1
|
Jin B, Xi P. Random Illumination Microscopy: faster, thicker, and aberration-insensitive. LIGHT, SCIENCE & APPLICATIONS 2025; 14:19. [PMID: 39743628 DOI: 10.1038/s41377-024-01687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The Extended Depth of Field (EDF) approach has been combined with Random Illumination Microscopy (RIM) to realize aberration-insensitive, fast super-resolution imaging with extended depth, which is a promising tool for dynamic imaging in larger and thicker live cells and tissues.
Collapse
Affiliation(s)
- Boya Jin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Nguyen TN, Shalaby RA, Lee E, Kim SS, Ro Kim Y, Kim S, Je HS, Kwon HS, Chung E. Ultrafast optical imaging techniques for exploring rapid neuronal dynamics. NEUROPHOTONICS 2025; 12:S14608. [PMID: 40017464 PMCID: PMC11867703 DOI: 10.1117/1.nph.12.s1.s14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Optical neuroimaging has significantly advanced our understanding of brain function, particularly through techniques such as two-photon microscopy, which captures three-dimensional brain structures with sub-cellular resolution. However, traditional methods struggle to record fast, complex neuronal interactions in real time, which are crucial for understanding brain networks and developing treatments for neurological diseases such as Alzheimer's, Parkinson's, and chronic pain. Recent advancements in ultrafast imaging technologies, including kilohertz two-photon microscopy, light field microscopy, and event-based imaging, are pushing the boundaries of temporal resolution in neuroimaging. These techniques enable the capture of rapid neural events with unprecedented speed and detail. This review examines the principles, applications, and limitations of these technologies, highlighting their potential to revolutionize neuroimaging and improve the diagnose and treatment of neurological disorders. Despite challenges such as photodamage risks and spatial resolution trade-offs, integrating these approaches promises to enhance our understanding of brain function and drive future breakthroughs in neuroscience and medicine. Continued interdisciplinary collaboration is essential to fully leverage these innovations for advancements in both basic and clinical neuroscience.
Collapse
Affiliation(s)
- Tien Nhat Nguyen
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Reham A. Shalaby
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Eunbin Lee
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Sang Seong Kim
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Young Ro Kim
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts United States
- Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| | - Seonghoon Kim
- Tsinghua University, Institute for Brain and Cognitive Sciences, Beijing, China
- Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou, China
| | - Hyunsoo Shawn Je
- Duke-NUS Medical School, Program in Neuroscience and Behavioral Disorders, Singapore
| | - Hyuk-Sang Kwon
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Euiheon Chung
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
- Gwangju Institute of Science and Technology, AI Graduate School, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Mazzella L, Mangeat T, Giroussens G, Rogez B, Li H, Creff J, Saadaoui M, Martins C, Bouzignac R, Labouesse S, Idier J, Galland F, Allain M, Sentenac A, LeGoff L. Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging. LIGHT, SCIENCE & APPLICATIONS 2024; 13:285. [PMID: 39384765 PMCID: PMC11479626 DOI: 10.1038/s41377-024-01612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
The ultimate aim of fluorescence microscopy is to achieve high-resolution imaging of increasingly larger biological samples. Extended depth of field presents a potential solution to accelerate imaging of large samples when compression of information along the optical axis is not detrimental to the interpretation of images. We have implemented an extended depth of field (EDF) approach in a random illumination microscope (RIM). RIM uses multiple speckled illuminations and variance data processing to double the resolution. It is particularly adapted to the imaging of thick samples as it does not require the knowledge of illumination patterns. We demonstrate highly-resolved projective images of biological tissues and cells. Compared to a sequential scan of the imaged volume with conventional 2D-RIM, EDF-RIM allows an order of magnitude improvement in speed and light dose reduction, with comparable resolution. As the axial information is lost in an EDF modality, we propose a method to retrieve the sample topography for samples that are organized in cell sheets.
