1
|
Validation of red blood cell flux and velocity estimations based on optical coherence tomography intensity fluctuations. Sci Rep 2020; 10:19584. [PMID: 33177606 PMCID: PMC7658245 DOI: 10.1038/s41598-020-76774-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023] Open
Abstract
We present a validation of red blood cell flux and speed measurements based on the passage of erythrocytes through the OCT’s focal volume. We compare the performance of the so-called RBC-passage OCT technique to co-localized and simultaneously acquired two-photon excitation fluorescence microscopy (TPEF) measurements. Using concurrent multi-modal imaging, we show that fluctuations in the OCT signal display highly similar features to TPEF time traces. Furthermore, we demonstrate an overall difference in RBC flux and speed of 2.5 ± 3.27 RBC/s and 0.12 ± 0.67 mm/s (mean ± S.D.), compared to TPEF. The analysis also revealed that the OCT RBC flux estimation is most accurate between 20 RBC/s to 60 RBC/s, and is severely underestimated at fluxes beyond 80 RBC/s. Lastly, our analysis shows that the RBC speed estimations increase in accuracy as the speed decreases, reaching a difference of 0.16 ± 0.25 mm/s within the 0–0.5 mm/s speed range.
Collapse
|
2
|
Gräfe MGO, Nadiarnykh O, De Boer JF. Optical coherence tomography velocimetry based on decorrelation estimation of phasor pair ratios (DEPPAIR). BIOMEDICAL OPTICS EXPRESS 2019; 10:5470-5485. [PMID: 31799025 PMCID: PMC6865093 DOI: 10.1364/boe.10.005470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 05/13/2023]
Abstract
Quantitative velocity estimations in optical coherence tomography requires the estimation of the axial and lateral flow components. Optical coherence tomography measures the depth resolved complex field reflected from a sample. While the axial velocity component can be determined from the Doppler shift or phase shift between a pair of consecutive measurements at the same location, the estimation of the lateral component for in vivo applications is still challenging. One approach to determine lateral velocity is multiple simultaneous measurements at different angles. In another approach the lateral component can be retrieved through repeated measurements at (nearly) the same location by an analysis of the decorrelation over time. In this paper we follow the latter approach. We describe a model for the complex field changes between consecutive measurements and use it to predict the uncertainties for amplitude-based, phase-based and complex algorithms. The uncertainty of the flow estimations follows from a statistical analysis and is determined by the number of available measurements and the applied analysis method. The model is verified in phantom measurements and the dynamic range of velocity estimations is investigated. We demonstrate that phase-based and complex (phasor) based lateral flow estimation methods are superior to amplitude-based algorithms.
Collapse
|
3
|
Gräfe MGO, Gondre M, de Boer JF. Precision analysis and optimization in phase decorrelation OCT velocimetry. BIOMEDICAL OPTICS EXPRESS 2019; 10:1297-1314. [PMID: 30891347 PMCID: PMC6420279 DOI: 10.1364/boe.10.001297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/11/2019] [Accepted: 02/12/2019] [Indexed: 05/13/2023]
Abstract
Quantitative flow velocimetry in Optical Coherence Tomography is used to determine both the axial and lateral flow component at the level of individual voxels. The lateral flow is determined by analyzing the statistical properties of reflected electro-magnetic fields for repeated measurements at (nearly) the same location. The precision or statistical fluctuation of the quantitative velocity estimation depends on the number of repeated measurements and the method to determine quantitative flow velocity. In this paper, both a method to determine quantitative flow velocity and a model for the prediction of the statistical fluctuations of velocity estimations are developed to analyze and optimize the estimation precision for phase-based velocimetry methods. The method and model are validated by phantom measurements in a bulk scattering medium as well as in intralipid solution in a capillary. Based on the model, the number of repeated measurements to achieve a certain velocimetry precision is predicted.
