1
|
Guan Z, Li Q, Niu C, Fan S, Yu H, Wu W, Feng X, Dai C. Correction of Non-Uniform Rotational Distortion in the Proximally Controlled Endoscopic OCTA. JOURNAL OF BIOPHOTONICS 2025; 18:e202400467. [PMID: 39905654 DOI: 10.1002/jbio.202400467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Endoscopic Optical Coherence Tomography (OCT) can provide high-resolution cross-sectional images for internal organ tissues. Combining the endoscopic imaging with Optical Coherence Tomography Angiography (OCTA), information of blood vessels in superficial lumen tissues is expected to be acquired. However, in endoscopic OCT systems using proximal scanning probes, performance of OCTA encounters significant challenges due to non-uniform rotational distortion (NURD) caused by the non-constant rotation of the distal imaging unit. In this study, we proposed a registration method for endoscopic OCTA imaging in a proximally controlled OCT System. Global registration and A-line registration were employed to correct the distortion caused by mechanical friction between the catheter sheath and torque coil. Experimental performances in both microfluidic channel and rat rectum show significant correction of NURD. Our study achieved the first implementation of endoscopic OCTA under a spiral B-scan rotation scheme in a proximally controlled OCT system, facilitating clear visualization of blood flow.
Collapse
Affiliation(s)
- Zehua Guan
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Qiang Li
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Chen Niu
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Shuhao Fan
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Huanhuan Yu
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Wenjuan Wu
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Xiangfei Feng
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Dai
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| |
Collapse
|
2
|
Zhang T, Yuan S, Xu C, Liu P, Chang HC, Ng SHC, Ren H, Yuan W. PneumaOCT: Pneumatic optical coherence tomography endoscopy for targeted distortion-free imaging in tortuous and narrow internal lumens. SCIENCE ADVANCES 2024; 10:eadp3145. [PMID: 39196931 PMCID: PMC11352845 DOI: 10.1126/sciadv.adp3145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
The complex anatomy of internal luminal organs, like bronchioles, poses challenges for endoscopic optical coherence tomography (OCT). These challenges include limited steerability for targeted imaging and nonuniform rotation distortion (NURD) with proximal scanning. Using rotary micromotors for distal scanning could address NURD but raises concerns about electrical safety and costs. We present pneumaOCT, the first pneumatic OCT endoscope, comprising a steerable catheter with a soft pneumatic actuator and an imaging probe with a miniature pneumatic turbine. With a diameter of 2.8 mm, pneumaOCT allows for a bending angle of up to 237°, facilitating navigation through narrow turns. The pneumatic turbine enables adjustable imaging speeds from 51 to 446 revolutions per second. We demonstrate the pneumaOCT in vivo imaging of mouse esophagus and colon, as well as targeted and distortion-free imaging of peripheral bronchioles in a bronchial phantom and a porcine lung. This advancement substantially improves endoscopic OCT for navigational imaging in curved and narrow lumens.
Collapse
Affiliation(s)
- Tinghua Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sishen Yuan
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chao Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peng Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sze Hang Calvin Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongliang Ren
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Zhang H, Gu C, Lan Q, Zhang W, Liu C, Yang J. Learning-based distortion correction enables proximal-scanning endoscopic OCT elastography. BIOMEDICAL OPTICS EXPRESS 2024; 15:4345-4364. [PMID: 39022540 PMCID: PMC11249688 DOI: 10.1364/boe.528522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Proximal rotary scanning is predominantly used in the clinical practice of endoscopic and intravascular OCT, mainly because of the much lower manufacturing cost of the probe compared to distal scanning. However, proximal scanning causes severe beam stability issues (also known as non-uniform rotational distortion, NURD), which hinders the extension of its applications to functional imaging, such as OCT elastography (OCE). In this work, we demonstrate the abilities of learning-based NURD correction methods to enable the imaging stability required for intensity-based OCE. Compared with the previous learning-based NURD correction methods that use pseudo distortion vectors for model training, we propose a method to extract real distortion vectors from a specific endoscopic OCT system, and validate its superiority in accuracy under both convolutional-neural-network- and transformer-based learning architectures. We further verify its effectiveness in elastography calculations (digital image correlation and optical flow) and the advantages of our method over other NURD correction methods. Using the air pressure of a balloon catheter as a mechanical stimulus, our proximal-scanning endoscopic OCE could effectively differentiate between areas of varying stiffness of atherosclerotic vascular phantoms. Compared with the existing endoscopic OCE methods that measure only in the radial direction, our method could achieve 2D displacement/strain distribution in both radial and circumferential directions.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chengfu Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Lan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlong Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Hackmann MJ, Cairncross A, Elliot JG, Mulrennan S, Nilsen K, Thompson BR, Li Q, Karnowski K, Sampson DD, McLaughlin RA, Cense B, James AL, Noble PB. Quantification of smooth muscle in human airways by polarization-sensitive optical coherence tomography requires correction for perichondrium. Am J Physiol Lung Cell Mol Physiol 2024; 326:L393-L408. [PMID: 38261720 DOI: 10.1152/ajplung.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
