1
|
Hou R, Zhang W, Han X, Wang HF, Zhang S. Nonreciprocal unconventional photon blockade in a spinning microwave magnomechanical system. Sci Rep 2025; 15:5145. [PMID: 39934222 DOI: 10.1038/s41598-025-89185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
We propose a method for realizing the nonreciprocal unconventional photon blockade (NUPB) effect in a spinning microwave magnomechanical system. We determine the optimal parameter conditions for achieving this effect and observe that the numerical solutions are in excellent agreement with the analytical results. Under these optimal conditions, driving the system from the right induces photon antibunching, while driving from the left with identical amplitude leads to photon bunching. This pronounced asymmetry gives rise to NUPB, which arises from the combined effects of destructive quantum interference in two-photon excitation pathways and the Sagnac effect. Furthermore, NUPB can be tuned by adjusting the angular velocity of the microwave resonator. This work provides significant theoretical support for the realization of nonreciprocal single-photon sources and opens new avenues for the design and application of nonreciprocal quantum devices.
Collapse
Affiliation(s)
- Rui Hou
- Department of Physics, College of Science, Yanbian University, Yanji, 133002, Jilin, China
| | - Wei Zhang
- School of Physics, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Xue Han
- Department of Physics, College of Science, Yanbian University, Yanji, 133002, Jilin, China.
| | - Hong-Fu Wang
- Department of Physics, College of Science, Yanbian University, Yanji, 133002, Jilin, China.
| | - Shou Zhang
- Department of Physics, College of Science, Yanbian University, Yanji, 133002, Jilin, China.
| |
Collapse
|
2
|
Geng Z, Chen Y, Jiang Y, Xia Y, Song J. Engineering dynamical photon blockade with Liouville exceptional points. OPTICS LETTERS 2024; 49:3026-3029. [PMID: 38824319 DOI: 10.1364/ol.523210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
We investigate the dynamical blockade in a nonlinear cavity and demonstrate the connection between the correlation function g(2)(t) and system parameters in the entire nonlinear region. Utilizing the Liouville exceptional points (LEPs) and quantum dynamics, a near-perfect single-photon blockade (1PB) can be achieved. By fine-tuning system parameters to approach the second-order LEP (LEP2), we improved single-photon statistics in both weak and strong nonlinearity regimes, including a significant reduction of g(2)(t) and a pronounced increase in the single-photon occupation number. In the strong nonlinearity region, the maximum photon population may correspond to stronger antibunching effect. Simultaneously, the time window and period of blockade can be controlled by selecting detuning based on the LEP2. Furthermore, the 1PB exhibits robustness against parameter fluctuations, and this feature can be generalized to systems for implementing single-photon sources with nonharmonic energy levels.
Collapse
|
3
|
Feng LJ, Ni J, Gong SQ. Photon blockade induced by two-photon absorption in cavity quantum electrodynamics. OPTICS EXPRESS 2024; 32:5117-5130. [PMID: 38439246 DOI: 10.1364/oe.507086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/09/2024] [Indexed: 03/06/2024]
Abstract
Photon blockade (PB) is an important quantum phenomenon in cavity quantum electrodynamics (QED). Here, we investigate the PB effect in the simplest cavity QED systems (one cavity containing first a single atom and then two atoms), where only the atoms are weakly driven. Via the analytical calculation and numerical simulation, we show that the strong PB can be generated even with the weak-coupling regime at the total resonance. This blockade is ascribed to the two-photon absorption, which is fundamentally different from the conventional and unconventional blockade mechanisms. Therefore, our study provides an alternative approach to produce the PB in the atom-driven cavity QED system.
Collapse
|
4
|
Huang KW, Wang X, Qiu QY, Xiong H. Nonreciprocal magnon blockade via the Barnett effect. OPTICS LETTERS 2024; 49:758-761. [PMID: 38300108 DOI: 10.1364/ol.512264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
We propose a scheme to achieve nonreciprocal magnon blockade via the Barnett effect in a magnon-based hybrid system. Due to the rotating yttrium iron garnet (YIG) sphere, the Barnett shift induced by the Barnett effect can be tuned from positive to negative via controlling magnetic field direction, leading to nonreciprocity. We show that a nonreciprocal unconventional magnon blockade (UMB) can emerge only from one magnetic field direction but not from the other side. Particularly, by further tuning system parameters, we simultaneously observe a nonreciprocal conventional magnon blockade (CMB) and a nonreciprocal UMB. This result achieves a switch between efficiency (UMB) and purity (CMB) of a single-magnon blockade. Interestingly, stronger UMB can be reached under stronger qubit-magnon coupling, even the strong coupling regime. Moreover, the nonreciprocity of the magnon blockade is sensitive to temperature. This work opens up a way for achieving quantum nonreciprocal magnetic devices and chiral magnon communications.
Collapse
|
5
|
Zhao B, Zhou KX, Wei MR, Cao J, Guo Q. Nonreciprocal strong mechanical squeezing based on the Sagnac effect and two-tone driving. OPTICS LETTERS 2024; 49:486-489. [PMID: 38300040 DOI: 10.1364/ol.510053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
We propose a scheme for generating nonreciprocal strong mechanical squeezing by using two-tone lasers to drive a spinning optomechanical system. For given driving frequencies, strong mechanical squeezing of the breathing mode in the spinning resonator can be achieved in a chosen driving direction but not in the other. The nonreciprocity originates from the Sagnac effect caused by the resonator's spinning. We also find the classical nonreciprocity and the quantum nonreciprocity can be switched by simply changing the angular velocity of the spinning resonator. We show that the scheme is robust to the system's dissipations and the mechanical thermal noise. This work may be meaningful for the study of nonreciprocal device and quantum precision measurement.