Collapse
Affiliation(s)
- Maximilian G. O. Gräfe
- LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Maude Gondre
- LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Université de Genève, GAP-Biophotonics, Chemin de Pinchat 22, CH-1211 Geneva 4, Switzerland
| | - Johannes F. de Boer
- LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Pijewska E, Gorczynska I, Szkulmowski M. Computationally effective 2D and 3D fast phase unwrapping algorithms and their applications to Doppler optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:1365-1382. [PMID: 30891352 PMCID: PMC6420292 DOI: 10.1364/boe.10.001365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 05/07/2023]
Abstract
We propose a simplification for a robust and easy to implement fast phase unwrapping (FPU) algorithm that is used to solve the phase wrapping problem encountered in various fields of optical imaging and metrology. We show that the number of necessary computations using the algorithm can be reduced compared to its original version. FPU can be easily extended from two to three spatial dimensions. We demonstrate the applicability of the two- and three-dimensional FPU algorithm for Doppler optical coherence tomography (DOCT) in numerical simulations, and in the imaging of a flow phantom and blood flow in the human retina in vivo. We introduce an FPU applicability plot for use as a guide in the selection of the most suitable version of the algorithm depending on the phase noise in the acquired data. This plot uses the circular standard deviation of the wrapped phase distribution as a measure of noise and relates it to the root-mean-square error of the recovered, unwrapped phase.
Collapse
|
5
|
Park T, Jang SJ, Han M, Ryu S, Oh WY. Wide dynamic range high-speed three-dimensional quantitative OCT angiography with a hybrid-beam scan. OPTICS LETTERS 2018; 43:2237-2240. [PMID: 29762561 DOI: 10.1364/ol.43.002237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We demonstrate a novel hybrid-beam scanning-based quantitative optical coherence tomography angiography (OCTA) that provides high-speed wide dynamic range blood flow speed imaging. The hybrid-beam scanning scheme enables multiple OCTA image acquisitions with a wide range of multiple time intervals simultaneously providing wide dynamic range blood flow speed imaging independent of the blood vessel orientation, which was quantified over a speed range of 0.6∼104 mm/s through the blood flow phantom experiments. A fully automated high-speed hybrid-beam scanning-based quantitative OCTA system demonstrates visualization of blood flow speeds in various vessels from the main arteries to capillaries in a 4 mm×4 mm area (1024 A-lines × 512 B-scans) in vivo in 20 s, showing its potential as a useful imaging tool for various biomedical applications.
Collapse
|
6
|
Coquoz S, Bouwens A, Marchand PJ, Extermann J, Lasser T. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy. OPTICS EXPRESS 2017; 25:30807-30819. [PMID: 29221107 DOI: 10.1364/oe.25.030807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/19/2017] [Indexed: 05/22/2023]
Abstract
Optical coherence microscopy (OCM) is an interferometric technique providing 3D images of biological samples with micrometric resolution and penetration depth of several hundreds of micrometers. OCM differs from optical coherence tomography (OCT) in that it uses a high numerical aperture (NA) objective to achieve high lateral resolution. However, the high NA also reduces the depth-of-field (DOF), scaling with 1/NA2. Interferometric synthetic aperture microscopy (ISAM) is a computed imaging technique providing a solution to this trade-off between resolution and DOF. An alternative hardware method to achieve an extended DOF is to use a non-Gaussian illumination. Extended focus OCM (xfOCM) uses a Bessel beam to obtain a narrow and extended illumination volume. xfOCM detects back-scattered light using a Gaussian mode in order to maintain good sensitivity. However, the Gaussian detection mode limits the DOF. In this work, we present extended ISAM (xISAM), a method combining the benefits of both ISAM and xfOCM. xISAM uses the 3D coherent transfer function (CTF) to generalize the ISAM algorithm to different system configurations. We demonstrate xISAM both on simulated and experimental data, showing that xISAM attains a combination of high transverse resolution and extended DOF which has so far been unobtainable through conventional ISAM or xfOCM individually.
Collapse
|
7
|
Wu Z, Rademakers T, Kiessling F, Vogt M, Westein E, Weber C, Megens RT, van Zandvoort M. Multi-photon microscopy in cardiovascular research. Methods 2017; 130:79-89. [DOI: 10.1016/j.ymeth.2017.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/27/2017] [Accepted: 04/11/2017] [Indexed: 01/26/2023] Open
|
8
|
Optical Coherence Microscopy. Methods Mol Biol 2017. [PMID: 28324609 DOI: 10.1007/978-1-4939-6810-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The present chapter aims at demonstrating the capabilities of optical coherence microscopy (OCM) for applications in biomedical imaging. We furthermore review the functional imaging capabilities of OCM focusing on lable-free optical angiography. We conclude with a section on digital wavefront control and a short outlook on future developments, in particular for contrast enhancement techniques.