Quantifying airway smooth muscle (ASM) in patients with asthma raises the possibility of improved and personalized disease management. Endobronchial polarization-sensitive optical coherence tomography (PS-OCT) is a promising quantitative imaging approach that is in the early stages of clinical translation. To date, only animal tissues have been used to assess the accuracy of PS-OCT to quantify absolute (rather than relative) ASM in cross sections with directly matched histological cross sections as validation. We report the use of whole fresh human and pig airways to perform a detailed side-by-side qualitative and quantitative validation of PS-OCT against gold-standard histology. We matched and quantified 120 sections from five human and seven pig (small and large) airways and linked PS-OCT signatures of ASM to the tissue structural appearance in histology. Notably, we found that human cartilage perichondrium can share with ASM the properties of birefringence and circumferential alignment of fibers, making it a significant confounder for ASM detection. Measurements not corrected for perichondrium overestimated ASM content several-fold (P < 0.001, paired t test). After careful exclusion of perichondrium, we found a strong positive correlation (r = 0.96, P < 0.00001) of ASM area measured by PS-OCT and histology, supporting the method's application in human subjects. Matching human histology further indicated that PS-OCT allows conclusions on the intralayer composition and in turn potential contractile capacity of ASM bands. Together these results form a reliable basis for future clinical studies.NEW & NOTEWORTHY Polarization-sensitive optical coherence tomography (PS-OCT) may facilitate in vivo measurement of airway smooth muscle (ASM). We present a quantitative validation correlating absolute ASM area from PS-OCT to directly matched histological cross sections using human tissue. A major confounder for ASM quantification was observed and resolved: fibrous perichondrium surrounding hyaline cartilage in human airways presents a PS-OCT signature similar to ASM for birefringence and optic axis orientation. Findings impact the development of automated methods for ASM segmentation.
Collapse
Affiliation(s)
- Michael J Hackmann
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alvenia Cairncross
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - Siobhain Mulrennan
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Institute of Respiratory Health, The University of Western Australia, Crawley, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kris Nilsen
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Bruce R Thompson
- Melbourne School of Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Qingyun Li
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Karol Karnowski
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - David D Sampson
- School of Computer Science and Electronic Engineering, University of Surrey, Guildford, United Kingdom
| | - Robert A McLaughlin
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Barry Cense
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
5
|
Singh AP, Göb M, Ahrens M, Eixmann T, Schulte B, Schulz-Hildebrandt H, Hüttmann G, Ellrichmann M, Huber R, Rahlves M. Virtual Hall sensor triggered multi-MHz endoscopic OCT imaging for stable real-time visualization. OPTICS EXPRESS 2024; 32:5809-5825. [PMID: 38439298 DOI: 10.1364/oe.514636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Circumferential scanning in endoscopic imaging is crucial across various disciplines, and optical coherence tomography (OCT) is often the preferred choice due to its high-speed, high-resolution, and micron-scale imaging capabilities. Moreover, real-time and high-speed 3D endoscopy is a pivotal technology for medical screening and precise surgical guidance, among other applications. However, challenges such as image jitter and non-uniform rotational distortion (NURD) are persistent obstacles that hinder real-time visualization during high-speed OCT procedures. To address this issue, we developed an innovative, low-cost endoscope that employs a brushless DC motor for scanning, and a sensorless technique for triggering and synchronizing OCT imaging with the scanning motor. This sensorless approach uses the motor's electrical feedback (back electromotive force, BEMF) as a virtual Hall sensor to initiate OCT image acquisition and synchronize it with a Fourier Domain Mode-Locked (FDML)-based Megahertz OCT system. Notably, the implementation of BEMF-triggered OCT has led to a substantial reduction in image jitter and NURD (<4 mrad), thereby opening up a new window for real-time visualization capabilities. This approach suggests potential benefits across various applications, aiming to provide a more accurate, deployable, and cost-effective solution. Subsequent studies can explore the adaptability of this system to specific clinical scenarios and its performance under practical endoscopic conditions.