Collapse
Affiliation(s)
- Lorry Mazzella
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Guillaume Giroussens
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Benoit Rogez
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Hao Li
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Justine Creff
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Mehdi Saadaoui
- Aix Marseille University, CNRS, IBDM UMR7288, Turing Centre for Living Systems, Marseille, France
| | - Carla Martins
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Ronan Bouzignac
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Simon Labouesse
- LITC Core Facility, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Jérome Idier
- LS2N, CNRS UMR 6004, F44321, Nantes Cedex 3, France
| | - Frédéric Galland
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Marc Allain
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Anne Sentenac
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France.
| | - Loïc LeGoff
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
4
|
Qureshi MM, Allam N, Im J, Kwon HS, Chung E, Vitkin IA. Advances in laser speckle imaging: From qualitative to quantitative hemodynamic assessment. JOURNAL OF BIOPHOTONICS 2024; 17:e202300126. [PMID: 37545037 DOI: 10.1002/jbio.202300126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Laser speckle imaging (LSI) techniques have emerged as a promising method for visualizing functional blood vessels and tissue perfusion by analyzing the speckle patterns generated by coherent light interacting with living biological tissue. These patterns carry important biophysical tissue information including blood flow dynamics. The noninvasive, label-free, and wide-field attributes along with relatively simple instrumental schematics make it an appealing imaging modality in preclinical and clinical applications. The review outlines the fundamentals of speckle physics and the three categories of LSI techniques based on their degree of quantification: qualitative, semi-quantitative and quantitative. Qualitative LSI produces microvascular maps by capturing speckle contrast variations between blood vessels containing moving red blood cells and the surrounding static tissue. Semi-quantitative techniques provide a more accurate analysis of blood flow dynamics by accounting for the effect of static scattering on spatiotemporal parameters. Quantitative LSI such as optical speckle image velocimetry provides quantitative flow velocity measurements, which is inspired by the particle image velocimetry in fluid mechanics. Additionally, discussions regarding the prospects of future innovations in LSI techniques for optimizing the vascular flow quantification with associated clinical outlook are presented.
Collapse
Affiliation(s)
- Muhammad Mohsin Qureshi
- Division of Biophysics and Bioimaging, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Nader Allam
- Division of Biophysics and Bioimaging, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jeongmyo Im
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - I Alex Vitkin
- Division of Biophysics and Bioimaging, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Li S, Zhao Y, Wen W, Ma Y, Liu S, Chen G, Ye Y. Simple, non-mechanical and automatic calibration approach for axial-scanning microscopy with an electrically tunable lens. Microsc Res Tech 2023; 86:1391-1400. [PMID: 37119118 DOI: 10.1002/jemt.24337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
We describe a simple and robust calibration approach for axial-scanning microscopy that realizes axial focus shifts with an electrically tunable lens (ETL). We demonstrate the calibration approach based on a microscope with an ETL placed close to the rear stop of the objective lens. By introducing a target-consisted of repeating lines at one known frequency and placed at a ~45° angle to the imaging path, the calibration method captures multiple images at different ETL currents and calibrates the dependence of the axial focus shift on the ETL current by evaluating the sharpness of the captured images. It calibrates the dependence of the magnification of the microscope on the ETL current by measuring the period of the repeating lines in the captured images. The experimental results show that different from the conventional calibration procedure, the proposed scheme does not involve any mechanical scanning and can simultaneously calibrate the dependence of the axial focus shift and the magnification on the ETL current. This might facilitate imaging studies that require the measurement of fine structures in a 3D volume. We also show the calibration procedure can be used to estimate the radius of a conner-arc sample, fabricated using laser micromachining. We believe that this easy-to-use calibration approach may facilitate use of ETLs for a variety of imaging platforms. It may also provide new insights for the development of novel 3D surface measurement methods. RESEARCH HIGHLIGHTS: The proposed calibration scheme does not involve any mechanical scanning and can simultaneously calibrate the dependence of the axial focus shift and the magnification on the electrically tunable lens (ETL) current. It might facilitate imaging studies that require the measurement of fine structures in a 3D volume, and the use of ETLs for a variety of imaging platforms. It may also provide new insights for the development of novel 3D surface measurement methods.
