1
|
Yang L, Yang J, Huang T, Rosen J, Wang Y, Wang H, Lu X, Zhang W, Di J, Zhong L. Accelerating quad Airy beams-based point response for interferenceless coded aperture correlation holography. OPTICS LETTERS 2024; 49:4429-4432. [PMID: 39090951 DOI: 10.1364/ol.525898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Interferenceless-coded aperture correlation holography (I-COACH) is a promising single-shot 3D imaging method in which a coded phase mask (CPM) is used to encode 3D information about an object into an intensity distribution. However, conventional CPM encoding methods usually lead to intensity dilution, especially in the recording of point spread holograms (PSHs), resulting in low-resolution reconstruction of I-COACH. Here, we propose accelerating quad Airy beams with four mainlobes as a point response to enable weak diffraction propagation and a sharp maximum intensity in the transverse direction. Moreover, the four mainlobes exhibit lateral acceleration in 3D space, so the PSHs in different axial positions show a unique and concentrated intensity distribution on the image sensor, thereby realizing a high-resolution reconstruction of I-COACH. Compared with conventional CPM encoding methods, the proposed accelerating quad Airy-beam-encoding method has superior performance in improving the resolution of I-COACH reconstruction even in the presence of external interference.
Collapse
|
2
|
Han M, Smith D, Kahro T, Stonytė D, Kasikov A, Gailevičius D, Tiwari V, Ignatius Xavier AP, Gopinath S, Ng SH, John Francis Rajeswary AS, Tamm A, Kukli K, Bambery K, Vongsvivut J, Juodkazis S, Anand V. Extending the Depth of Focus of an Infrared Microscope Using a Binary Axicon Fabricated on Barium Fluoride. MICROMACHINES 2024; 15:537. [PMID: 38675348 PMCID: PMC11052387 DOI: 10.3390/mi15040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Axial resolution is one of the most important characteristics of a microscope. In all microscopes, a high axial resolution is desired in order to discriminate information efficiently along the longitudinal direction. However, when studying thick samples that do not contain laterally overlapping information, a low axial resolution is desirable, as information from multiple planes can be recorded simultaneously from a single camera shot instead of plane-by-plane mechanical refocusing. In this study, we increased the focal depth of an infrared microscope non-invasively by introducing a binary axicon fabricated on a barium fluoride substrate close to the sample. Preliminary results of imaging the thick and sparse silk fibers showed an improved focal depth with a slight decrease in lateral resolution and an increase in background noise.
Collapse
Affiliation(s)
- Molong Han
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.H.); (D.S.); (S.H.N.); (S.J.)
| | - Daniel Smith
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.H.); (D.S.); (S.H.N.); (S.J.)
| | - Tauno Kahro
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Dominyka Stonytė
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, 10223 Vilnius, Lithuania; (D.S.); (D.G.)
| | - Aarne Kasikov
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Darius Gailevičius
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, 10223 Vilnius, Lithuania; (D.S.); (D.G.)
| | - Vipin Tiwari
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Agnes Pristy Ignatius Xavier
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
- School of Electrical and Computer Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Shivasubramanian Gopinath
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.H.); (D.S.); (S.H.N.); (S.J.)
| | | | - Aile Tamm
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Kaupo Kukli
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Keith Bambery
- Infrared Microspectroscopy (IRM) Beamline, ANSTO—Australian Synchrotron, Clayton, VIC 3168, Australia (J.V.)
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO—Australian Synchrotron, Clayton, VIC 3168, Australia (J.V.)
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.H.); (D.S.); (S.H.N.); (S.J.)
- Tokyo Tech World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Vijayakumar Anand
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.H.); (D.S.); (S.H.N.); (S.J.)
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| |
Collapse
|
3
|
Rosen J, Anand V. Incoherent nonlinear deconvolution using an iterative algorithm for recovering limited-support images from blurred digital photographs. OPTICS EXPRESS 2024; 32:1034-1046. [PMID: 38175119 DOI: 10.1364/oe.506475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Recovering original images from blurred images is a challenging task. We propose a new deconvolution method termed incoherent nonlinear deconvolution using an iterative algorithm (INDIA). Two inputs are introduced into the algorithm: one is a random or engineered point spread function of the scattering system, and the other is a blurred or distorted image of some object produced from this system. The two functions are Fourier transformed, and their phase distributions are processed independently of their magnitude. The algorithm yields the image of the original object with reduced blurring effects. The results of the new method are compared to two linear and two nonlinear algorithms under various types of blurs. The root mean square error and structural similarity between the original and recovered images are chosen as the comparison criteria between the five different algorithms. The simulation and experimental results confirm the superior performance of INDIA compared to the other tested deblurring methods.
Collapse
|