zhang X, Yang L, Wang X, Lou S, Sheng X, Tao G, Liang S. Discovering extremely low confinement-loss anti-resonant fibers via swarm intelligence. OPTICS EXPRESS 2021; 29:35544-35555. [PMID: 34808985 DOI: 10.1364/oe.440949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In this work, we obtain extremely low confinement-loss (CL) anti-resonant fibers (ARFs) via swarm intelligence, specifically the particle swarm optimization (PSO) algorithm. We construct a complex search space of ARFs with two layers of cladding and nested tubes. There are three and four structures of cladding tubes in the first and second layer, respectively. The ARFs are optimized by using the PSO algorithm in terms of both the structures and the parameters. The optimal structure is obtained from a total of 415900 ARFs structures, with the lowest CL being 2.839×10-7 dB/m at a wavelength of 1.55 µm. We observe that the number of ARF structures with CL less than 1×10-6 dB/m in our search space is 370. These structures mainly comprise four designs of ARFs. The results show that the optimal ARF structures realized by the PSO algorithm are different from the ARFs reported in the previous literature. This means that the swarm intelligence accelerates the design and invention of ARFs and also provides new insights regarding the ARF structures. This work provides a fast and effective approach to design ARFs with special requirements. In addition to providing high-performance ARF structures, this work transforms the ARF designs from experience-driven to data-driven.
Collapse
|
5
|
Hu D, Song N, Gao F, Li W, Xu X. Hollow-core mode propagation in an isomeric nested anti-resonant fiber. OPTICS EXPRESS 2021; 29:28078-28085. [PMID: 34614946 DOI: 10.1364/oe.434964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
We present a modified fiber model based on the nested hollow core anti-resonant fiber that enables the stable transmission of the orbital-angular-momentum mode HE21. By replacing a pair of nested anti-resonant tubes in the horizontal axis with resonant tubes, the coupling between core mode and cladding mode has been increased. Therefore, the relative strength of fundamental mode HE11 and the first higher mode HE21 has been modified. The numerical simulation results indicate that the loss ratio of the lowest loss HE11 to HE21 can be optimized to more than 187, while the HE21 still maintains a low confinement loss as 0.0027 dB/m. Our research has brought about a solution of low loss hollow core mode propagation in optical fiber. Those properties will make this fiber an ideal medium for blue-detuned atomic guidance.
Collapse
|
6
|
Liu S, Zhang L, Tian M, Yang T, Dong Y. Epsilon negative-based, broadband single-polarization single-mode hollow core anti-resonant photonic crystal fiber. OPTICS EXPRESS 2021; 29:15664-15677. [PMID: 33985263 DOI: 10.1364/oe.427149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
A broadband single-polarization single-mode (SPSM) hollow core anti-resonant photonic crystal fiber (HC-ARPCF) is proposed and analyzed by the finite element method in this paper. The HC-ARPCF design consisted of outer semicircular cladding tubes and inner circular cladding tubes. The SPSM behavior is achieved through controlling the effective material absorption loss (EML) by loading epsilon negative (ENG) material in the selected semicircular cladding tubes. Optimization of the configuration parameters is conducted to yield a large loss difference (LD) between one of the two orthogonally polarized fundamental modes and all the other unwanted modes. Therefore, only one desired mode will exist after a proper propagation distance, i.e., SPSM guidance. Specially, the optimal design provides a 288 nm (from 1408 nm to 1676 nm and from 1680 nm to 1700 nm) bandwidth in terms of 40 dB/m minimum LD (MLD) and 168 nm (from 1452 nm to 1620 nm) bandwidth in terms of 100 dB/m MLD. Furthermore, this fiber also exhibits a large effective mode area and near-zero dispersion properties over the entire operation bandwidth. The proposed HC-ARPCF may find its applications in polarization maintaining and high-power laser systems.
Collapse
|
7
|
Habib MS, Adamu AI, Markos C, Amezcua-Correa R. Enhanced birefringence in conventional and hybrid anti-resonant hollow-core fibers. OPTICS EXPRESS 2021; 29:12516-12530. [PMID: 33985009 DOI: 10.1364/oe.422537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
A hollow-core anti-resonant fiber (HC-ARF) design based on hybrid silica/silicon cladding is proposed for single-polarization, single-mode and high birefringence. We show that by adding silicon layers in a semi-nested HC-ARF, one of the polarization states can be strongly suppressed while simultaneously maintaining low propagation loss for other polarization states, single-mode and high birefiringence. The optimized HC-ARF design exhibits propagation loss, high birefringence, and polarization-extinction ratio of 0.05 dB/m, 0.5 × 10-4, >300 respectively for y-polarization while the loss of x-polarization is >5 dB/m at 1064 nm. The fiber also has low bend-loss and thus can be coiled to a small bend radii of 5 cm having ≈0.06 dB/m bend loss.
Collapse
|
8
|
Stępniewski G, Dobrakowski D, Pysz D, Kasztelanic R, Buczyński R, Klimczak M. Birefringent large-mode-area anti-resonant hollow core fiber in the 1.9 µm wavelength window. OPTICS LETTERS 2020; 45:4280-4283. [PMID: 32735279 DOI: 10.1364/ol.398650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
We report on the development and characterization of a birefringent large-mode-area anti-resonant silica fiber. The fiber structure is composed of six non-touching capillaries. The birefringence results from the breaking of the circular symmetry of an air core with increasing of the diameters of two capillaries located across the fiber diameter. We depart from earlier designs of polarizing hollow core fibers, in which coupling of the guided modes was intentionally facilitated with the cladding layout. Instead, with the help of numerical simulations, we enhance birefringence in our design by varying the capillary wall thickness between the larger- and smaller-diameter capillary sections of the cladding. The fiber has a large, elliptical core with semi-axes of ∼55 and 41 µm in diameter, an effective area of the fundamental mode of 1200µm2, and a total outer diameter of 127 µm. The cladding is composed of two pairs of smaller capillaries, which are 18 µm in diameter with 1.66 µm thick walls, and two larger capillaries with a 24 µm diameter and 1.14 µm thick walls, located across the diagonal of the fiber. Measured group birefringence over 1820-1920 nm wavelengths is monotonically increasing from 0.4×10-4 to 2.0×10-4, while its phase birefringence is from 5×10-6 to 1.1×10-5. Despite this, the fiber holds polarization with a 12 dB polarization extinction ratio at 1900 nm over a 1.5 m long sample.
Collapse
|