Collapse
|
9
|
Full-Field Optical Coherence Tomography as a Diagnosis Tool: Recent Progress with Multimodal Imaging. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Li E, Makita S, Hong YJ, Kasaragod D, Yasuno Y. Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:1290-1305. [PMID: 28663829 PMCID: PMC5480544 DOI: 10.1364/boe.8.001290] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 05/18/2023]
Abstract
A custom made dermatological Jones matrix optical coherence tomography (JM-OCT) is presented. It uses a passive-polarization-delay component based swept-source JM-OCT configuration, but is specially designed for in vivo human skin measurement. The center wavelength of its probe beam is 1310 nm and the A-line rate is 49.6 kHz. The JM-OCT is capable of simultaneously providing birefringence (local retardation) tomography, degree-of-polarization-uniformity tomography, complex-correlation-based optical coherence angiography, and conventional scattering OCT. To evaluate the performance of this JM-OCT, we measured in vivo human skin at several locations. Using the four kinds of OCT contrasts, the morphological characteristics and optical properties of different skin types were visualized.
Collapse
Affiliation(s)
- En Li
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Young-Joo Hong
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Deepa Kasaragod
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| |
Collapse
|
11
|
Marchand PJ, Bouwens A, Bolmont T, Shamaei VK, Nguyen D, Szlag D, Extermann J, Lasser T. Statistical parametric mapping of stimuli evoked changes in total blood flow velocity in the mouse cortex obtained with extended-focus optical coherence microscopy. BIOMEDICAL OPTICS EXPRESS 2017; 8:1-15. [PMID: 28101397 PMCID: PMC5231283 DOI: 10.1364/boe.8.000001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/11/2016] [Accepted: 11/26/2016] [Indexed: 05/08/2023]
Abstract
Functional magnetic resonance (fMRI) imaging is the current gold-standard in neuroimaging. fMRI exploits local changes in blood oxygenation to map neuronal activity over the entire brain. However, its spatial resolution is currently limited to a few hundreds of microns. Here we use extended-focus optical coherence microscopy (xfOCM) to quantitatively measure changes in blood flow velocity during functional hyperaemia at high spatio-temporal resolution in the somatosensory cortex of mice. As optical coherence microscopy acquires hundreds of depth slices simultaneously, blood flow velocity measurements can be performed over several vessels in parallel. We present the proof-of-principle of an optimised statistical parametric mapping framework to analyse quantitative blood flow timetraces acquired with xfOCM using the general linear model. We demonstrate the feasibility of generating maps of cortical hemodynamic reactivity at the capillary level with optical coherence microscopy. To validate our method, we exploited 3 stimulation paradigms, covering different temporal dynamics and stimulated limbs, and demonstrated its repeatability over 2 trials, separated by a week.
Collapse
|
12
|
Tamborski S, Lyu HC, Dolezyczek H, Malinowska M, Wilczynski G, Szlag D, Lasser T, Wojtkowski M, Szkulmowski M. Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain. BIOMEDICAL OPTICS EXPRESS 2016; 7:4400-4414. [PMID: 27895982 PMCID: PMC5119582 DOI: 10.1364/boe.7.004400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/21/2016] [Accepted: 09/03/2016] [Indexed: 05/22/2023]
Abstract
We propose a new method and optical instrumentation for mouse brain imaging based on extended-focus optical coherence microscopy. This in vivo imaging technique allows the evaluation of the cytoarchitecture at cellular level and the circulation system dynamics in three dimensions. This minimally invasive and non-contact approach is performed without the application of contrasting agents. The optical design achieved a resolution of 2.2 μm over a distance of 800 μm, which was sufficient to obtain a detailed three-dimensional image of a wild-type mouse's brain down to the layer III of the cortex. Intrinsically contrasted microvessels and structures similar to the bodies of neurons were distinguishable.
