1
|
Thayil R, Parne SR, Ramana CV. 2D MoS 2 for Next-Generation Electronics and Optoelectronics: From Material Properties to Manufacturing Challenges and Future Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412467. [PMID: 40026204 DOI: 10.1002/smll.202412467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Indexed: 03/04/2025]
Abstract
The emergence of innovative 2D materials represents a significant evolution in materials science, heralding new opportunities for the advancement of information technologies in the era succeeding Moore's law. These materials span various categories, including semi-metallic, semiconductor, and insulating types, showcasing their versatility. The exceptional characteristics of these atomically thin and planar materials herald a new era in the miniaturization of devices. Integrating 2D materials into field-effect transistors (FETs) with sub-nanometer scale gate architectures demonstrates typical switching behaviors, confirming their applicability in integrated circuits. Concurrently, the development of wafer-level and silicon-compatible manufacturing techniques specifically designed for 2D materials and their devices underscores their significant promise in nanoelectronics and nanophotonics. Particularly, Molybdenum disulfide (MoS2) stands out for its direct bandgaps and bound excitons, offering profound implications for advancing nanoelectronics and nanophotonics. This review investigates the intrinsic structure and properties of MoS2, evaluates various methods for wafer-scale synthesis, and examines critical applications in nanoelectronics, such as 2D FETs, photodetectors, and memristors, alongside nanophotonics applications like nano-scale laser sources, exciton-plasmon interaction for advanced sensing applications, and photoluminescence manipulation. Additionally, this review addresses current challenges and future prospects for developing MoS2-based technologies in next-generation nanoelectronic and nanophotonic devices.
Collapse
Affiliation(s)
- Ruchika Thayil
- Department of Applied Sciences, National Institute of Technology Goa, Cuncolim-Goa, 403703, India
| | - Saidi Reddy Parne
- Department of Applied Sciences, National Institute of Technology Goa, Cuncolim-Goa, 403703, India
| | - C V Ramana
- Center for Advanced Materials Research (CMR), University of Texas at El Paso, 500 W University Ave, El Paso, Texas, 79968, USA
- Department of Aerospace and Mechanical Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, Texas, 79968, USA
| |
Collapse
|
2
|
Xie H, Zhu S, Wen P, Zhou D, Yin Y, Lan Y, Lee TC, Zhang Y, Pu Q. Raspberry-Like Plasmonic Nanoaggregates with Programmable Hierarchical Structures for Reproducible SERS Detection of Wastewater Pollutants and Biomarkers. Anal Chem 2024; 96:17620-17630. [PMID: 39445382 PMCID: PMC11541892 DOI: 10.1021/acs.analchem.4c03533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Conventional solid-based SERS substrates often face challenges with inconsistent sample distribution, while liquid-based SERS substrates are prone to aggregation and precipitation, resulting in irreproducible signals in both cases. In this study, we tackled this dilemma by designing and synthesizing raspberry-like plasmonic nanoaggregates that exhibit a high density of hotspots and are colloidally stable at the same time. In particular, the nanoaggregates consist of a core made of functionalized polystyrene (PS) microspheres, which act as a template for rapid self-assembly of Au@Ag core-shell nanoparticles to form raspberry-like hierarchical nanoaggregates within 5 min of mixing. The optimized nanoaggregates can be used as reproducible and stable SERS substrates for a range of wastewater pollutants (e.g., rhodamine 6G (R6G) and malachite green (MG)) and nucleobases (e.g., adenine and uracil), with the detection limits as low as 1 × 10-10, 1 × 10-16, 3 × 10-8, and 3 × 10-7 M, respectively. Additionally, the trace detection of adenine in clinical urine samples has been successfully demonstrated. Our modular assembly approach opens up new possibilities in SERS substrate design and advanced trace-chemical detection technologies.
Collapse
Affiliation(s)
- Huimin Xie
- College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, China
| | - Shuyu Zhu
- College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, China
| | - Ping Wen
- College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, China
| | - Deyue Zhou
- Institute
for Materials Discovery, University College
London, London WC1H 0AJ, U.K.
| | - Yidan Yin
- Institute
for Materials Discovery, University College
London, London WC1H 0AJ, U.K.
| | - Yang Lan
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
| | - Tung-Chun Lee
- Institute
for Materials Discovery, University College
London, London WC1H 0AJ, U.K.
| | - Yuewen Zhang
- College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, China
| | - Qiaosheng Pu
- College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, China
| |
Collapse
|
3
|
Ge B, Huang J, Qin H, Zhao S, Yang F, Wang M, Liang P. MOF-derived multi-"hotspot" 3D Au/MOF-808 (Zr) nanostructures as SERS substrates for the ultrasensitive determination of thiram. Mikrochim Acta 2024; 191:308. [PMID: 38714541 DOI: 10.1007/s00604-024-06384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/10/2024]
Abstract
A convenient self-assembly method is proposed for synthesis of 3D Au/MOF-808 (Zr) composite nanostructures with a cerium metal-organic framework loaded with gold nanoparticles. We combine adsorption properties of MOF materials with surface plasmon resonance of noble metals to construct hotspot-dense 3D Au/MOF-808 (Zr) SERS substrates, by using a two-step method of solvothermal and reduction reactions. The results show that optimal SERS substrates are obtained from a volume ratio of gold nanoparticles to MOF-808 (Zr) solution of 4:1 and a self-assembly time of 2 h. Rhodamine 6G (R6G) is used as a molecular probe to characterize and analyze SERS properties of substrates of 3D Au/MOF-808 (Zr) prepared under the optimal process conditions, where the substrates are capable to detect R6G concentrations down to 10-10 M with a relative standard deviation of 8.81%. Finally, we applied the SERS substrates of 3D Au/MOF-808 (Zr) to the detection of pesticide thiram, and establish a quantitative determination method. 3D Au/MOF-808 (Zr) provides a sensitive detection of thiram in lake water by SERS with a detection limit of 1.49 × 10-9 M. Application tests show that a SERS enhancement factor of the MOF-based SERS substrates for the detection of thiram can be significantly increased to 5.91 × 105. Thus, the above results indicate that such substrate has high sensitivity, good adsorption, homogeneity, and reproducibility, which can be extended for sensitive detection of pesticide residues in food and environment.
Collapse
Affiliation(s)
- Biaobiao Ge
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Jie Huang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Haojia Qin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Shuai Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Feng Yang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Mengmeng Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Pan J, Yi X, Shao M, Ji C, Pei Z, Zhao X, Yu J, Si H, Li Z, Zhang C. SERS detection of volatile gas in spoiled pork with the Ag/MoS 2 nano-flower cavity/PVDF micron-bowl cavity (FIB) substrate. OPTICS EXPRESS 2024; 32:5149-5160. [PMID: 38439248 DOI: 10.1364/oe.509360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/15/2024] [Indexed: 03/06/2024]
Abstract
Putrescine and cadaverine are significant volatile indicators used to assess the degree of food spoilage. Herein, we propose a micro-nano multi cavity structure for surface-enhanced Raman spectroscopy (SERS) to analyze the volatile gas putrescine and cadaverine in decomposing food. The MoS2 nano-flowers are inserted into a PVDF micro-cavity through in-situ growth, followed by vacuum evaporation technology of Ag nanoparticles to form an Ag/MoS2 nano-flower cavity/PVDF micron-bowl cavity (FIB) substrate. The micro-nano multi cavity structure can improve the capture capacity of both light and gas, thereby exhibiting high sensitivity (EF = 7.71 × 107) and excellent capability for gas detection of 2-naphthalenethiol. The SERS detections of the putrescine and cadaverine are achieved in the spoiled pork samples with the FIB substrate. Therefore, this substrate can provide an efficient, accurate, and feasible method for the specific and quantitative detection in the food safety field.
Collapse
|
5
|
Benazza A, Beffara F, Auguste JL, Olivo M, Dinish US, Humbert G. Reliable and easy-to-use SERS spectroscopy probe using a tapered opto-fluidic photonic crystal fiber. OPTICS EXPRESS 2024; 32:3440-3450. [PMID: 38297564 DOI: 10.1364/oe.501911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024]
Abstract
Surface enhanced Raman spectroscopy (SERS) is one of the most sensitive biosensing techniques that offers label free detection for a variety of applications. Generally, SERS spectroscopy is performed on nano-functionalized planar substrates with plasmonic structures or colloidal nanoparticles. Recently, photonic crystal fibers (PCFs) have gained great interest for SERS based bio sensing applications due to the immense advantages such as improved sensitivity, flexibility and remote sensing capability that it offers compared to the planar substrates. However, the use of PCF based biosensors demand the alignment of it under a microscope, which can affect the reliability of SERS measurements and could be restrictive for practical end use applications. Herein, we aim to develop a tapered suspended core PCF fiber (Tapered-SuC-PCF) that represents an improvement in coupling efficiency and measurement reliability as well as it opens the way to the development of an easy-to-use bio-sensing probes with a plug and play option with conventional Raman spectrometers. We have fabricated several samples of the optimized tapered-SuC-PCF and demonstrated its superior SERS performance compared to standard SuC-PCF fibers with 2 µm core diameter. An excellent SERS measurement reliability is demonstrated using such a fiber in a plug and play type system demonstrating its versatility for practical end use applications.
