1
|
Worbs L, Yenupuri TV, You T, Maia FRNC. Aerosol size determination via light scattering of viruses and protein complexes. COMMUNICATIONS PHYSICS 2025; 8:155. [PMID: 40230791 PMCID: PMC11993359 DOI: 10.1038/s42005-025-02076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The study of ultrafine particle aerosols, those with particle diameters of 100 nm or less, is important due to their impact on our health and environment. However, given their small sizes, such particles can be difficult to measure and trace. Most common optical methods are unable to reach this size range. Other methods exist but incur other limitations, such as the need for electrically charged particles. Here we show how light scattering can be used to detect and measure the size and location of single viruses and protein complexes forming an aerosol beam, as well as trace their path. We were able to detect individual particles down to 16 nm in diameter. The primary purpose of our instrument is to monitor the delivery of single bioparticles to the focus of an X-ray laser to image those particles, but it has the potential to study any other aerosols such as those resulting from ultrafine sea spray, with important consequences for cloud formation and climate modeling, or from combustion, responsible for most air pollution and resulting health impacts.
Collapse
Affiliation(s)
- Lena Worbs
- Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics, Uppsala University, Uppsala, Sweden
| | - Tej Varma Yenupuri
- Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics, Uppsala University, Uppsala, Sweden
| | - Tong You
- Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics, Uppsala University, Uppsala, Sweden
| | - Filipe R. N. C. Maia
- Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics, Uppsala University, Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
2
|
Davino M, Saule T, Helming NG, Powell JA, Trallero-Herrero C. Characterization of an aerosolized nanoparticle beam beyond the diffraction limit through strong field ionization. Sci Rep 2022; 12:9277. [PMID: 35660781 PMCID: PMC9166774 DOI: 10.1038/s41598-022-13466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
The study of nanomaterials is an active area of research for technological applications as well as fundamental science. A common method for studying properties of isolated nanoparticles is by an in-vacuum particle beam produced via an aerodynamic lens. Despite being common practice, characterization of such beams has proven difficult as light scattering detection techniques fail for particles with sizes beyond the diffraction limit. Here we present a new technique for characterizing such nanoparticle beams using strong field ionization. By focusing an ultrafast, mJ-level laser into the particle beam, a nanoparticle within the laser focus is ionized and easily detected by its ejected electrons. This method grants direct access to the nanoparticle density at the location of the focus, and by scanning the focus through the transverse and longitudinal profiles of the particle beam we attain the 3-dimensional particle density distribution for a cylindrically symmetric beam. Further, we show that strong field ionization is effective in detecting spherical nanoparticles as small as 10 nm in diameter. Additionally, this technique is an effective tool in optimizing the particle beam for specific applications. As an example we show that the particle beam density and width can be manipulated by restricting the gas flow into the aerodynamic lens.
Collapse
Affiliation(s)
- Michael Davino
- Department of Physics, University of Connecticut, Storrs, 06269, USA
| | - Tobias Saule
- Department of Physics, University of Connecticut, Storrs, 06269, USA
| | - Nora G Helming
- Department of Physics, University of Connecticut, Storrs, 06269, USA
| | - J A Powell
- Department of Physics, University of Connecticut, Storrs, 06269, USA.,INRS, Énergie Matériaux et Télécommunications, Varennes, J3X 1P7, Canada
| | | |
Collapse
|
3
|
Worbs L, Roth N, Lübke J, Estillore AD, Xavier PL, Samanta AK, Küpper J. Optimizing the geometry of aerodynamic lens injectors for single-particle coherent diffractive imaging of gold nanoparticles. J Appl Crystallogr 2021; 54:1730-1737. [PMID: 34963765 PMCID: PMC8662975 DOI: 10.1107/s1600576721009973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
Single-particle X-ray diffractive imaging (SPI) of small (bio-)nanoparticles (NPs) requires optimized injectors to collect sufficient diffraction patterns to allow for the reconstruction of the NP structure with high resolution. Typically, aerodynamic lens-stack injectors are used for NP injection. However, current injectors were developed for larger NPs (>100 nm), and their ability to generate high-density NP beams suffers with decreasing NP size. Here, an aerodynamic lens-stack injector with variable geometry and a geometry-optimization procedure are presented. The optimization for 50 nm gold-NP (AuNP) injection using a numerical-simulation infrastructure capable of calculating the carrier-gas flow and the particle trajectories through the injector is also introduced. The simulations were experimentally validated using spherical AuNPs and sucrose NPs. In addition, the optimized injector was compared with the standard-installation 'Uppsala injector' for AuNPs. Results for these heavy particles showed a shift in the particle-beam focus position rather than a change in beam size, which results in a lower gas background for the optimized injector. Optimized aerodynamic lens-stack injectors will allow one to increase NP beam density, reduce the gas background, discover the limits of current injectors and contribute to structure determination of small NPs using SPI.
Collapse
Affiliation(s)
- Lena Worbs
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nils Roth
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jannik Lübke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Armando D. Estillore
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - P. Lourdu Xavier
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Amit K. Samanta
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Samanta AK, Amin M, Estillore AD, Roth N, Worbs L, Horke DA, Küpper J. Controlled beams of shock-frozen, isolated, biological and artificial nanoparticles. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:024304. [PMID: 32341941 PMCID: PMC7166121 DOI: 10.1063/4.0000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/01/2020] [Indexed: 05/05/2023]
Abstract
X-ray free-electron lasers promise diffractive imaging of single molecules and nanoparticles with atomic spatial resolution. This relies on the averaging of millions of diffraction patterns of identical particles, which should ideally be isolated in the gas phase and preserved in their native structure. Here, we demonstrated that polystyrene nanospheres and Cydia pomonella granulovirus can be transferred into the gas phase, isolated, and very quickly shock-frozen, i.e., cooled to 4 K within microseconds in a helium-buffer-gas cell, much faster than state-of-the-art approaches. Nanoparticle beams emerging from the cell were characterized using particle-localization microscopy with light-sheet illumination, which allowed for the full reconstruction of the particle beams, focused to < 100 μ m , as well as for the determination of particle flux and number density. The experimental results were quantitatively reproduced and rationalized through particle-trajectory simulations. We propose an optimized setup with cooling rates for particles of few-nanometers on nanosecond timescales. The produced beams of shock-frozen isolated nanoparticles provide a breakthrough in sample delivery, e.g., for diffractive imaging and microscopy or low-temperature nanoscience.
Collapse
Affiliation(s)
- Amit K. Samanta
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Muhamed Amin
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Armando D. Estillore
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | | | | | | | - Jochen Küpper
- Author to whom correspondence should be addressed:. URL:https://www.controlled-molecule-imaging.org
| |
Collapse
|