Collapse
|
6
|
Tang JC, Magalhães R, Wisniowiecki A, Razura D, Walker C, Applegate BE. Optical coherence tomography technology in clinical applications. BIOPHOTONICS AND BIOSENSING 2024:285-346. [DOI: 10.1016/b978-0-44-318840-4.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
7
|
Zhang H, Yang J, Zhang J, Zhao S, Zhang A. Cross-attention learning enables real-time nonuniform rotational distortion correction in OCT. BIOMEDICAL OPTICS EXPRESS 2024; 15:319-335. [PMID: 38223193 PMCID: PMC10783899 DOI: 10.1364/boe.512337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Nonuniform rotational distortion (NURD) correction is vital for endoscopic optical coherence tomography (OCT) imaging and its functional extensions, such as angiography and elastography. Current NURD correction methods require time-consuming feature tracking/registration or cross-correlation calculations and thus sacrifice temporal resolution. Here we propose a cross-attention learning method for the NURD correction in OCT. Our method is inspired by the recent success of the self-attention mechanism in natural language processing and computer vision. By leveraging its ability to model long-range dependencies, we can directly obtain the spatial correlation between OCT A-lines at any distance, thus accelerating the NURD correction. We develop an end-to-end stacked cross-attention network and design three types of optimization constraints. We compare our method with two traditional feature-based methods and a CNN-based method on two publicly-available endoscopic OCT datasets. We further verify the NURD correction performance of our method on 3D stent reconstruction using a home-built endoscopic OCT system. Our method achieves a ∼3 × speedup to real time (26 ± 3 fps), and superior correction performance.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlong Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jingqian Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shiqing Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Zhuang Z, Chen D, Liang Z, Zhang S, Liu Z, Chen W, Qi L. Automatic 3D reconstruction of an anatomically correct upper airway from endoscopic long range OCT images. BIOMEDICAL OPTICS EXPRESS 2023; 14:4594-4608. [PMID: 37791278 PMCID: PMC10545183 DOI: 10.1364/boe.496812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023]
Abstract
Endoscopic airway optical coherence tomography (OCT) is a non-invasive and high resolution imaging modality for the diagnosis and analysis of airway-related diseases. During OCT imaging of the upper airway, in order to reliably characterize its 3D structure, there is a need to automatically detect the airway lumen contour, correct rotational distortion and perform 3D airway reconstruction. Based on a long-range endoscopic OCT imaging system equipped with a magnetic tracker, we present a fully automatic framework to reconstruct the 3D upper airway model with correct bending anatomy. Our method includes an automatic segmentation method for the upper airway based on dynamic programming algorithm, an automatic initial rotation angle error correction method for the detected 2D airway lumen contour, and an anatomic bending method combined with the centerline detected from the magnetically tracked imaging probe. The proposed automatic reconstruction framework is validated on experimental datasets acquired from two healthy adults. The result shows that the proposed framework allows the full automation of 3D airway reconstruction from OCT images and thus reveals its potential to improve analysis efficiency of endoscopic OCT images.
Collapse
Affiliation(s)
- Zhijian Zhuang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- The Third People’s Hospital of Zhuhai, 166 Hezheng Rd., Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Delang Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Zhichao Liang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Shuangyang Zhang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Zhenyang Liu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
9
|
Endoscopic OCT Angiography Using Clinical Proximal-End Scanning Catheters. PHOTONICS 2022. [DOI: 10.3390/photonics9050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endoscopic optical coherence tomography angiography (OCTA) is a promising modality to inspect the microvasculature of inner organs in the early-stage tumor diagnosis. However, an endoscopic clinical proximal-end scanning catheter has limited flow imaging capability due to the nonuniform rotational distortion (NURD) and physiological motion. In this study, a combined local and global (CLG) optical flow algorithm was used to estimate the motion vectors caused by NURD and physiological motion. The motion vectors were used to bicubic-interpolation-resample the OCT structure to ensure that the circumferential pixels were equally spaced in the space domain. Then, angiograms were computed based on the statistical relation between inverse SNR (iSNR) and amplitude decorrelation (IDa), termed as IDa-OCTA. Finally, the ability of this technique for endoscopic OCTA imaging was demonstrated by flow phantom experiments and human nailfold capillary imaging.
Collapse
|
10
|
Silva VB, Andrade De Jesus D, Klein S, van Walsum T, Cardoso J, Brea LS, Vaz PG. Signal-carrying speckle in optical coherence tomography: a methodological review on biomedical applications. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:030901. [PMID: 35289154 PMCID: PMC8919025 DOI: 10.1117/1.jbo.27.3.030901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Speckle has historically been considered a source of noise in coherent light imaging. However, a number of works in optical coherence tomography (OCT) imaging have shown that speckle patterns may contain relevant information regarding subresolution and structural properties of the tissues from which it is originated. AIM The objective of this work is to provide a comprehensive overview of the methods developed for retrieving speckle information in biomedical OCT applications. APPROACH PubMed and Scopus databases were used to perform a systematic review on studies published until December 9, 2021. From 146 screened studies, 40 were eligible for this review. RESULTS The studies were clustered according to the nature of their analysis, namely static or dynamic, and all features were described and analyzed. The results show that features retrieved from speckle can be used successfully in different applications, such as classification and segmentation. However, the results also show that speckle analysis is highly application-dependant, and the best approach varies between applications. CONCLUSIONS Several of the reviewed analyses were only performed in a theoretical context or using phantoms, showing that signal-carrying speckle analysis in OCT imaging is still in its early stage, and further work is needed to validate its applicability and reproducibility in a clinical context.