Collapse
|
6
|
Barveen NR, Chinnapaiyan S, Wang TJ, Huang CH. Photochemical decoration of gold nanoparticles on MoS 2 nanoflowers grafted onto the flexible carbon cloth as a recyclable SERS sensor for the detection of antibiotic residues on curved surfaces. CHEMOSPHERE 2024; 346:140677. [PMID: 37949183 DOI: 10.1016/j.chemosphere.2023.140677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based flexible substrate has recently been demonstrated to be effective in detecting molecules on curved surfaces, however a suitable method for fabricating the flexible SERS substrate still remains a hurdle. In this paper, we fabricated a flexible SERS substrate by anchoring the plasmonic gold nanoparticles (Au-NPs) onto the hydrothermally grown flower-like molybdenum disulfide (MoS2) grafted onto carbon cloth (CC) via a facile photoreduction route. Benefitting from the abundant hotspots generation of the Au-NPs and photo-induced charge-transfer ability of MoS2, the constructed Au-NPs/MoS2/CC substrate exhibit a superior SERS sensing ability, excellent SERS enhancement factor, high flexibility and mechanical stability towards the nitrofurantoin (NFT) with an ultra-low detection limit of 10-11 M. As a trial for practical applications, the flexible substrate was used to detect NFT (10-4 M) in the curved surfaces of meat samples via swab technique. The ability of the flexible Au-NPs/MoS2/CC substrate to sustain the robust Raman signals of NFT even after recycling up to 4 cycles validated its reusability. The proposed flexible SERS substrate with reusable capability indicates its great potential in practical applications for the detection of target molecules on the curved surfaces.
Collapse
Affiliation(s)
- Nazar Riswana Barveen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Sathishkumar Chinnapaiyan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| |
Collapse
|
7
|
Qin Y, Yin S, Chen M, Yao W, He Y. Surface-enhanced Raman spectroscopy for detection of fentanyl and its analogs by using Ag-Au nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121923. [PMID: 36183535 DOI: 10.1016/j.saa.2022.121923] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The problem of opioid abuse has become a global problem. Thus, creating an urgent need for highly sensitive detection of opioid substances. In this work, we developed a method for the controllable preparation of Ag@Au nanocrystals (Ag@Au NCs) for highly sensitive SERS detection of fentanyl and its analogs. By regulating the concentration of ligands on the surface of silver seed, we successfully prepared Ag@Au NCs with three different morphologies, including core-satellite, yolk shell and hollow structure. Firstly, we explored the SERS-enhancing effect of Ag@Au NCs with different morphology using rhodamine 6G as the molecule to be tested. The results show that the core-satellite Ag@Au NCs has the best SERS effect, and the lowest detection concentration for R6G reached to 10-10 M. Furthermore, we used the prepared core-satellite Ag@Au NCs to detect fentanyl and its five analogs, including carfentanyl, furanylfentanyl, thiofentanyl, 4-fluorobutyrfentanyl and N-4-piperidylacetanilide. Trace detection was achieved for the above six substances. For the environmental water samples spiked with fentanyl, the calculated recovery was 89.2% with an RSD value of 7.3%. Moreover, in order to realize the qualitative analysis of the characteristic peaks of different fentanyl analogs, we performed DFT calculations on the Raman spectra of the above-mentioned 6 substances. By analyzing the DFT calculation results, conventional Raman spectroscopy and SERS spectroscopy, we realized the distinction of six fentanyl analogs with similar structures.
Collapse
Affiliation(s)
- Yazhou Qin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555, Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Shusheng Yin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555, Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Mingjie Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555, Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555, Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Yingsheng He
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555, Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China.
| |
Collapse
|
8
|
Hossain MK. Silver-Decorated Silicon Nanostructures: Fabrication and Characterization of Nanoscale Terraces as an Efficient SERS-Active Substrate. Int J Mol Sci 2022; 24:ijms24010106. [PMID: 36613545 PMCID: PMC9820282 DOI: 10.3390/ijms24010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Rich and highly dense surface-enhanced Raman (SERS) hotspots available in the SERS-active platform are highly anticipated in SERS measurements. In this work, conventional silicon wafer was treated to have wide exposure to terraces available within the silicon nanostructures (Si-NSs). High-resolution field emission scanning electron microscopic (FESEM) investigations confirmed that the terraces were several microns wide and spread over different steps. These terraces were further decorated with silver nanoparticles (Ag-NPs) of different shapes and sizes to achieve SERS-active hotspots. Based on more than 150 events, a histogram of the size distribution of Ag-NPs indicated a relatively narrow size distribution, 29.64 ± 4.66 nm. The coverage density was estimated to be ~4 × 1010 cm-2. The SERS-activity of Ag-NPs -decorated Si-NSs was found to be enhanced with reference to those obtained in pristine Si-NSs. Finite difference time domain models were developed to support experimental observations in view of electromagnetic (EM) near-field distributions. Three archetype models; (i) dimer of same constituent Ag-NPs, (ii) dimer of different constituent Ag-NPs, and (iii) linear trimer of different constituent Ag-NPs were developed. EM near-field distributions were extracted at different incident polarizations. Si-NSs are well-known to facilitate light confinement, and such confinement can be cascaded within different Ag-NPs-decorated terraces of Si-NSs.
Collapse
Affiliation(s)
- Mohammad Kamal Hossain
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
9
|
Yang Y, Li J, Ding Y, Song P, Xia L. Plasmonic Ag decorated AlOOH for highly sensitive SERS detection of affinity OH groups molecules enriched in hotspots. J Colloid Interface Sci 2022; 626:729-739. [DOI: 10.1016/j.jcis.2022.06.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
|
10
|
Yi T, Su W, Yu Q, Wu H, Guo K, Deng H, Yin C, Yan J, Wu J, Chen B. Gold nanospheres assembly via corona discharge technique for flexible SERS substrate. OPTICS EXPRESS 2022; 30:5131-5141. [PMID: 35209482 DOI: 10.1364/oe.450129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Noble metal nanoparticles (NMNPs) assembly substrates with strongly enhanced local electromagnetic fields provide new possibilities for surface-enhanced Raman spectroscopy (SERS) sensing. Although the external-electric-field-based self-assembly (EEFSA) strategy for decreasing NMNP gap in liquid phase is relatively developed, it is rarely described in solid phase. Here, by combining corona discharge technique (CDT) as a simple EEFSA approach on flexible substrate surface modification, a flexible SERS substrate medicated with gold nanospheres (AuNSs) is produced. Because of the CDT's peculiar discharge event, makes AuNSs aggregation simply achieved. The modified flexible SERS substrate is sensitive to the detection limit of ∼10-5 mM for Rhodamine 6G (R6G), with a maximum enhancement factor of 2.79×106. Furthermore, finite-difference time-domain (FDTD) simulation confirms the SERS enhancement impact of AuNSs-based substrate. This study not only provides a low-cost, simple-to-process, high-yield, high sensitivity, and activity flexible SERS substrate, but also suggests a more practical and adaptable NMNPs self-assembly approach.
Collapse
|
11
|
Li G, Niu P, Ge S, Cao D, Sun A. SERS Based Lateral Flow Assay for Rapid and Ultrasensitive Quantification of Dual Laryngeal Squamous Cell Carcinoma-Related miRNA Biomarkers in Human Serum Using Pd-Au Core-Shell Nanorods and Catalytic Hairpin Assembly. Front Mol Biosci 2022; 8:813007. [PMID: 35223986 PMCID: PMC8878268 DOI: 10.3389/fmolb.2021.813007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Non-invasive early diagnosis is of great significant in disease pathologic development and subsequent medical treatments, and microRNA (miRNA) detection has attracted critical attention in early cancer screening and diagnosis. However, it was still a challenge to report an accurate and sensitive method for the detection of miRNA during cancer development, especially in the presence of its analogs that produce intense background noise. Herein, we developed a surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) biosensor, assisted with catalytic hairpin assembly (CHA) amplification strategy, for the dynamic monitoring of miR-106b and miR-196b, associated with laryngeal squamous cell carcinoma (LSCC). In the presence of target miRNAs, two hairpin DNAs could self-assemble into double-stranded DNA, exposing the biotin molecules modified on the surface of palladium (Pd)-gold (Au) core-shell nanorods (Pd-AuNRs). Then, the biotin molecules could be captured by the streptavidin (SA), which was fixed on the test lines (T1 line and T2 line) beforehand. The core-shell spatial structures and aggregation Pd-AuNRs generated abundant active "hot spots" on the T line, significantly amplifying the SERS signals. Using this strategy, the limits of detections were low to aM level, and the selectivity, reproducibility, and uniformity of the proposed SERS-LFA biosensor were satisfactory. Finally, this rapid analysis strategy was successfully applied to quantitatively detect the target miRNAs in clinical serum obtained from healthy subjects and patients with LSCC at different stages. The results were consistent with the quantitative real-time PCR (qRT-PCR). Thus, the CHA-assisted SERS-LFA biosensor would become a promising alternative tool for miRNAs detection, which showed a tremendous clinical application prospect in diagnosing LSCC.