Collapse
Affiliation(s)
- Shengfu Li
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yu Zhao
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Weifent Wen
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yuncan Ma
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Shouxian Liu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Guanghua Chen
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yan Ye
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| |
Collapse
|
6
|
Zhao B, Koyama M, Mertz J. High-resolution multi-z confocal microscopy with a diffractive optical element. BIOMEDICAL OPTICS EXPRESS 2023; 14:3057-3071. [PMID: 37342696 PMCID: PMC10278611 DOI: 10.1364/boe.491538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
There has been recent interest in the development of fluorescence microscopes that provide high-speed volumetric imaging for life-science applications. For example, multi-z confocal microscopy enables simultaneous optically-sectioned imaging at multiple depths over relatively large fields of view. However, to date, multi-z microscopy has been hampered by limited spatial resolution owing to its initial design. Here we present a variant of multi-z microscopy that recovers the full spatial resolution of a conventional confocal microscope while retaining the simplicity and ease of use of our initial design. By introducing a diffractive optical element in the illumination path of our microscope, we engineer the excitation beam into multiple tightly focused spots that are conjugated to axially distributed confocal pinholes. We discuss the performance of this multi-z microscope in terms of resolution and detectability and demonstrate its versatility by performing in-vivo imaging of beating cardiomyocytes in engineered heart tissues and neuronal activity in c. elegans and zebrafish brains.
Collapse
Affiliation(s)
- Bingying Zhao
- Department of Electrical and Computer Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Minoru Koyama
- Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Scarborough, ON M1C1A4, Canada
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
7
|
Qiao W, Li Y, Ning K, Luo Q, Gong H, Yuan J. Differential synthetic illumination based on multi-line detection for resolution and contrast enhancement of line confocal microscopy. OPTICS EXPRESS 2023; 31:16093-16106. [PMID: 37157695 DOI: 10.1364/oe.491422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Line confocal (LC) microscopy is a fast 3D imaging technique, but its asymmetric detection slit limits resolution and optical sectioning. To address this, we propose the differential synthetic illumination (DSI) method based on multi-line detection to enhance the spatial resolution and optical sectioning capability of the LC system. The DSI method allows the imaging process to simultaneously accomplish on a single camera, which ensures the rapidity and stability of the imaging process. DSI-LC improves X- and Z-axis resolution by 1.28 and 1.26 times, respectively, and optical sectioning by 2.6 times compared to LC. Furthermore, the spatially resolved power and contrast are also demonstrated by imaging pollen, microtubule, and the fiber of the GFP fluorescence-labeled mouse brain. Finally, Video-rate imaging of zebrafish larval heart beating in a 665.6 × 332.8 µm2 field-of-view is achieved. DSI-LC provides a promising approach for 3D large-scale and functional imaging in vivo with improved resolution, contrast, and robustness.
Collapse
|
8
|
Gowda HGB, Bruno BP, Wapler MC, Wallrabe U. Reliability of tunable lenses: feedback sensors and the influence of temperature, orientation, and vibrations. APPLIED OPTICS 2023; 62:3072-3082. [PMID: 37133153 DOI: 10.1364/ao.485639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We compare different aspects of the robustness to environmental conditions of two different types of piezo-actuated fluid-membrane lenses: a silicone membrane lens, where the piezo actuator indirectly deforms the flexible membrane through fluid displacement, and a glass membrane lens, where the piezo actuator directly deforms the stiff membrane. While both lenses operated reliably over the temperature range of 0°-75°C, there was a significant effect on their actuation characteristics, which can be well described through a simple model. The silicone lens in particular showed a variation in focal power of up to 0.1m-1 ∘C-1. We demonstrated that integrated pressure and temperature sensors can provide feedback for focal power, however, limited by the response time of the elastomers in the lenses, with polyurethane in the support structures of the glass membrane lens being more critical than the silicone. Studying the mechanical effects, the silicone membrane lens showed a gravity-induced coma and tilt, and a reduced imaging quality with the Strehl ratio decreasing from 0.89 to 0.31 at a vibration frequency of 100 Hz and an acceleration of 3g. The glass membrane lens was unaffected by gravity, and the Strehl ratio decreased from 0.92 to 0.73 at a vibration of 100 Hz, 3g. Overall, the stiffer glass membrane lens is more robust against environmental influences.