Collapse
Affiliation(s)
- Vania B. Silva
- University of Coimbra, Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UC), Department of Physics, Coimbra, Portugal
- University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC, Biomedical Imaging Group Rotterdam, Rotterdam, The Netherlands
| | - Danilo Andrade De Jesus
- University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC, Biomedical Imaging Group Rotterdam, Rotterdam, The Netherlands
| | - Stefan Klein
- University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC, Biomedical Imaging Group Rotterdam, Rotterdam, The Netherlands
| | - Theo van Walsum
- University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC, Biomedical Imaging Group Rotterdam, Rotterdam, The Netherlands
| | - João Cardoso
- University of Coimbra, Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UC), Department of Physics, Coimbra, Portugal
| | - Luisa Sánchez Brea
- University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC, Biomedical Imaging Group Rotterdam, Rotterdam, The Netherlands
| | - Pedro G. Vaz
- University of Coimbra, Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UC), Department of Physics, Coimbra, Portugal
| |
Collapse
|
11
|
Marques MJ, Hughes MR, Uceda AF, Gelikonov G, Bradu A, Podoleanu A. Endoscopic en-face optical coherence tomography and fluorescence imaging using correlation-based probe tracking. BIOMEDICAL OPTICS EXPRESS 2022; 13:761-776. [PMID: 35284172 PMCID: PMC8884237 DOI: 10.1364/boe.444170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 05/25/2023]
Abstract
Forward-viewing endoscopic optical coherence tomography (OCT) provides 3D imaging in vivo, and can be combined with widefield fluorescence imaging by use of a double-clad fiber. However, it is technically challenging to build a high-performance miniaturized 2D scanning system with a large field-of-view. In this paper we demonstrate how a 1D scanning probe, which produces cross-sectional OCT images (B-scans) and 1D fluorescence T-scans, can be transformed into a 2D scanning probe by manual scanning along the second axis. OCT volumes are assembled from the B-scans using speckle decorrelation measurements to estimate the out-of-plane motion along the manual scan direction. Motion within the plane of the B-scans is corrected using image registration by normalized cross correlation. En-face OCT slices and fluorescence images, corrected for probe motion in 3D, can be displayed in real-time during the scan. For a B-scan frame rate of 250 Hz, and an OCT lateral resolution of approximately 20 μ m , the approach can handle out-of-plane motion at speeds of up to 4 mm/s.
Collapse
Affiliation(s)
- Manuel J. Marques
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
- Both authors contributed equally to this publication
| | - Michael R. Hughes
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
- Both authors contributed equally to this publication
| | - Adrián F. Uceda
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | | | - Adrian Bradu
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Adrian Podoleanu
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| |
Collapse
|
12
|
Liao G, Caravaca-Mora O, Rosa B, Zanne P, Dall Alba D, Fiorini P, de Mathelin M, Nageotte F, J. Gora M. Distortion and Instability Compensation with Deep Learning for Rotational Scanning Endoscopic Optical Coherence Tomography. Med Image Anal 2022; 77:102355. [DOI: 10.1016/j.media.2022.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/27/2022]
|
13
|
Qi L, Zhuang Z, Zhang S, Huang S, Feng Q, Chen W. Automatic correction of the initial rotation angle error improves 3D reconstruction in endoscopic airway optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:7616-7631. [PMID: 35003856 PMCID: PMC8713659 DOI: 10.1364/boe.439120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 05/11/2023]
Abstract
Endoscopic airway optical coherence tomography (OCT) is an advanced imaging modality capable of capturing the internal anatomy and geometry of the airway. Due to fiber-optic catheter bending and friction, the rotation speed of the endoscopic probe is usually non-uniform: at each B-scan image, the initial rotation angle of the probe is easily misaligned with that of the previous slices. During the pullback operation, this initial rotation angle error (IRAE) will be accumulated and will result in distortion and deformation of the reconstructed 3D airway structure. Previous attempts to correct this error were mainly manual corrections, which are time-consuming and suffered from observer variation. In this paper, we present a method to correct the IRAE for anatomically improved visualization of the airway. Our method derived the rotation angular difference of adjacent B-scans by measuring their contour similarity and then tracks the IRAE by formulating its continuous drift as a graph-based problem. The algorithm was tested on a simulated airway contour dataset, and also on experimental datasets acquired by two different long range endoscopic airway OCT platforms. Effective and smooth compensation of the frame-by-frame initial angle difference was achieved. Our method has real-time capability and thus has the potential to improve clinical imaging efficiency.