Collapse
Affiliation(s)
- Guang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ping Niu
- Departments of Otolaryngology, The Affiliated Hospital of Shandong First Medical University, Qingzhou People’s Hospital, Qingzhou, China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Dawei Cao
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
| | - Aidong Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Shinki, Singh J, Sarkar S. Tuning the topographical parameters of Si pyramids for a better surface enhanced Raman response. Phys Chem Chem Phys 2021; 23:26407-26416. [PMID: 34792516 DOI: 10.1039/d1cp03576b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Development of facile routes for the fabrication of surface enhanced Raman substrates (SERS) along with optimal conditions for a high enhancement factor are significant from an application perspective of SERS. Despite steady efforts to establish high SERS signals, cost effectiveness without compromising the enhanced and robust Raman signal remains a major challenge. To address this aspect, herein, we try to tune the topographical aspects of Si pyramidal textures in pursuit of efficient SERS substrates. These pyramidal surfaces are deployed as a pre-template for adopting a SERS substrate using a cost-effective wet chemical etching method. By controlling the etching time, various topographical parameters namely base size, height, pyramidal number density and uniformity of pyramidal textures are modulated. To make all the surfaces SERS active, a Au (50%)-Ag (50%) alloy nanolayer is post-deposited over them. Furthermore, SERS behavior of all the surfaces is investigated by using Rh6G dye as an analyte molecule. In addition to the high density of hot spots in terms of pyramidal number density, base size and uniformity shows a strong correlation in deciding the substantial SERS response. Furthermore, we find a high enhancement factor (∼1.42 × 108) for the substrate consisting of dense, small and uniformly sized pyramids. Finite Difference Time Domain (FDTD) simulations done on similar structures corroborate our results. Additionally, universal applicability of the proposed substrate is also verified by detecting methylene blue and methyl parathion analyte molecules. These substrates are much cheaper (∼5 USD for 1 × 1 cm2) in comparison with commercially available Klarite SERS substrates (∼100 USD for 2 × 2 mm2). We believe this work provides a critical insight into the design of potential SERS substrates using a significantly cost-effective wet chemical etching process.
Collapse
Affiliation(s)
- Shinki
- Surface Modification and Applications Laboratory (SMAL), Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| | - Jaspreet Singh
- Surface Modification and Applications Laboratory (SMAL), Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| | - Subhendu Sarkar
- Surface Modification and Applications Laboratory (SMAL), Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
13
|
Verma MS, Chandra M. Second harmonic generation-based nonlinear plasmonic RI-sensing in solution: the pivotal role of the particle size. Phys Chem Chem Phys 2021; 23:25565-25571. [PMID: 34782895 DOI: 10.1039/d1cp04546f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we demonstrate the utility of the second harmonic generation (SHG) for refractometric sensing in the solution phase. We employ an aqueous colloid of gold nanorods as our sensors, and modulation in their SHG with the surrounding refractive index (RI) is mirrored using second-harmonic light scattering (SHLS). A limit of detection (LOD) as low as 9 × 10-4 RIU is achieved. The RI sensitivity of our SHLS-based approach is two orders of magnitude higher than that obtained using linear Rayleigh scattering. Most importantly, we show that the particle size plays a crucial role in controlling the nonlinear plasmonic sensing performance of gold nanorods.
Collapse
Affiliation(s)
- Mrigank Singh Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
14
|
Liu YQ, Zhu W, Hu JM, Shen AG. Recent advances in plasmonic Prussian blue-based SERS nanotags for biological application. NANOSCALE ADVANCES 2021; 3:6568-6579. [PMID: 36132655 PMCID: PMC9417754 DOI: 10.1039/d1na00464f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/19/2021] [Indexed: 05/07/2023]
Abstract
The reliability and reproducibility of surface-enhanced Raman scattering (SERS) technology is still a great challenge in bio-related analysis. Prussian blue (PB)-based SERS tags have attracted increasing interest for improving these deficiencies due to its unique Raman band (near 2156 cm-1) in the Raman-silent region, providing zero-background bio-Raman labels without interference from endogenous biomolecules. Moreover, the stable PB shell consisting of multiple layers of CN- reporters ensure a stable and strong Raman signal output, avoiding the desorption of the Raman reporter from the plasmonic region by the competitive adsorption of the analyte. More importantly, they possess outstanding multiplexing potential in biological analysis owing to the adjustable Raman shift with unique narrow spectral widths. Despite more attention having been attracted to the structure and preparation of PB-based SERS tags for their better biological applications over the past five years, there is still a great challenge for SERS suitable for applications in the actual environment. The biological applications of PB-based SERS tags are comprehensively recounted in this minireview, mainly focusing on quantification analysis, multiple-spectral analysis and cell-imaging joint phototherapy. The prospects of PB-based SERS tags in clinical diagnosis and treatment are also discussed. This review aims to draw attention to the importance of SERS tags and provide a reference for the design and application of PB-based SERS tags in future bio-applications.
Collapse
Affiliation(s)
- Ya-Qin Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wei Zhu
- School of Printing and Packaging, Wuhan University Wuhan 430079 China
| | - Ji-Ming Hu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Ai-Guo Shen
- School of Printing and Packaging, Wuhan University Wuhan 430079 China
| |
Collapse
|
15
|
Composite Structure of Ag Colloidal Particles and Au Sinusoidal Nanograting with Large-Scale Ultra-High Field Enhancement for SERS Detection. PHOTONICS 2021. [DOI: 10.3390/photonics8100415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, a novel composite Surface-Enhanced Raman Scattering (SERS) substrate is proposed for ultrasensitive detection. Consisting of gold sinusoidal nanograting and silver colloidal nanoparticles (AgNPs-AuSG), this type of SERS substrate is easy for fabrication by maskless laser interference lithography, and capable of providing large-scale ultra-high field enhancement, attributed to localized surface plasmons (LSPs) and surface plasmon polaritons (SPPs). The enhancement factor (EF) of this composite substrate is as high as up to 10 orders of magnitude in the simulation experiment. Experimental results show that this large-area, productive SERS substrate of AgNPs-AuSG has realized sensitive TNT and RDX detection with the limit of detection (LOD) of 10−10 M, which may be a potential candidate for trace explosives detection.
Collapse
|
16
|
Thuy NTN, Luan HNT, Hieu VVK, Ngan MTT, Trung NT, Hung LVT, Van TTT. Optimum fabrication parameters for preparing high performance SERS substrates based on Si pyramid structure and silver nanoparticles. RSC Adv 2021; 11:31189-31196. [PMID: 35496849 PMCID: PMC9041556 DOI: 10.1039/d1ra05215b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, we propose simple and inexpensive methods to prepare micro/nano hierarchical Surface-Enhanced Raman Scattering (SERS) substrates, in which pyramid structure is created by using anisotropic wet etching of a silicon wafer and a silver thin film is deposited on these pyramid arrays by thermal evaporation. The ensemble is then annealed at 450 °C for 2 hours to form silver nanoparticles (AgNPs). The sizes and density of the pyramids and AgNPs are optimized mainly by changing the etching temperature (60-80 °C), the thickness of the Ag-film (15-45 nm) and etching time (3-10 min). The ultraviolet visible (UV-Vis) absorbance spectra show that the AgNPs formed with the 30 nm-thick film exhibit the strongest plasmonic effect. Under these conditions, the spherical AgNPs with sizes of 42-48 nm are densely distributed on the silicon micro-pyramid array. The obtained SERS signal is the strongest at the pyramid base-edge size of 7-10 μm. The enhancement factor obtained from the abamectin probe molecules is as high as 1 × 106 and the SERS substrates enable the detection of abamectin concentrations as low as 5.7 × 10-9 M. Therefore, this work provides a novel SERS substrate structure that has a high potential for use in medicine and biotechnology or as a food security sensor.
Collapse
Affiliation(s)
| | - Huynh Nguyen Thanh Luan
- Faculty of Materials Science and Technology, University of Science, VNU-HCM Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Van Vo Kim Hieu
- Faculty of Materials Science and Technology, University of Science, VNU-HCM Vietnam
- Tribology Lab, Department of Mechanical Engineering, University of Ulsan 93 Daehak-ro, Nam-gu Ulsan 44610 South Korea
| | - Mai Thi Thanh Ngan
- Faculty of Applied Sciences, HCMC University of Technology and Education Vietnam
| | - Nguyen Tri Trung
- Faculty of Applied Sciences, HCMC University of Technology and Education Vietnam
| | - Le Vu Tuan Hung
- Faculty of Materials Science and Technology, University of Science, VNU-HCM Vietnam
- Faculty of Physics and Engineering Physics, University of Science, VNU-HVM Vietnam
| | - Tran T T Van
- Faculty of Materials Science and Technology, University of Science, VNU-HCM Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
17
|
Mehmood F, Pachter R, Back TC, Boeckl JJ, Busch RT, Stevenson PR. Two-dimensional MoS 2 2H, 1T, and 1T ' crystalline phases with incorporated adatoms: theoretical investigation of electronic and optical properties. APPLIED OPTICS 2021; 60:G232-G242. [PMID: 34613214 DOI: 10.1364/ao.433239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Although there has been progress in studying the electronic and optical properties of monolayer and near-monolayer (two-dimensional, 2D) MoS2 upon adatom adsorption and intercalation, understanding the underlying atomic-level behavior is lacking, particularly as related to the optical response. Alkali atom intercalation in 2D transition metal dichalcogenides (TMDs) is relevant to chemical exfoliation methods that are expected to enable large scale production. In this work, focusing on prototypical 2D MoS2, the adsorption and intercalation of Li, Na, K, and Ca adatoms were investigated for the 2H, 1T, and 1T' phases of the TMD by the first principles density functional theory in comparison to experimental characterization of 2H and 1T 2D MoS2 films. Our electronic structure calculations demonstrate significant charge transfer, influencing work function reductions of 1-1.5 eV. Furthermore, electrical conductivity calculations confirm the semiconducting versus metallic behavior. Calculations of the optical spectra, including excitonic effects using a many-body theoretical approach, indicate enhancement of the optical transmission upon phase change. Encouragingly, this is corroborated, in part, by the experimental measurements for the 2H and 1T phases having semiconducting and metallic behavior, respectively, thus motivating further experimental exploration. Overall, our calculations emphasize the potential impact of synthesis-relevant adatom incorporation in 2D MoS2 on the electronic and optical responses that comprise important considerations toward the development of devices such as photodetectors or the miniaturization of electroabsorption modulator components.