Collapse
|
9
|
Fu Y, Ma W, Wang X, Liu X, Tao Z, Jiang H. Line-scanning technique using a PDMS grating in a microscope configuration. APPLIED OPTICS 2023; 62:552-559. [PMID: 36821257 DOI: 10.1364/ao.478464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We report the concept of a 1550 nm laser line scanning microscope based on a polydimethylsiloxane (PDMS) grating with scanning by stretching the PDMS grating to improve the scanning speed and enable low-cost scanning. Zemax is used to verify the possibility of realizing the system by simulating the illumination light path and the emission light path. The scanning field of view is 0.11m m×0.11m m, and the modulation transfer function (MTF) data of the 0th, ±1st, and ±2 nd diffraction orders in the illumination light path and the emission light path, respectively, meet the requirements of the diffraction limit resolution at the cutoff frequencies.
Collapse
|
10
|
Hsu CW, Lin CY, Hu YY, Chen SJ. Dual-resonant scanning multiphoton microscope with ultrasound lens and resonant mirror for rapid volumetric imaging. Sci Rep 2023; 13:161. [PMID: 36599927 DOI: 10.1038/s41598-022-27370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
A dual-resonant scanning multiphoton (DRSM) microscope incorporating a tunable acoustic gradient index of refraction lens with a resonant mirror is developed for high-speed volumetric imaging. In the proposed microscope, the pulse train signal of a femtosecond laser is used to trigger an embedded field programmable gate array to sample the multiphoton excited fluorescence signal at the rate of one pixel per laser pulse. It is shown that a frame rate of around 8000 Hz can be obtained in the x-z plane for an image region with a size of 256 × 80 pixels. Moreover, a volumetric imaging rate of over 30 Hz can be obtained for a large image volume of 343 × 343 × 120 μm3 with an image size of 256 × 256 × 80 voxels. Moreover, a volumetric imaging rate of over 30 Hz can be obtained for a large image volume of 256 × 256 × 80 voxels, which represents 343 × 343 × 120 μm3 in field-of-view. The rapid volumetric imaging rate eliminates the aliasing effect for observed temporal frequencies lower than 15 Hz. The practical feasibility of the DRSM microscope is demonstrated by observing the mushroom bodies of a drosophila brain and performing 3D dynamic observations of moving 10-μm fluorescent beads.
Collapse
Affiliation(s)
- Chia-Wei Hsu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
| | - Chun-Yu Lin
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
| | - Yvonne Yuling Hu
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan.
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 300, Taiwan.
| |
Collapse
|
11
|
Gowda HGB, Wapler MC, Wallrabe U. Tunable doublets: piezoelectric glass membrane lenses with an achromatic and spherical aberration control. OPTICS EXPRESS 2022; 30:46528-46540. [PMID: 36558604 DOI: 10.1364/oe.479013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
We present two versions of tunable achromatic doublets based on each two piezoelectrically actuated glass membranes that create the surface of fluid volumes with different dispersions: a straightforward back-to-back and a more intricate stack of the fluid volumes. In both cases, we can control the chromatic focal shift and focal power independently by a suitable combination of actuation voltages on both active membranes. The doublets have a large aperture of 12 mm at an outer diameter of the actuator of 18 mm, an overall thickness of 3 mm and a short response time of around 0.5 ms and, in addition, provide spherical aberration correction. The two designs have an achromatic focal power range of ±2.2 m-1 and ±3.2 m-1 or, for the purpose of actively correcting chromatic errors, a chromatic focal shift at vanishing combined focal power of up to ±0.08 m-1 and ±0.12 m-1.
Collapse
|