Collapse
Affiliation(s)
- Li Qi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- These authors contributed equally to this work
| | - Zhijian Zhuang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- These authors contributed equally to this work
| | - Shuangyang Zhang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Shixian Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
14
|
Peng C, Wu H, Kim S, Dai X, Jiang X. Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. SENSORS (BASEL, SWITZERLAND) 2021; 21:3540. [PMID: 34069613 PMCID: PMC8160965 DOI: 10.3390/s21103540] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
As a well-known medical imaging methodology, intravascular ultrasound (IVUS) imaging plays a critical role in diagnosis, treatment guidance and post-treatment assessment of coronary artery diseases. By cannulating a miniature ultrasound transducer mounted catheter into an artery, the vessel lumen opening, vessel wall morphology and other associated blood and vessel properties can be precisely assessed in IVUS imaging. Ultrasound transducer, as the key component of an IVUS system, is critical in determining the IVUS imaging performance. In recent years, a wide range of achievements in ultrasound transducers have been reported for IVUS imaging applications. Herein, a comprehensive review is given on recent advances in ultrasound transducers for IVUS imaging. Firstly, a fundamental understanding of IVUS imaging principle, evaluation parameters and IVUS catheter are summarized. Secondly, three different types of ultrasound transducers (piezoelectric ultrasound transducer, piezoelectric micromachined ultrasound transducer and capacitive micromachined ultrasound transducer) for IVUS imaging are presented. Particularly, the recent advances in piezoelectric ultrasound transducer for IVUS imaging are extensively examined according to their different working mechanisms, configurations and materials adopted. Thirdly, IVUS-based multimodality intravascular imaging of atherosclerotic plaque is discussed. Finally, summary and perspectives on the future studies are highlighted for IVUS imaging applications.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | | | - Xuming Dai
- Department of Cardiology, New York-Presbyterian Queens Hospital, Flushing, NY 11355, USA;
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| |
Collapse
|
15
|
Miao Y, Jing JJ, Chen Z. Graph-based rotational nonuniformity correction for localized compliance measurement in the human nasopharynx. BIOMEDICAL OPTICS EXPRESS 2021; 12:2508-2518. [PMID: 33996244 PMCID: PMC8086476 DOI: 10.1364/boe.419997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 05/11/2023]
Abstract
Recent advancements in the high-speed long-range optical coherence tomography (OCT) endoscopy allow characterization of tissue compliance in the upper airway, an indicator of collapsibility. However, the resolution and accuracy of localized tissue compliance measurement are currently limited by the lack of a reliable nonuniform rotational distortion (NURD) correction method. In this study, we developed a robust 2-step NURD correction algorithm that can be applied to the dynamic OCT images obtained during the compliance measurement. We demonstrated the utility of the NURD correction algorithm by characterizing the local compliance of nasopharynx from an awake human subject for the first time.
Collapse
Affiliation(s)
- Yusi Miao
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Joseph J. Jing
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
16
|
Nguyen TH, Ahsen OO, Liang K, Zhang J, Mashimo H, Fujimoto JG. Correction of circumferential and longitudinal motion distortion in high-speed catheter/endoscope-based optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:226-246. [PMID: 33520383 PMCID: PMC7818954 DOI: 10.1364/boe.409074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 05/06/2023]
Abstract
Catheter/endoscope-based optical coherence tomography (OCT) is a powerful modality that visualizes structural information in luminal organs. Increases in OCT speed have reduced motion artifacts by enabling acquisition faster than or comparable to the time scales of physiological motion. However motion distortion remains a challenge because catheter/endoscope OCT imaging involves both circumferential and longitudinal scanning of tissue. This paper presents a novel image processing method to estimate and correct motion distortion in both the circumferential and longitudinal directions using a single en face image from a volumetric data set. The circumferential motion distortion is estimated and corrected using the en face image. Then longitudinal motion distortion is estimated and corrected using diversity of image features along the catheter pullback direction. Finally, the OCT volume is resampled and motion corrected. Results are presented on synthetic images and clinical OCT images of the human esophagus.
Collapse
Affiliation(s)
- Tan Huu Nguyen
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- PathAI Inc., 120 Brookline Ave, Boston, MA 02215, USA
| | - Osman Oguz Ahsen
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaicheng Liang
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Zhang
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System, MA 02130, USA
- Havard Medical School, MA 02130, USA
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Mavadia-Shukla J, Zhang J, Li K, Li X. Stick-slip nonuniform rotation distortion correction in distal scanning optical coherence tomography catheters. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2020; 13:2050030. [PMID: 39736897 PMCID: PMC11684757 DOI: 10.1142/s1793545820500303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
We present a robust and fiducial-marker-free algorithm that can identify and correct stick-slip distortion caused by nonuniform rotation (or beam scanning) in distally scanned catheters for endoscopic optical coherence tomography (OCT) images. This algorithm employs spatial frequency analysis to select and remove distortions. We demonstrate the feasibility of this algorithm on images acquired from ex vivo rat colon with a distally scanned DC motor-based endoscope. The proposed algorithm can be applied to general endoscopic OCT images for correcting nonuniform rotation distortion.