Collapse
|
18
|
Yang YX, Chu JP. Cost-effective large-area Ag nanotube arrays for SERS detections: effects of nanotube geometry. NANOTECHNOLOGY 2021; 32:475504. [PMID: 34284366 DOI: 10.1088/1361-6528/ac1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
This study demonstrated highly-ordered metallic nanotube arrays (MeNTAs) with a precisely controlled geometric shape to promote surface-enhanced Raman scattering (SERS). Using both simulation and experimental methods, we designed and fabricated MeNTAs with nanotube geometries that possess a large surface area to absorb probe molecules as well as geometric features capable of inducing hot spots for SERS enhancement. The proposed top-down wafer-scale lithographic and sputter-deposition process is a simple and cost-effective approach to the fabrication of 1 mm × 1 mm MeNTA at room temperature. Simulation results of nanotubes with various materials (Au, Ag, and Cu), diameters (100-1500 nm), geometric shapes (circle, equilateral triangle and square) and triangle corner curvatures (ranging from 0 to 300 nm) identified Ag triangles with sharp tips as the geometry best suited to SERS enhancement. The SERS spectra of crystal violet molecules generated from the Ag MeNTAs verified the patterns observed in computational simulations, wherein the effects of MeNTA on SERS decreased with an increase in the size of the nanotubes. Enhancement factor of 1.06 × 109was obtained from our triangular Ag MeNTA, confirming its efficacy as an ultrahigh sensitivity SERS-active substrate.
Collapse
Affiliation(s)
- Yi-Xiang Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jinn P Chu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Applied Research Center for Thin-Film Metallic Glass, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
19
|
Detection of benzylpenicillin sodium and ampicillin residue based on flower-like silver nanostructures using surface-enhanced Raman spectroscopy. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Zha Z, Liu R, Yang W, Li C, Gao J, Shafi M, Fan X, Li Z, Du X, Jiang S. Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al 2O 3. OPTICS EXPRESS 2021; 29:8890-8901. [PMID: 33820330 DOI: 10.1364/oe.419133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a nanoparticle-multilayer metal film substrate was presented with silver nanoparticles (Ag NPs) assembled on a multilayer gold (Au) film by employing alumina (Al2O3) as a spacer. The SERS performance of the proposed structures was determined. It was suggested that the SERS effect was improved with the increase in the number of layers, which was saturated at four layers. The SERS performance of the structures resulted from the mutual coupling of multiple plasmon modes [localized surface plasmons (LSPs), surface plasmon polaritons (SPPs), as well as bulk plasmon polaritons (BPPs)] generated by the Ag NP-multilayer Au film structure. Furthermore, the electric field distribution of the hybrid system was studied with COMSOL Multiphysics software, which changed in almost consistency with the experimentally achieved results. For this substrate, the limit of detection (LOD) was down to 10-13 M for the rhodamine 6G (R6G), and the proposed SERS substrate was exhibited prominently quantitatively detected capability and high reproducibility. Moreover, a highly sensitive detection was conducted on toluidine blue (TB) molecules. As revealed from the present study, the Ag NP-multilayer Au film structure can act as a dependable SERS substrate for its sensitive molecular sensing applications in the medical field.
Collapse
|
21
|
Jin X, Zhu Q, Feng L, Li X, Zhu H, Miao H, Zeng Z, Wang Y, Li Y, Wang L, Liu X, Shi G. Light-Trapping SERS Substrate with Regular Bioinspired Arrays for Detecting Trace Dyes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11535-11542. [PMID: 33625204 DOI: 10.1021/acsami.1c00702] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, few studies have focused on the light-trapping surface-enhanced Raman scattering (SERS) substrate combined with Si micropyramids and Ag (or Au). However, the Si micropyramids possess no ordered period, which not only affects the repeatability of the SERS signal but also affects the theoretical exploration. Here, the ordered micropyramids with strong light-trapping capability were fabricated by utilizing unconventional nanosphere lithography and anisotropy wet etching technique. Then, the Ag nanobowls were assembled on the ordered micropyramids to form the SERS substrate with bioinspired compound-eyes structure by utilizing the liquid-solid interface self-assembly and transfer technique. Especially, the evidence for the contribution of antireflective Si micropyramids to Raman enhancement was first presented. For this bioinspired SERS substrate, the lowest concentration of R6G that can be detected is 10-13 M with the level of a single molecule, and the relative standard deviation (RSD) is 3.68%. Meanwhile, the quantitative analysis and qualitative analysis can be realized. Especially, simultaneous trace detection of four common dyes (R6G, CV, MG, and MB) in food can be realized, suggesting that this SERS substrate will have a good application prospect in the field of optical sensors.
Collapse
Affiliation(s)
- Xuan Jin
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qunyan Zhu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Lei Feng
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative, Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xin Li
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Haiyan Zhu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongyan Miao
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhoufang Zeng
- Research and Development Center for Genetics Resource, Chinese Academy of Sciences, Changzhou 213000, China
| | - Yandong Wang
- Research and Development Center for Genetics Resource, Chinese Academy of Sciences, Changzhou 213000, China
| | - Ying Li
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Likui Wang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuefeng Liu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Gang Shi
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Wang Z, Huo Y, Ning T, Liu R, Zha Z, Shafi M, Li C, Li S, Xing K, Zhang R, Xu S, Li Z, Jiang S. Composite Structure Based on Gold-Nanoparticle Layer and HMM for Surface-Enhanced Raman Spectroscopy Analysis. NANOMATERIALS 2021; 11:nano11030587. [PMID: 33652800 PMCID: PMC7996856 DOI: 10.3390/nano11030587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022]
Abstract
Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10−10 and 10−8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.
Collapse
Affiliation(s)
- Zirui Wang
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
| | - Yanyan Huo
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, China
| | - Tingyin Ning
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, China
| | - Runcheng Liu
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
| | - Zhipeng Zha
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
| | - Muhammad Shafi
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
| | - Can Li
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
| | - Shuanglu Li
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
| | - Kunyu Xing
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
| | - Ran Zhang
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, College of Physics and Electronic Information, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Zhen Li
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
- Correspondence: (Z.L.); (S.J.)
| | - Shouzhen Jiang
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Z.W.); (Y.H.); (T.N.); (R.L.); (Z.Z.); (M.S.); (C.L.); (S.L.); (K.X.); (R.Z.)
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, China
- Correspondence: (Z.L.); (S.J.)
| |
Collapse
|
23
|
Promotional effect of surface plasmon resonance on direct formation of hydrogen peroxide from H2 and O2 over Pd/Graphene-Au nanorod catalytic system. J Catal 2021. [DOI: 10.1016/j.jcat.2020.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Designing the Hotspots Distribution by Anisotropic Growth. Molecules 2021; 26:molecules26010187. [PMID: 33401666 PMCID: PMC7795450 DOI: 10.3390/molecules26010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022] Open
Abstract
Changing the morphology of noble metal nanoparticles and polarization dependence of nanoparticles with different morphologies is an important part of further research on surface plasma enhancement. Therefore, we used the method based on Matlab simulation to provide a simple and effective method for preparing the morphologies of Au nanoparticles with different morphologies, and prepared the structure of Au nanoparticles with good uniformity and different morphologies by oblique angle deposition (OAD) technology. The change of the surface morphology of nanoparticles from spherical to square to diamond can be effectively controlled by changing the deposition angle. The finite difference time domain (FDTD) method was used to simulate the electromagnetic fields of Au nanoparticles with different morphologies to explore the polarization dependence of nanoparticles with different shapes, which was in good agreement with Raman spectrum.
Collapse
|
25
|
Sun Y, Ge S, Xue J, Zhou X, Lu W, Li G, Cao X. Highly sensitive detection of cytochrome c in the NSCLC serum using a hydrophobic paper based-gold nanourchin substrate. BIOMEDICAL OPTICS EXPRESS 2020; 11:7062-7078. [PMID: 33408980 PMCID: PMC7747924 DOI: 10.1364/boe.408649] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 05/16/2023]
Abstract
Cytochrome c (Cyt c) is a biomarker of early apoptosis that plays a critical role in the diagnosis and therapy of non-small cell lung cancer (NSCLC). In this work, we proposed a novel surface-enhanced Raman scattering (SERS)-based biosensor to implement the ultrasensitive detection of Cyt c in the serum of NSCLC patients. The SERS-supporting substrates based on hydrophobic filter paper were composed of gold nanourchins (GNUs) surface-functionalized with the Cyt c aptamer and the cyanine 5-labeled complementary DNA. In the existence of Cyt c, it could specifically bind to its aptamer, which leads to the detachment of complementary strands modified with Cy5 and the great weakness of SERS signal. The finite-difference time domain (FDTD) simulation showed that the excellent SERS performance of GNUs aggregation was strongly dependent on a large number of "hot spots" at the tips and between the nanogaps of aggregated GNUs. Alkyl ketene dimer (AKD) was used to make the filter paper modify its property from hydrophilic to hydrophobic, which consequently increased the density of GNUs and extended the retention time of the analyte. SERS biosensors based on hydrophobic paper exhibited prominent reproducibility and selectivity. The detection limit of Cyt c in PBS was 1.148 pg/mL, while the detection limit in human serum was 1.79 pg/mL. Moreover, the analysis of the serum samples of healthy subjects and NSCLC patients confirmed the feasibility of its clinical application. The results were consistent with enzyme-linked immunosorbent assay results. This method can be a powerful strategy for quantitative detection of extracellular Cyt c, and it is expected that the SERS-based biosensors could be applied in the practical clinical diagnoses of NSCLC.