Collapse
Affiliation(s)
- Szymon Tamborski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University Grudziadzka 5, 87-100 Torun, Poland
| | - Hong Chou Lyu
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University Grudziadzka 5, 87-100 Torun, Poland
| | - Hubert Dolezyczek
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Monika Malinowska
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Wilczynski
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Daniel Szlag
- Laboratoire d’Optique Biomédicale, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Theo Lasser
- Laboratoire d’Optique Biomédicale, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Maciej Wojtkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University Grudziadzka 5, 87-100 Torun, Poland
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
13
|
Berclaz C, Szlag D, Nguyen D, Extermann J, Bouwens A, Marchand PJ, Nilsson J, Schmidt-Christensen A, Holmberg D, Grapin-Botton A, Lasser T. Label-free fast 3D coherent imaging reveals pancreatic islet micro-vascularization and dynamic blood flow. BIOMEDICAL OPTICS EXPRESS 2016; 7:4569-4580. [PMID: 27895996 PMCID: PMC5119596 DOI: 10.1364/boe.7.004569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 05/14/2023]
Abstract
In diabetes, pancreatic β-cells play a key role. These cells are clustered within structures called islets of Langerhans inside the pancreas and produce insulin, which is directly secreted into the blood stream. The dense vascularization of islets of Langerhans is critical for maintaining a proper regulation of blood glucose homeostasis and is known to be affected from the early stage of diabetes. The deep localization of these islets inside the pancreas in the abdominal cavity renders their in vivo visualization a challenging task. A fast label-free imaging method with high spatial resolution is required to study the vascular network of islets of Langerhans. Based on these requirements, we developed a label-free and three-dimensional imaging method for observing islets of Langerhans using extended-focus Fourier domain Optical Coherence Microscopy (xfOCM). In addition to structural imaging, this system provides three-dimensional vascular network imaging and dynamic blood flow information within islets of Langerhans. We propose our method to deepen the understanding of the interconnection between diabetes and the evolution of the islet vascular network.
Collapse
Affiliation(s)
- Corinne Berclaz
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| | - Daniel Szlag
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| | - David Nguyen
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| | - Jérôme Extermann
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
- Hepia, University of Applied Science of Western Switzerland, 1202 Genève,
Switzerland
| | - Arno Bouwens
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| | - Paul J. Marchand
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| | | | | | - Dan Holmberg
- EMV Immunology, Lund University, 22100 Lund,
Sweden
| | | | - Theo Lasser
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| |
Collapse
|
14
|
Berclaz C, Pache C, Bouwens A, Szlag D, Lopez A, Joosten L, Ekim S, Brom M, Gotthardt M, Grapin-Botton A, Lasser T. Combined Optical Coherence and Fluorescence Microscopy to assess dynamics and specificity of pancreatic beta-cell tracers. Sci Rep 2015; 5:10385. [PMID: 25988507 PMCID: PMC4437378 DOI: 10.1038/srep10385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/10/2015] [Indexed: 12/22/2022] Open
Abstract
The identification of a beta-cell tracer is a major quest in diabetes research. However, since MRI, PET and SPECT cannot resolve individual islets, optical techniques are required to assess the specificity of these tracers. We propose to combine Optical Coherence Microscopy (OCM) with fluorescence detection in a single optical platform to facilitate these initial screening steps from cell culture up to living rodents. OCM can image islets and vascularization without any labeling. Thereby, it alleviates the need of both genetically modified mice to detect islets and injection of external dye to reveal vascularization. We characterized Cy5.5-exendin-3, an agonist of glucagon-like peptide 1 receptor (GLP1R), for which other imaging modalities have been used and can serve as a reference. Cultured cells transfected with GLP1R and incubated with Cy5.5-exendin-3 show full tracer internalization. We determined that a dose of 1 μg of Cy5.5-exendin-3 is sufficient to optically detect in vivo the tracer in islets with a high specificity. In a next step, time-lapse OCM imaging was used to monitor the rapid and specific tracer accumulation in murine islets and its persistence over hours. This optical platform represents a versatile toolbox for selecting beta-cell specific markers for diabetes research and future clinical diagnosis.
Collapse
Affiliation(s)
- Corinne Berclaz
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Arno Bouwens
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Szlag
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, PL-87-100 Torun, Poland
| | - Antonio Lopez
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lieke Joosten
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Selen Ekim
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten Brom
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Theo Lasser
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Yoon Y, Li Q, Le VH, Jang WH, Wang T, Kim B, Son S, Chung WK, Joo C, Kim KH. Dark-field polarization-sensitive optical coherence tomography. OPTICS EXPRESS 2015; 23:12874-86. [PMID: 26074541 DOI: 10.1364/oe.23.012874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) is a functional OCT providing both structural and birefringent information of the sample, and it has been applied to the studies of various organs having polarization properties. Fiber-based PS-OCT is sensitive to specular reflection from the sample surface, because signal saturation due to the strong specular reflection can make the polarization measurement difficult. We developed a dark-field PS-OCT which can avoid the specular reflection problem. Dark-field PS-OCT was implemented by adapting a hybrid method of Bessel-beam illumination and Gaussian-beam detection, and a PS-OCT method based on passive delay unit (PDU). The new system was characterized in comparison with the conventional Gaussian-beam based method in both polarization components and various samples including the human skin. Dark-field PS-OCT performed as good as the conventional PS-OCT without the specular reflection artifact. Dark-field PS-OCT may be useful in practical situations where the specular reflection is unavoidable.