Collapse
Affiliation(s)
- Jessica Mavadia-Shukla
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jianlin Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kaiyan Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Munding CE, Chérin E, Alves N, Goertz DE, Courtney BK, Foster FS. 30/80 MHz Bidirectional Dual-Frequency IVUS Feasibility Evaluated In Vivo and for Stent Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2104-2112. [PMID: 32473846 DOI: 10.1016/j.ultrasmedbio.2020.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Although intravascular ultrasound (IVUS) is an important tool in guiding complex coronary interventions, the resolution of existing commercial IVUS devices is considerably poorer than that of optical coherence tomography. Dual-frequency IVUS (DF IVUS), incorporating a second, higher frequency transducer, has been proposed as a possible method of overcoming this limitation. Although preliminary studies have shown that DF IVUS can produce complementary images, including large-scale morphology and high detail of superficial features, it has not yet been determined that this approach would be feasible in a more clinically relevant environment. The purpose of this study was to demonstrate the first in vivo use of a 30/80 MHz DF IVUS catheter in visualizing coronary vessels in a porcine model. In addition, two commercially available stents were studied in vitro and in vivo. Clear subjective improvement of visualization of superficial structures is demonstrated, and sufficient dynamic range is achieved to image through both the catheter sheath and blood in vivo.
Collapse
Affiliation(s)
- Chelsea E Munding
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | | | | | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Brian K Courtney
- Sunnybrook Research Institute, Toronto, ON, Canada; Schulich Heart Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Conavi Medical Inc., Toronto, ON, Canada
| | - F Stuart Foster
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
19
|
Maltais-Tariant R, Boudoux C, Uribe-Patarroyo N. Real-time co-localized OCT surveillance of laser therapy using motion corrected speckle decorrelation. BIOMEDICAL OPTICS EXPRESS 2020; 11:2925-2950. [PMID: 32637233 PMCID: PMC7316020 DOI: 10.1364/boe.385654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 05/27/2023]
Abstract
We present a system capable of real-time delivery and monitoring of laser therapy by imaging with optical coherence tomography (OCT) through a double-clad fiber (DCF). A double-clad fiber coupler is used to inject and collect OCT light into the core of a DCF and inject the therapy light into its larger inner cladding, allowing for both imaging and therapy to be perfectly coregistered. Monitoring of treatment depth is achieved by calculating the speckle intensity decorrelation occurring during tissue coagulation. Furthermore, an analytical noise correction was used on the correlation to extend the maximum monitoring depth. We also present a method for correcting motion-induced decorrelation using a lookup table. Using the value of the noise- and motion-corrected correlation coefficient in a novel approach, our system is capable of identifying the depth of thermal coagulation in real time and automatically shut the therapy laser off when the targeted depth is reached. The process is demonstrated ex vivo in rat tongue and abdominal muscles for depths ranging from 500 µm to 1000 µm with induced motion in real time.
Collapse
Affiliation(s)
- Raphaël Maltais-Tariant
- Polytechnique Montréal, Department of Engineering Physics, 2900 Boulevard Edouard-Montpetit, Montreal, Qc, Canada
| | - Caroline Boudoux
- Polytechnique Montréal, Department of Engineering Physics, 2900 Boulevard Edouard-Montpetit, Montreal, Qc, Canada
- Castor Optics Inc., 361 Boul Montpellier, St-Laurent, Qc, Canada
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
20
|
Uribe-Patarroyo N, Post AL, Ruiz-Lopera S, Faber DJ, Bouma BE. Noise and bias in optical coherence tomography intensity signal decorrelation. OSA CONTINUUM 2020; 3:709-741. [PMID: 34085035 PMCID: PMC8171193 DOI: 10.1364/osac.385431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Functional optical coherence tomography (OCT) imaging based on the decorrelation of the intensity signal has been used extensively in angiography and is finding use in flowmetry and therapy monitoring. In this work, we present a rigorous analysis of the autocorrelation function, introduce the concepts of contrast bias, statistical bias and variability, and identify the optimal definition of the second-order autocorrelation function (ACF) g (2) to improve its estimation from limited data. We benchmark different averaging strategies in reducing statistical bias and variability. We also developed an analytical correction for the noise contributions to the decorrelation of the ACF in OCT that extends the signal-to-noise ratio range in which ACF analysis can be used. We demonstrate the use of all the tools developed in the experimental determination of the lateral speckle size depth dependence in a rotational endoscopic probe with low NA, and we show the ability to more accurately determine the rotational speed of an endoscopic probe to implement NURD detection. We finally present g (2)-based angiography of the finger nailbed, demonstrating the improved results from noise correction and the optimal bias mitigation strategies.