Collapse
Affiliation(s)
- Yue Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jin Xue
- Guangling College, Yangzhou University, Yangzhou 225001, China
| | - Xinyu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Wenbo Lu
- Shanxi Normal University, College of Chemistry and Material Science, Linfen 041004, China
| | - Guang Li
- Department of Otorhinolaryngology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
26
|
Liu L, Hou S, Zhao X, Liu C, Li Z, Li C, Xu S, Wang G, Yu J, Zhang C, Man B. Role of Graphene in Constructing Multilayer Plasmonic SERS Substrate with Graphene/AgNPs as Chemical Mechanism-Electromagnetic Mechanism Unit. NANOMATERIALS 2020; 10:nano10122371. [PMID: 33260554 PMCID: PMC7760367 DOI: 10.3390/nano10122371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Graphene–metal substrates have received widespread attention due to their superior surface-enhanced Raman scattering (SERS) performance. The strong coupling between graphene and metal particles can greatly improve the SERS performance and thus broaden the application fields. The way in which to make full use of the synergistic effect of the hybrid is still a key issue to improve SERS activity and stability. Here, we used graphene as a chemical mechanism (CM) layer and Ag nanoparticles (AgNPs) as an electromagnetic mechanism (EM) layer, forming a CM–EM unit and constructing a multi-layer hybrid structure as a SERS substrate. The improved SERS performance of the multilayer nanostructure was investigated experimentally and in theory. We demonstrated that the Raman enhancement effect increased as the number of CM–EM units increased, remaining nearly unchanged when the CM–EM unit was more than four. The limit of detection was down to 10−14 M for rhodamine 6G (R6G) and 10−12 M for crystal violet (CV), which confirmed the ultrahigh sensitivity of the multilayer SERS substrate. Furthermore, we investigated the reproducibility and thermal stability of the proposed multilayer SERS substrate. On the basis of these promising results, the development of new materials and novel methods for high performance sensing and biosensing applications will be promoted.
Collapse
Affiliation(s)
- Lu Liu
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Shuting Hou
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Xiaofei Zhao
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Chundong Liu
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Zhen Li
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Chonghui Li
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Guilin Wang
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Jing Yu
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Chao Zhang
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
- Correspondence: (C.Z.); (B.M.)
| | - Baoyuan Man
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
- Correspondence: (C.Z.); (B.M.)
| |
Collapse
|
27
|
Zhengkun W, Jiamin Q, Can Z, Yong Z, Jie Z. AgNIs/Al 2O 3/Ag as SERS substrates using a self-encapsulation technology. OPTICS EXPRESS 2020; 28:31993-32001. [PMID: 33115162 DOI: 10.1364/oe.404196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Using a self-encapsulation technology, we prepared a metal film-coupled nanoisland system (FCN), that is, Ag and Al2O3 film-coupled Ag nanoislands (AgNIs/Al2O3/Ag) composite SERS (surface-enhanced Raman scattering) substrate, through the anti-wetting of Ag film on the surface of Al film. The thickness of the Al2O3 film can be controlled within the range of 4 nm to 22 nm by tuning the annealing temperature. Three important properties were investigated. Firstly, the structure shows an excellent near-field and far-field enhancement using COMSOL Multiphysics simulation. Secondly, the experimental SERS analytical enhancement factor (AEF) of the AgNIs/Al2O3/Ag substrate can reach 3.9 × 108, two orders of magnitude larger than that of bare AgNIs. Thirdly, after exposed in air for 90 days, it can keep 55% enhancement capability, while the bare AgNIs can keep 16%.
Collapse
|
28
|
Dong J, Wu F, Han Q, Qi J, Gao W, Wang Y, Li T, Yang Y, Sun M. Electrochemical synthesis of tin plasmonic dendritic nanostructures with SEF capability through in situ replacement. RSC Adv 2020; 10:36042-36050. [PMID: 35517114 PMCID: PMC9056996 DOI: 10.1039/d0ra06483a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Dendrite nanostructures with noble metals, such as Au and silver, act as plasmonic substrates with excellent potential in enhanced fluorescence technology. However, tin dendritic nanostructures are poorly investigated. In this study, we proposed a method of in situ electrochemical synthesis replacement to fabricate highly branched tin dendritic nanostructures on aluminum substrates. The surface enhanced fluorescence performance of the tin dendrites was tested for the detection of rhodamine 6G as probe molecules, and the result showed that the enhancement factors can reach to 36.5-fold that of an aluminum substrate. The fabricated tin dendrites have numerous nanogaps between the stratified and adjacent ones, thereby creating many plasmon-active “hotspots” dedicated to enhanced fluorescence. Electrical field simulation results for the tin dendritic nanostructures proved that its nanogaps can enhance the nearby local electromagnetic field. As a result, tin dendritic nanostructures exhibit outstanding surface enhanced fluorescence and promising application in biomolecule detection and sensor devices. Dendrite nanostructures with noble metals, such as Au, silver and tin, act as plasmonic substrates with excellent potential in enhanced fluorescence technology.![]()
Collapse
Affiliation(s)
- Jun Dong
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications Xi'an 710121 China
| | - Feifei Wu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications Xi'an 710121 China
| | - Qingyan Han
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications Xi'an 710121 China
| | - Jianxia Qi
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications Xi'an 710121 China
| | - Wei Gao
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications Xi'an 710121 China
| | - Yongkai Wang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications Xi'an 710121 China
| | - Tuo Li
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications Xi'an 710121 China
| | - Yi Yang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications Xi'an 710121 China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Center for Green Innovation, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
29
|
Liu R, Jiang L, Yu Z, Chen Y, Xu R, Jin S. Flexible SERS platform based on Ti 3C 2T x-modified filter paper: preparation and SERS application. APPLIED OPTICS 2020; 59:7846-7852. [PMID: 32976456 DOI: 10.1364/ao.398454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
A novel, simple, and inexpensive flexible surface-enhanced Raman-scattering (SERS) platform based on common laboratory filter paper modified with Ti3C2Tx flakes was reported. Ti3C2Tx synthesized from a Ti3AlC2 phase with a mixture of HCl and LiF and Ti3C2Tx nanosheets were characterized by the TEM, XRD, UV-Vis spectrum, and Raman spectrum. Paper-based substrate has been proven to sample on rough and irregular surfaces. Thus, Ti3C2Tx was further manufactured as paper substrate by the immersion method to transfer nanosheets to filter paper. SERS activity of prepared substrate was demonstrated using R6G by the same filter paper modified with and without Ti3C2Tx, and various concentrations of R6G were tested to prove the sensitivity of the substrates. Further detection of CV and MG certified the universality of paper substrate based on Ti3C2Tx nanosheets for detection of organic pollutants. The uniformity and stability were proved by CV and R6G molecules. This SERS platform combines the advantages of 2D material and flexible paper scaffolds, resulting in a highly sensitive, cost-efficient, and easy-to-manufacture large-scale flexible substrate and is expected to be used in practice.
Collapse
|
30
|
Huang J, Wen Y, Li J, Li Y, Gou T, Ma Y, Qu Y, Zhang Z, Ren W, Zhang Z, Liu T, Sun R. Superhydrophobic-Superhydrophilic Hybrid Surface with Highly Ordered Tip-Capped Nanopore Arrays for Surface-Enhanced Raman Scattering Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37499-37505. [PMID: 32706571 DOI: 10.1021/acsami.0c12127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The designed superhydrophobic-superhydrophilic hybrid surface (SSHS) with highly ordered tip-capped nanopore arrays can be used as an intelligent and fast platform to realize different analyte solutions with different concentrations to be detected at the same time by surface-enhanced Raman spectroscopy. This surface is fabricated in a large area by a facile and low-cost method of programmed multistep anodization of aluminum and pore widening process followed by selective chemical modification. The highly ordered tip-capped nanopore arrays can induce the highly sensitive and reproducible Raman signal, whose enhanced factor for rhodamine 6G (R6G) at 1358 cm-1 is 4.46 × 106. The superhydrophobic-superhydrophilic hybrid property can realize the homogeneous distribution of the concentrated analyte in a droplet at the fixed place, which can avoid the diffusion-limit problem and further enhance the Raman signal. Surface-enhanced Raman spectroscopy of dried droplets with different concentrations of R6G or thiram is tested on SSHS, which show good reproducibility. The detection limits of R6G and thiram on SSHS are 10-10 and 10-7 M in 50 μL droplets, respectively. Due to the industrial compatibility of the fabrication technique, this smart surface has the potential to evolve into a general platform to develop various advanced chemical and biological sensors.