Collapse
|
16
|
Karunamuni GH, Gu S, Ford MR, Peterson LM, Ma P, Wang YT, Rollins AM, Jenkins MW, Watanabe M. Capturing structure and function in an embryonic heart with biophotonic tools. Front Physiol 2014; 5:351. [PMID: 25309451 PMCID: PMC4173643 DOI: 10.3389/fphys.2014.00351] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/27/2014] [Indexed: 11/17/2022] Open
Abstract
Disturbed cardiac function at an early stage of development has been shown to correlate with cellular/molecular, structural as well as functional cardiac anomalies at later stages culminating in the congenital heart defects (CHDs) that present at birth. While our knowledge of cellular and molecular steps in cardiac development is growing rapidly, our understanding of the role of cardiovascular function in the embryo is still in an early phase. One reason for the scanty information in this area is that the tools to study early cardiac function are limited. Recently developed and adapted biophotonic tools may overcome some of the challenges of studying the tiny fragile beating heart. In this chapter, we describe and discuss our experience in developing and implementing biophotonic tools to study the role of function in heart development with emphasis on optical coherence tomography (OCT). OCT can be used for detailed structural and functional studies of the tubular and looping embryo heart under physiological conditions. The same heart can be rapidly and quantitatively phenotyped at early and again at later stages using OCT. When combined with other tools such as optical mapping (OM) and optical pacing (OP), OCT has the potential to reveal in spatial and temporal detail the biophysical changes that can impact mechanotransduction pathways. This information may provide better explanations for the etiology of the CHDs when interwoven with our understanding of morphogenesis and the molecular pathways that have been described to be involved. Future directions for advances in the creation and use of biophotonic tools are discussed.
Collapse
Affiliation(s)
- Ganga H Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine Cleveland, OH, USA
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering Cleveland, OH, USA
| | - Matthew R Ford
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering Cleveland, OH, USA
| | - Lindsy M Peterson
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering Cleveland, OH, USA
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering Cleveland, OH, USA
| | - Yves T Wang
- Department of Pediatrics, Case Western Reserve University School of Medicine Cleveland, OH, USA ; Department of Biomedical Engineering, Case Western Reserve University School of Engineering Cleveland, OH, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine Cleveland, OH, USA ; Department of Biomedical Engineering, Case Western Reserve University School of Engineering Cleveland, OH, USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine Cleveland, OH, USA
| |
Collapse
|
17
|
Chan AC, Srinivasan VJ, Lam EY. Maximum likelihood Doppler frequency estimation under decorrelation noise for quantifying flow in optical coherence tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1313-23. [PMID: 24760902 DOI: 10.1109/tmi.2014.2309986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recent hardware advances in optical coherence tomography (OCT) have led to ever higher A-scan rates. However, the estimation of blood flow axial velocities is limited by the presence and type of noise. Higher acquisition rates alone do not necessarily enable precise quantification of Doppler velocities, particularly if the estimator is suboptimal. In previous work, we have shown that the Kasai autocorrelation estimator is statistically suboptimal under conditions of additive white Gaussian noise. In addition, for practical OCT measurements of flow, decorrelation noise affects Doppler frequency estimation by broadening the signal spectrum. Here, we derive a general maximum likelihood estimator (MLE) for Doppler frequency estimation that takes into account additive white noise as well as signal decorrelation. We compare the decorrelation MLE with existing techniques using simulated and flow phantom data and find that it has better performance, achieving the Cramer-Rao lower bound. By making an approximation, we also provide an interpretation of this method in the Fourier domain. We anticipate that this estimator will be particularly suited for estimating blood flow in in vivo scenarios.
Collapse
|