Collapse
Affiliation(s)
- Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, MA 02114, USA
| | - Anouk L. Post
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- These authors contributed equally to this work and are listed in alphabetical order
| | - Sebastián Ruiz-Lopera
- Applied Optics Group, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín, Colombia
- These authors contributed equally to this work and are listed in alphabetical order
| | - Dirk J. Faber
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, MA 02114, USA
- Institute for Medical Engineering and Science, Massachussets Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
21
|
Eisel M, Strittmatter F, Ströbl S, Freymüller C, Pongratz T, Sroka R. Comparative investigation of reusable and single-use flexible endoscopes for urological interventions. Sci Rep 2020; 10:5701. [PMID: 32231344 PMCID: PMC7105476 DOI: 10.1038/s41598-020-62657-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/17/2020] [Indexed: 11/18/2022] Open
Abstract
In order to evaluate the technical adaptability of a type of disposable endoscope compared to reusable flexible endoscopes, in vitro and in vivo studies were conducted. A disposable digital ureteroscope ("chip on tip") and two reusable endoscopes were investigated with respect to spatial resolution, geometric distortion in air and water the maximum. Additionally, the clinical performance of the disposable device was tested during clinical procedures (n = 20). The disposable endoscope showed an optical resolution of 6.72 lines/mm at 10 mm distance, similar to the other devices. In comparison, the disposable endoscope showed a barrel-shaped image distortion in air of -24.2%, which is in the middle range, but was best under water (-8.6%). The bendability of 297° (275 µm fiber) and 316° (empty channel, 1.5 F basket) and the maximum irrigation (1 m: 58.1 ml/min, 2 m: 91.9 ml/min) were convincing. Clinically the maneuverability was very good in (13/20), good or satisfactory in (7/20). Visibility was evaluated as very good in (11/20), just in (1/20) either satisfactory or sufficient. The consistency of visibility was not affected in (19/20). In all cases there were no adverse events. The technical examination and clinical application of the disposable endoscope are of equal quality compared to reusable devices. Disposable endoscopes can be an alternative to reusable devices, but economic aspects such as reduction of repair costs, sterilization effort and additional waste must be taken into account.
Collapse
Affiliation(s)
- Maximilian Eisel
- Laser-Forschungslabor, LIFE-Zentrum, University Hospital of Munich, Munich, Germany.
- Department of Urology, University Hospital of Munich, Munich, Germany.
| | | | - Stephan Ströbl
- Laser-Forschungslabor, LIFE-Zentrum, University Hospital of Munich, Munich, Germany
- Department of Urology, University Hospital of Munich, Munich, Germany
| | - Christian Freymüller
- Laser-Forschungslabor, LIFE-Zentrum, University Hospital of Munich, Munich, Germany
- Department of Urology, University Hospital of Munich, Munich, Germany
| | - Thomas Pongratz
- Laser-Forschungslabor, LIFE-Zentrum, University Hospital of Munich, Munich, Germany
- Department of Urology, University Hospital of Munich, Munich, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE-Zentrum, University Hospital of Munich, Munich, Germany
- Department of Urology, University Hospital of Munich, Munich, Germany
| |
Collapse
|
22
|
Mora OC, Zanne P, Zorn L, Nageotte F, Zulina N, Gravelyn S, Montgomery P, de Mathelin M, Dallemagne B, Gora MJ. Steerable OCT catheter for real-time assistance during teleoperated endoscopic treatment of colorectal cancer. BIOMEDICAL OPTICS EXPRESS 2020; 11:1231-1243. [PMID: 32206405 PMCID: PMC7075597 DOI: 10.1364/boe.381357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 05/06/2023]
Abstract
When detected early, colorectal cancer can be treated with minimally invasive flexible endoscopy. However, since only specialized experts can delineate margins and perform endoscopic resections of lesions, patients still often undergo colon resections. To better assist in the performance of surgical tasks, a robotized flexible interventional endoscope was previously developed, having two additional side channels for surgical instrument. We propose to enhance the imaging capabilities of this device by combining it with optical coherence tomography (OCT). For this purpose, we have developed a new steerable OCT instrument with an outer diameter of 3.5 mm. The steerable instrument is terminated with a 2 cm long transparent sheath to allow three-dimensional OCT imaging using a side-focusing optical probe with two external scanning actuators. The instrument is connected to an OCT imaging system built around the OCT Axsun engine, with a 1310 nm center wavelength swept source laser and 100 kHz A-line rate. Once inserted in one of the side channels of the robotized endoscope, bending, rotation and translation of the steerable OCT instrument can be controlled by a physician using a joystick. Ex vivo and in vivo tests show that the novel, steerable and teleoperated OCT device enhances dexterity, allowing for inspection of the surgical field without the need for changing the position of the main endoscope.