Collapse
Affiliation(s)
- Jingbo Huang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yihao Wen
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Juan Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ying Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Tong Gou
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yingjun Ma
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
- School of Science, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Yu Qu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhongyue Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Wei Ren
- School of Science, Xi'an University of Posts & Telecommunication, Xi'an 710119, P. R. China
| | - Zhiying Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ting Liu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
31
|
Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Food Chem 2020; 338:127796. [PMID: 32805691 DOI: 10.1016/j.foodchem.2020.127796] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 01/19/2023]
Abstract
Trace detection of toxic chemicals in foodstuffs is of great concern in recent years. Surface-enhanced Raman scattering (SERS) has drawn significant attention in the monitoring of food safety due to its high sensitivity. This study synthesized signal optimized flower-like silver nanoparticle-(AgNP) with EF at 25 °C of 1.39 × 106 to extend the SERS application for pesticide sensing in foodstuffs. The synthesized AgNP was deployed as SERS based sensing platform to detect methomyl, acetamiprid-(AC) and 2,4-dichlorophenoxyacetic acid-(2,4-D) residue levels in green tea via solid-phase extraction. A linear correlation was twigged between the SERS signal and the concentration for methomyl, AC and 2,4-D with regression coefficient of 0.9974, 0.9956 and 0.9982 and limit of detection of 5.58 × 10-4, 1.88 × 10-4 and 4.72 × 10-3 µg/mL, respectively; the RSD value < 5% was recorded for accuracy and precision analysis suggesting that proposed method could be deployed for the monitoring of methomyl, AC and 2,4-D residue levels in green tea.
Collapse
|
32
|
Beffara F, Humbert G, Auguste JL, Perumal J, Dinish US, Olivo M. Optimization and performance analysis of SERS-active suspended core photonic crystal fibers. OPTICS EXPRESS 2020; 28:23609-23619. [PMID: 32752354 DOI: 10.1364/oe.393251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Recently, surface enhanced Raman spectroscopy (SERS)-active photonic crystal fiber (PCFs) probes have gained great interest for biosensing applications due to the tremendous advantages it has over the conventional planar substrate based SERS measurements, with improvements on the detection sensitivity and reliability in measurements. So far, two main approaches were employed to get the analyte molecule in the vicinity of nanoparticles (NPs) inside PCFs in order to achieve the SERS effect. In the first case, analyte and NPs are pre-mixed and injected inside the holes of the PCF prior to the measurement. In the second approach, controlled anchoring of the NPs inside the inner walls of the PCF was achieved prior to the incorporation of the analyte. Although many studies have been conducted using one configuration or the other, no clear trend is emerging on which one would be the best suited for optimizing the biosensing properties offered by SERS active-PCF. In this paper, we investigate the performances of both configurations along with their interplays with the core size of the PCF probe. We have fabricated several samples of a standard PCF design with different core sizes, and SERS measurements of a standard Raman-active molecule are realized in the same conditions for enabling direct comparisons of the SERS intensity and measurement reliabilities between each configuration, yielding clear directions on the optimization of the SERS-active PCF probe. We envision that this study will pave the way for next-generation clinical biosensors for body fluid analysis, as it exhibits high sensitivity and excellent reliability.
Collapse
|
33
|
Dong J, Cao Y, Han Q, Wang Y, Qi M, Zhang W, Qiao L, Qi J, Gao W. Plasmon-exciton coupling for nanophotonic sensing on chip. OPTICS EXPRESS 2020; 28:20817-20829. [PMID: 32680134 DOI: 10.1364/oe.387867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The monolayer graphene-noble metallic nanostructure hybrid system with excellent optical characteristic, which is deserved pay attentions in the study of surface-enhanced Raman scattering spectroscopy. In this work, a hybrid sandwich structure is designed to transfer single-layer graphene to the surface of discs substrate covered by silver film and assembly of the dense Au nanoparticles (AuNPs). Blu-ray disc has a cycle density of approximately 5.7 times that of DVD-R due to the different storage capacities of these optical discs. In the research, enhancement effects have been explored for two different periodic grating structures. Compared to spectra of Si/G structure, Graphene Raman spectra from Blu-grating/AuNPs/G structure and Blu-grating/G/AuNPs enhancement multiples at the 2D peak position possesses different Raman responses of 1.09 and 2.51 times, respectively. The sandwich hybrid structure of Ag grating/graphene/AuNPs obtains a Raman enhancement factor (EF) of 6.2×108 for Rhodamine 6G and surface-enhanced Raman Scattering(SERS) detection limit of 0.1 nM. These findings can be attributed to the electric field enhancement of the hybrid structure and the chemical enhancement of graphene. This study provides a new approach for SERS detection and offers a new technique for designing SERS sensors with grapheme-plasmon hybrid structures.
Collapse
|
34
|
Gushiken N, Paganoto GT, Temperini MLA, Teixeira FS, Salvadori MC. Substrate for Surface-Enhanced Raman Spectroscopy Formed by Gold Nanoparticles Buried in Poly(methyl methacrylate). ACS OMEGA 2020; 5:10366-10373. [PMID: 32426593 PMCID: PMC7226853 DOI: 10.1021/acsomega.0c00133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
In this work, we present some properties and use of a nanocomposite formed by gold nanoparticles (NPs) into poly(methyl methacrylate) (PMMA) and its application as substrates for surface-enhanced Raman spectroscopy (SERS). The nanocomposite was formed using low-energy (49 eV) ion implantation of gold in PMMA using a cathodic arc plasma gun. The gold NPs are formed spontaneously from the implanted ions and they remain isolated from each other by the polymer medium surrounding them, ensuring a spacing between the NPs of less than 10 nm (hot spot places). The NPs form below the surface, protected from the environment, guaranteeing the stability of the composite layer. Moreover, here, we present an interesting approach to concentrate analyte molecules closer to the metal surface using the swelling effect in PMMA. Using absorption of the analyte, the molecules stay in the gaps between NPs, which is a good solution for one of the biggest challenges in SERS, that is, to guide molecules to the hot spot places.
Collapse
Affiliation(s)
- Natalia
K. Gushiken
- Polytechnic
School, University of São Paulo, Avenida Professor Luciano Gualberto,
Travessa R-158, CEP 05508-900 São Paulo, São Paulo, Brazil
| | - Giordano T. Paganoto
- Institute
of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes,
748, CEP 05508-000 São Paulo, São Paulo, Brazil
| | - Marcia L. A. Temperini
- Institute
of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes,
748, CEP 05508-000 São Paulo, São Paulo, Brazil
| | - Fernanda S. Teixeira
- Institute
of Physics, University of São Paulo, C.P. 66318, CEP 05315-970 São Paulo, São Paulo, Brazil
| | - Maria Cecilia Salvadori
- Polytechnic
School, University of São Paulo, Avenida Professor Luciano Gualberto,
Travessa R-158, CEP 05508-900 São Paulo, São Paulo, Brazil
- Institute
of Physics, University of São Paulo, C.P. 66318, CEP 05315-970 São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Liu C, Hu J, Biswas S, Zhu F, Zhan J, Wang G, Tung CH, Wang Y. Surface-Enhanced Raman Scattering of Phenols and Catechols by a Molecular Analogue of Titanium Dioxide. Anal Chem 2020; 92:5929-5936. [PMID: 32250109 DOI: 10.1021/acs.analchem.0c00047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) of semiconducting TiO2 was used for studying binding modes and surface reactions of molecules bound at the interface but is generally limited by low signal intensity and lack of authentic structural information. Here, we report a representative titanium-oxide cluster (TOC), i.e., Ti17O24(OiC3H7)20 (Ti17), combines the benefits from both precise structures and intense SERS signals by providing a titania surface. According to the single-crystal X-ray diffraction analysis, phenols and catechols are vertically attached via σ-bonds to the certain sites of Ti17. Ti17 brings about much more intense Raman signals than the reference TiO2 NPs, leading to 10-5-10-6 M analyte detection (enhancement factors are 103-105). The contributions of focusing effect, CHEM effect and resonance mechanism, all of which are found responsible for the higher SERS activity of Ti17 than the reference TiO2 NPs, in the SERS by Ti17 are quantitatively analyzed. This study suggests SERS by TOCs may be promising for detection purposes and structural studies of environmentally and catalytically relevant molecules with fewer assumptions regarding molecular structures or binding mechanisms.
Collapse
Affiliation(s)
- Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, Jinan 250100, China
| | - Junyi Hu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, Jinan 250100, China
| | - Subharanjan Biswas
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, Jinan 250100, China
| | - Feng Zhu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, Jinan 250100, China
| | - Jinhua Zhan
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, West Third Ring North Road 105, Beijing 100048, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, Jinan 250100, China
| |
Collapse
|
36
|
Hashim HS, Fen YW, Sheh Omar NA, Abdullah J, Daniyal WMEMM, Saleviter S. Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique. OPTICS EXPRESS 2020; 28:9738-9752. [PMID: 32225575 DOI: 10.1364/oe.387027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
In this study, the incorporation between gold modified-tyrosinase (Tyr) enzyme based graphene oxide (GO) thin film with surface plasmon resonance (SPR) technique has been developed for the detection of phenol. SPR signal for the thin film contacted with phenol solution was monitored using SPR technique. From the SPR curve, sensitivity, full width at half maximum (FWHM), detection accuracy (DA) and signal-to-noise ratio (SNR) have been analyzed. The sensor produces a linear response for phenol up to 100 µM with sensitivity of 0.00193° µM-1. Next, it can be observed that deionized water has the lowest FWHM, with a value of 1.87° and also the highest value of DA. Besides, the SNR of the SPR signal was proportional to the phenol concentrations. Furthermore, the surface morphology of the modified thin film after exposed with phenol solution observed using atomic force microscopy showed a lot of sharp peaks compared to the image before in contact with phenol proved the interaction between the thin film and phenol.