Collapse
|
6
|
Wang DY, Yan LL, Su SL, Bai CH, Wang HF, Liang E. Squeezing-induced nonreciprocal photon blockade in an optomechanical microresonator. OPTICS EXPRESS 2023; 31:22343-22357. [PMID: 37475347 DOI: 10.1364/oe.493208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
We propose a scheme to generate nonreciprocal photon blockade in a stationary whispering gallery microresonator system based on two physical mechanisms. One of the two mechanisms is inspired by recent work [Phys. Rev. Lett.128, 083604 (2022)10.1103/PhysRevLett.128.083604], where the quantum squeezing caused by parametric interaction not only shifts the optical frequency of propagating mode but also enhances its optomechanical coupling, resulting in a nonreciprocal conventional photon blockade phenomenon. On the other hand, we also give another mechanism to generate stronger nonreciprocity of photon correlation according to the destructive quantum interference. Comparing these two strategies, the required nonlinear strength of parametric interaction in the second one is smaller, and the broadband squeezed vacuum field used to eliminate thermalization noise is no longer needed. All analyses and optimal parameter relations are further verified by numerically simulating the quantum master equation. Our proposed scheme opens a new avenue for achieving the nonreciprocal single photon source without stringent requirements, which may have critical applications in quantum communication, quantum information processing, and topological photonics.
Collapse
|
7
|
Yuan N, He S, Li SY, Wang N, Zhu AD. Optical noise-resistant nonreciprocal phonon blockade in a spinning optomechanical resonator. OPTICS EXPRESS 2023; 31:20160-20173. [PMID: 37381416 DOI: 10.1364/oe.492209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
A scheme of nonreciprocal conventional phonon blockade (PB) is proposed in a spinning optomechanical resonator coupled with a two-level atom. The coherent coupling between the atom and breathing mode is mediated by the optical mode with a large detuning. Due to the Fizeau shift caused by the spinning resonator, the PB can be implemented in a nonreciprocal way. Specifically, when the spinning resonator is driven from one direction, the single-phonon (1PB) and two-phonon blockade (2PB) can be achieved by adjusting both the amplitude and frequency of the mechanical drive field, while phonon-induced tunneling (PIT) occurs when the spinning resonator is driven from the opposite direction. The PB effects are insensitive to cavity decay because of the adiabatic elimination of the optical mode, thus making the scheme more robust to the optical noise and still feasible even in a low-Q cavity. Our scheme provides a flexible method for engineering a unidirectional phonon source with external control, which is expected to be used as a chiral quantum device in quantum computing networks.
Collapse
|
8
|
Liu YM, Cheng J, Wang HF, Yi X. Nonreciprocal photon blockade in a spinning optomechanical system with nonreciprocal coupling. OPTICS EXPRESS 2023; 31:12847-12864. [PMID: 37157436 DOI: 10.1364/oe.486102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A scheme is presented to achieve quantum nonreciprocity by manipulating the statistical properties of the photons in a composite device consisting of a double-cavity optomechanical system with a spinning resonator and nonreciprocal coupling. It can be found that the photon blockade can emerge when the spinning device is driven from one side but not from the other side with the same driving amplitude. Under the weak driving limit, to achieve the perfect nonreciprocal photon blockade, two sets of optimal nonreciprocal coupling strengths are analytically obtained under different optical detunings based on the destructive quantum interference between different paths, which are in good agreement with the results obtained from numerical simulations. Moreover, the photon blockade exhibits thoroughly different behaviors as the nonreciprocal coupling is altered, and the perfect nonreciprocal photon blockade can be achieved even with weak nonlinear and linear couplings, which breaks the orthodox perception.
Collapse
|
9
|
Quantum spinning photonic circulator. Sci Rep 2022; 12:5844. [PMID: 35393435 PMCID: PMC8990076 DOI: 10.1038/s41598-022-09626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/23/2022] [Indexed: 11/08/2022] Open
Abstract
We propose a scheme to realize a four-port quantum optical circulator for critical coupling of a spinning Kerr resonator to two tapered fibers. Its nonreciprocal effect arises from the Fizeau drag induced splitting of the resonance frequencies of the two counter-travelling optical modes. The transmitted photons exhibit direction dependent quantum correlations and nonreciprocal photon blockade occurs for photons transferred between the two fibers. Moreover, the quantum optical circulator is robust against the back scattering induced by intermodal coupling between counter-travelling optical modes. The present quantum optical circulator has significant potential as an elementary cell in chiral quantum information processing without magnetic field.
Collapse
|
10
|
Xu YJ, Song J. Nonreciprocal magnon laser. OPTICS LETTERS 2021; 46:5276-5279. [PMID: 34653171 DOI: 10.1364/ol.440608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
A nonreciprocal magnon laser is proposed in a compound cavity optomagnonical system consisting of an yttrium iron garnet sphere coupled to a spinning resonator. On the basis of the magnon-induced Brillouin scattering process making it possible to achieve a magnon lasing action, the Fizeau light-dragging effect caused by the spinning of the resonator further results in significant modifications in the magnon gain and the threshold power of magnon lasing for different driving directions, and then a nonreciprocal magnon laser is realized. Especially, this nonreciprocal magnon laser is highly tunable by the spinning speed and the driving direction. Our work provides an experimentally feasible pathway for manipulating spin-wave excitations and may find intriguing phenomena at the crossroad between spintronics of the magnet and nonreciprocal optics.
Collapse
|