Collapse
|
37
|
Electric Field-Modulated Surface Enhanced Raman Spectroscopy by PVDF/Ag Hybrid. Sci Rep 2020; 10:5269. [PMID: 32210311 PMCID: PMC7093541 DOI: 10.1038/s41598-020-62251-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/11/2020] [Indexed: 11/23/2022] Open
Abstract
Electrically modulated surface enhanced Raman scattering (E-SERS) can be able to regulate the plasmon resonance peak of metal nanostructures, further improve the detection sensitivity of the SERS substrate. However, the E-SERS substrates require auxiliary equipment to provide the electrical potential, and most of them are non-flexible structure, which limits the application of E-SERS in the portable, in-situ and fast detection area. Here, we developed an electric field-modulated SERS substrate based on the piezoelectric effect by combining the PVDF (piezoelectric-modulated layer) and Ag nanowires (AgNWs) (SERS active layer) and investigated the SERS activity in experiment and theory. The enhanced electric field and the tunable plasmon resonance induced by the piezoelectric effect provide the additional enhancement for the SERS signal. Furthermore, we fabricated a SERS active ring with a piezoelectric field-modulated substrate and achieved the in-situ detection of glucose with a non-invasive method. This work provided innovation for the E-SERS and could greatly promote the development of the in-situ, wearable and intelligent sensors.
Collapse
|
38
|
Beffara F, Perumal J, Puteri Mahyuddin A, Choolani M, Khan SA, Auguste JL, Vedraine S, Humbert G, Dinish US, Olivo M. Development of highly reliable SERS-active photonic crystal fiber probe and its application in the detection of ovarian cancer biomarker in cyst fluid. JOURNAL OF BIOPHOTONICS 2020; 13:e201960120. [PMID: 31814313 DOI: 10.1002/jbio.201960120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Conventionally Surface-enhanced Raman spectroscopy (SERS) is realized by adsorbing analytes onto nano-roughened planar substrate coated with noble metals (silver or gold) or their colloidal nanoparticles (NPs). Nanoscale irregularities in such substrates/NPs could lead to SERS sensors with poor reproducibility and repeatability. Herein, we demonstrate a suspended core photonic crystal fiber (PCF) based SERS sensor with extremely high reproducibility and repeatability in measurement with a relative SD of only 1.5% and 4.6%, respectively, which makes it more reliable than any existing SERS sensor platforms. In addition, our platform could improve the detection sensitivity owing to the increased interaction area between the guided light and the analyte, which is incorporated into the holes that runs along the length of the PCF. Numerical calculation established the significance of the interplay between light coupling efficiency and evanescent field distribution, which could eventually determine the sensitivity and reliability of the developed SERS active-PCF sensor. As a proof of concept, using this sensor, we demonstrated the detection of haptoglobin, a biomarker for ovarian cancer, contained within the ovarian cyst fluid, which facilitated in differentiating the stages of cancer. We envision that with necessary refinements, this platform could potentially be translated as a next-generation highly sensitive SERS-active opto-fluidic biopsy needle for the detection of biomarkers in body fluids.
Collapse
Affiliation(s)
- Flavien Beffara
- Lab of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- XLIM Research Institute, UMR 7252 CNRS/Limoges University, Limoges, France
| | - Jayakumar Perumal
- Lab of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Aniza Puteri Mahyuddin
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Saif A Khan
- Department of Chemical and Bimolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jean-Louis Auguste
- XLIM Research Institute, UMR 7252 CNRS/Limoges University, Limoges, France
| | - Sylvain Vedraine
- XLIM Research Institute, UMR 7252 CNRS/Limoges University, Limoges, France
| | - Georges Humbert
- XLIM Research Institute, UMR 7252 CNRS/Limoges University, Limoges, France
| | - U S Dinish
- Lab of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Malini Olivo
- Lab of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
39
|
Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants. Biosens Bioelectron 2020; 152:112013. [DOI: 10.1016/j.bios.2020.112013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
|
40
|
Hassan H, Munshid MA, Al-Janabi A. Tellurium-nanorod-based saturable absorber for an ultrafast passive mode-locked erbium-doped fiber laser. APPLIED OPTICS 2020; 59:1230-1236. [PMID: 32225269 DOI: 10.1364/ao.383566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we propose and demonstrate ultrafast Te nanorods as a saturable absorber (SA) for producing mode locking from an erbium-doped fiber laser for the first time, to the best of our knowledge. The Te nanorods were fabricated by a simple green chemical method with energy conservation and without a purification process. The morphology and structure measurements confirm uniform Te nanorods with a constant aspect ratio. The synthesized SA has a saturation intensity and modulation depth of $25.44\, {\rm MW/cm}^{2} $25.44MW/cm2 and 4%, respectively. By integrating the proposed SA into an erbium-doped all fiber-based ring cavity, the mode-locked fiber laser was readily generated. The conventional soliton pulses of ${3.56}\;{\rm ps}$3.56ps pulse width were obtained at 1566.7 nm central wavelength and a pulse repetition rate of 1.87 MHz. The results show that the moderate saturable-absorption characteristics of Te nanorods have superior performance in the ultrafast optics field, which is eligible in many applications, such as optical communications.
Collapse
|
41
|
Song D, Yu F, Chen S, Chen Y, He Q, Zhang Z, Zhang J, Wang S. Raman spectroscopy combined with multivariate analysis to study the biochemical mechanism of lung cancer microwave ablation. BIOMEDICAL OPTICS EXPRESS 2020; 11:1061-1072. [PMID: 32133237 PMCID: PMC7041477 DOI: 10.1364/boe.383869] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 05/24/2023]
Abstract
Lung cancer is the leading cause of death in cancer patients, and microwave ablation (MWA) has been extensively used in clinical treatment. In this study, we characterized the spectra of MWA-treated and untreated lung squamous cell carcinoma (LSCC) tissues, as well as healthy lung tissue, and conducted a preliminary analysis of spectral variations associated with MWA treatment. The results of characteristic spectral analysis of different types of tissues indicated that MWA treatment induces an increase in the content of nucleic acids, proteins, and lipid components in lung cancer tissues. The discriminant model based on the principal component analysis - linear discriminant analysis (PCA-LDA) algorithm together with leave-one-out cross validation (LOOCV) method yield the sensitivities of 90%, 80%, and 96%, and specificities of 86.2%, 93.8%, and 100% among untreated and MWA-treated cancerous tissue, and healthy lung tissue, respectively. These results indicate that Raman spectroscopy combined with multivariate analysis techniques can be used to explore the biochemical response mechanism of cancerous tissue to MWA therapy.
Collapse
Affiliation(s)
- Dongliang Song
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China
- Department of physics, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Fan Yu
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Shilin Chen
- Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Nanjing, Jiangsu, 210009, China
| | - Yishen Chen
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Qingli He
- Department of physics, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhe Zhang
- Department of Pathology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Nanjing, Jiangsu, 210009, China
| | - Jingyuan Zhang
- Department of Pathology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Nanjing, Jiangsu, 210009, China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
42
|
Zhang J, Wang C, Wang M, Xu T. In situ synthesis of silver nanoparticles on periodic supports as highly active and flexible surface-enhanced Raman spectroscopy substrates. APPLIED OPTICS 2020; 59:662-668. [PMID: 32225192 DOI: 10.1364/ao.378734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
With regard to surface-enhanced Raman spectroscopy (SERS), the preparation of substrates with high homogeneity and low cost remains a challenge. In this paper, cheap commercial DVD-R plates were adopted as supports, whose 3D periodic structure was transferred onto the surface of flexible polydimethylsiloxane (PDMS) easily. Then, silver nanoparticles were grown both on DVD and PDMS substrates by the in situ reduction method, and the SERS performances of these two substrates were investigated. The results confirmed that the PDMS-based substrate exhibited better enhancement performance and higher uniformity (RSD=4.16%). In addition, due to the flexibility and transparency of PDMS, it is not restricted by the surface shape of the object when applied in in situ detection. This low-cost, simple method will be widely used in the in situ detection of surfaces of objects of any shape.
Collapse
|
43
|
Facile Fabrication of Micro/Nano Hierarchical SERS Sensor via Anisotropic Etching and Electrochemical Treatment for Malachite Green Detection. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We propose a facile method to produce micro/nano hierarchical surface-enhanced Raman scattering (SERS) active substrates using simple steps and inexpensive costs. The proposed SERS substrate is a silicon pyramid array covered by a nanostructured gold film (AuNS @ SiPA). Through finite element method (FEM) simulation, we showed that many strong local electric field enhancements (hot spots) were formed between the nano-gap of gold nanostructures. In addition, the micron-scale pyramid structure not only increases the sensing surface area of the sensor, but also helps trap light. By combining these micro and nano structures, the proposed micro/nano hierarchical SERS sensor exhibited high sensitivity. Experimental results confirmed that the AuNS @ SiPA substrate has high sensitivity. The SERS signal enhancement factor obtained from the Rhodamine 6G (R6G) probe molecules was as high as 1 × 107 and the SERS substrates were found to be able to detect a very low concentration of 0.01 nM malachite green (MG) solution. Therefore, this study provides a novel and practical method for fabricating SERS substrates that can facilitate the use of SERS in medicine, food safety, and biotechnology.
Collapse
|
44
|
Zhang X, Zhang H, Yan S, Zeng Z, Huang A, Liu A, Yuan Y, Huang Y. Organic Molecule Detection Based on SERS in Microfluidics. Sci Rep 2019; 9:17634. [PMID: 31776350 PMCID: PMC6881339 DOI: 10.1038/s41598-019-53478-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Sensitive in situ detection of organic molecules is highly demanded in environmental monitoring. In this work, the surface enhanced Raman spectroscopy (SERS) is adopted in microfluidics to detect the organic molecules with high accuracy and high sensitivity. Here the SERS substrate in microchannel consists of Ag nanoparticles synthesized by chemical reduction. The data indicates the fabrication conditions have great influence on the sizes and distributions of Ag nanoparticles, which play an important role on the SERS enhancement. This result is further confirmed by the simulation of electromagnetic field distributions based on finite difference time domain (FDTD) method. Furthermore, the SERS spectra of organic molecule (methylene blue) obtained in this plasmonic microfluidic system exhibit good reproducibility with high sensitivity. By a combination of SERS and microfluidics, our work not only explores the research field of plasmonics but also has broad application prospects in environmental monitoring.
Collapse
Affiliation(s)
- Xin Zhang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, China.,Chongqing Environment & Sanitation Group Co., LTO, Chongqing, 401121, China.,Chongqing Industry Polytechnic College, Chongqing, 400044, China
| | - Haiyan Zhang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, China
| | - Sheng Yan
- Department of Chemistry, University of Tokyo, Tokyo, Japan
| | - Zugang Zeng
- Chongqing Environment & Sanitation Group Co., LTO, Chongqing, 401121, China
| | - Anshou Huang
- Chongqing Environment & Sanitation Group Co., LTO, Chongqing, 401121, China
| | - Anping Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, China
| | - Yuan Yuan
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Yingzhou Huang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
45
|
Xu F, Ma F, Ding Z, Xiao L, Zhang X, Lu Q, Lu G, Kaplan DL. SERS Substrate with Silk Nanoribbons as Interlayer Template. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42896-42903. [PMID: 31682400 DOI: 10.1021/acsami.9b13543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The formation of hot spots is an effective approach to improve the performance of surface-enhanced Raman scattering (SERS). Silk nanoribbons (SNRs), with a height of about 1-2 nm, and Au nanoparticles (AuNPs) were assembled by electrostatic interactions to introduce sandwich hot spot structures. These sandwich structures were optimized by tuning the ratio of SNRs and AuNPs, resulting in strong SERS signals with a sensitivity of 10-13 M and enhancement factor (EF) of 5.8 × 106. Improved SERS spectrum uniformity with relative standard deviation (RSD) about 11.2% was also achieved due to the homogeneous distribution of these hot spot structures. The inherent biocompatibility of SNRs and facile fabrication processes utilized endowed the SERS substrates significant benefits toward biomedical applications, confirmed by cytocompatibility and improved SERS bioimaging capacity in vitro. The results of this study suggest the feasibility of forming high performance bioimaging systems through the use of naturally derived materials with special nanostructures.
Collapse
Affiliation(s)
- Fengrui Xu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , 215123 Suzhou , People's Republic of China
| | - Fengguo Ma
- Key Laboratory of Rubber-plastics , Qingdao University of Science and Technology , 266042 Qingdao , People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , 215123 Suzhou , People's Republic of China
- Department of Burns and Plastic Surgery , The Affiliated Hospital of Jiangnan University , Wuxi 214041 , People's Republic of China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , 215123 Suzhou , People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , 215123 Suzhou , People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , 215123 Suzhou , People's Republic of China
- Department of Burns and Plastic Surgery , The Affiliated Hospital of Jiangnan University , Wuxi 214041 , People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery , The Affiliated Hospital of Jiangnan University , Wuxi 214041 , People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
46
|
Su L, Bradley L, Yu Y, Yu Y, Cao L, Zhao Y, Zhang Y. Surface-enhanced Raman scattering of monolayer transition metal dichalcogenides on Ag nanorod arrays. OPTICS LETTERS 2019; 44:5493-5496. [PMID: 31730091 DOI: 10.1364/ol.44.005493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
In this work, we studied surface-enhanced Raman scattering (SERS) of MS2 (M=Mo, W) monolayers that were transferred onto Ag nanorod arrays. Compared to the suspended monolayers, the Raman intensity of monolayers on an Ag nanorod substrate was strongly enhanced for both in-plane and out-of-plane vibration modes: up to 8 (5) for E2g and 20 (23) for A1g in MoS2 (WS2). This finding reveals a promising SERS substrate for achieving uniform and strong enhancement for two-dimensional materials in the applications of optical detecting and sensing.
Collapse
|
47
|
Yu J, Wei Y, Wang H, Zhang C, Wei Y, Wang M, Man B, Lei F. In situ detection of trace pollutants: a cost-effective SERS substrate of blackberry-like silver/graphene oxide nanoparticle cluster based on quick self-assembly technology. OPTICS EXPRESS 2019; 27:9879-9894. [PMID: 31045136 DOI: 10.1364/oe.27.009879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
To realize fast detection of trace hazardous chemicals, a SERS substrate with the structure of a blackberry-like silver/graphene oxide nanoparticle cluster (Ag/GO NPC) has been designed and prepared through a quick capillarity-assistant self-assembly technology in this paper. Benefitting from the abundant "hot spots" and active oxygen sites brought by this Ag/GO NPC, the substrate shows good Raman performance for malachite green (MG), a common abusive germicide in aquaculture, with lowest limit of detection below 0.1 µg/L (3.48 × 10-10 mol/L). Detailed analyses are taken on both the formation process and enhancement mechanism of this SERS substrate, and the finite-difference time-domain simulations are utilized as well to prove our hypotheses. Further constructing this structure on polyethylene terephthalate (PET) film, a translucent flexible SERS substrate can be obtained, realizing a fast in situ detection of trace MG in the fishpond subsequently. In consideration of the facile preparation process, good SERS enhancement and affordable materials (PET, Cu, Ag and GO, etc.), this substrate presents high cost performance and a promising application prospect.
Collapse
|
48
|
Gong W, Jiang S, Li Z, Li C, Xu J, Pan J, Huo Y, Man B, Liu A, Zhang C. Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/Au film/D-POF. OPTICS EXPRESS 2019; 27:3483-3495. [PMID: 30732368 DOI: 10.1364/oe.27.003483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/14/2019] [Indexed: 05/18/2023]
Abstract
A D-shape plastic optical fiber (D-POF) surface plasmon resonance (SPR) biosensor based on the graphene/Au film (G/Au) was proposed and experimentally demonstrated for detection of DNA hybridization process. To improve the detection performance of SPR sensors, the Physical Vapor Deposition (PVD) method was used to evaporate the Au film directly onto the graphene grown on copper foil, and the Au film acted as a role of traditional Polymethyl Methacrylate (PMMA). The process made graphene and Au film form seamless contact. Next, the G/Au was transferred onto the D-shape fiber together. We explored the G/Au SPR sensor by using the finite element method (FEM) and obtained the optimum materials thickness to form configuration. Compared to other plastic optical fiber experiments, the proposed sensor's sensitivity was improved effectively and calculated as 1227 nm/RIU in a range of glucose solution. Meanwhile, our proposed sensor successfully distinguishes hybridization and single nucleotide polymorphisms (SNP) by observing the resonance wavelength change. It also exhibits a satisfactory linear response (R2 = 0.996) to the target DNA liquids with respective concentrations of 0.1nM to1µM, which shows this method's wide potential in medical diagnostics.
Collapse
|
49
|
Yang W, Li Z, Lu Z, Yu J, Huo Y, Man B, Pan J, Si H, Jiang S, Zhang C. Graphene-Ag nanoparticles-cicada wings hybrid system for obvious SERS performance and DNA molecular detection. OPTICS EXPRESS 2019; 27:3000-3013. [PMID: 30732328 DOI: 10.1364/oe.27.003000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
In recent years, biomaterials have increasingly attracted attention on surface-enhanced Raman spectroscopy (SERS) due to their well Raman performance while metal particles are combined with biological substrates. Therefore, we propose an environmentally friendly substrate based on silver-plated cicada wings with seamless graphene layer (Gr-AgNPs-C.w.), which can be prepared with a simple and inexpensive method. Compared with AgNPs-C.w., Gr-AgNPs-C.w. hybrids show better SERS performance with high sensitivity, good uniformity and good stability with R6G detection. The minimum detected concentration can reach 10-15 M, and the value of R2 can reach 0.996, respectively. Theoretical simulation demonstrates the situation of electromagnetic field through COMSOL software. In addition, due to the affinity of graphene for biomolecules, we can successfully detect the DNA biomolecules through a simple process. Therefore, this cheap and efficient natural SERS substrate has great potential for a considerable number of biochemical SERS applications and can broaden the way in which multiple SERS platforms derived from other natural materials are prepared.
Collapse
|