Collapse
Affiliation(s)
- Oscar Caravaca Mora
- ICube Laboratory, CNRS, Strasbourg University, 4, rue Kirschleger - 67085 Strasbourg Cedex, France
| | - Philippe Zanne
- ICube Laboratory, CNRS, Strasbourg University, 4, rue Kirschleger - 67085 Strasbourg Cedex, France
| | - Lucile Zorn
- ICube Laboratory, CNRS, Strasbourg University, 4, rue Kirschleger - 67085 Strasbourg Cedex, France
| | - Florent Nageotte
- ICube Laboratory, CNRS, Strasbourg University, 4, rue Kirschleger - 67085 Strasbourg Cedex, France
| | - Natalia Zulina
- ICube Laboratory, CNRS, Strasbourg University, 4, rue Kirschleger - 67085 Strasbourg Cedex, France
| | - Sara Gravelyn
- ICube Laboratory, CNRS, Strasbourg University, 4, rue Kirschleger - 67085 Strasbourg Cedex, France
| | - Paul Montgomery
- ICube Laboratory, CNRS, Strasbourg University, 4, rue Kirschleger - 67085 Strasbourg Cedex, France
| | - Michel de Mathelin
- ICube Laboratory, CNRS, Strasbourg University, 4, rue Kirschleger - 67085 Strasbourg Cedex, France
| | - Bernard Dallemagne
- IRCAD - Hôpitaux Universitaires - 1, place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Michalina J Gora
- ICube Laboratory, CNRS, Strasbourg University, 4, rue Kirschleger - 67085 Strasbourg Cedex, France
| |
Collapse
|
23
|
Bu R, Balakrishnan S, Price H, Zdanski C, Mitran S, Oldenburg AL. Localized compliance measurement of the airway wall using anatomic optical coherence elastography. OPTICS EXPRESS 2019; 27:16751-16766. [PMID: 31252896 PMCID: PMC6825607 DOI: 10.1364/oe.27.016751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We describe an elastographic method to circumferentially-resolve airway wall compliance using endoscopic, anatomic optical coherence tomography (aOCT) combined with an intraluminal pressure catheter. The method was first demonstrated on notched silicone phantoms of known elastic modulus under respiratory ventilation, where localized compliance measurements were validated against those predicted by finite element modeling. Then, ex vivo porcine tracheas were scanned, and the pattern of compliance was found to be consistent with histological identification of the locations of (stiff) cartilage and (soft) muscle. This quantitative method may aid in diagnosis and monitoring of collapsible airway wall tissues in obstructive respiratory disorders.
Collapse
Affiliation(s)
- Ruofei Bu
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216, USA
| | - Santosh Balakrishnan
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216, USA
| | - Hillel Price
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA
| | - Carlton Zdanski
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA
| | - Sorin Mitran
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7070, USA
| | - Amy L. Oldenburg
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| |
Collapse
|
24
|
Sanderson RW, Curatolo A, Wijesinghe P, Chin L, Kennedy BF. Finger-mounted quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2019; 10:1760-1773. [PMID: 31086702 PMCID: PMC6484987 DOI: 10.1364/boe.10.001760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/17/2019] [Accepted: 02/05/2019] [Indexed: 05/14/2023]
Abstract
We present a finger-mounted quantitative micro-elastography (QME) probe, capable of measuring the elasticity of biological tissue in a format that avails of the dexterity of the human finger. Finger-mounted QME represents the first demonstration of a wearable elastography probe. The approach realizes optical coherence tomography-based elastography by focusing the optical beam into the sample via a single-mode fiber that is fused to a length of graded-index fiber. The fiber is rigidly affixed to a 3D-printed thimble that is mounted on the finger. Analogous to manual palpation, the probe compresses the tissue through the force exerted by the finger. The resulting deformation is measured using optical coherence tomography. Elasticity is estimated as the ratio of local stress at the sample surface, measured using a compliant layer, to the local strain in the sample. We describe the probe fabrication method and the signal processing developed to achieve accurate elasticity measurements in the presence of motion artifact. We demonstrate the probe's performance in motion-mode scans performed on homogeneous, bi-layer and inclusion phantoms and its ability to measure a thermally-induced increase in elasticity in ex vivo muscle tissue. In addition, we demonstrate the ability to acquire 2D images with the finger-mounted probe where lateral scanning is achieved by swiping the probe across the sample surface.
Collapse
Affiliation(s)
- Rowan W. Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Andrea Curatolo
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
- Current address: Visual Optics and Biophotonics Group, Instituto de Óptica “Daza de Valdés”, Consejo Superior de Investigaciones Cientificas (IO, CSIC), C/Serrano, 121, Madrid 28006, Spain
| | - Philip Wijesinghe
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
- Current address: SUPA, School of Physics and Astronomy, University of St. Andrews, KY16 9SS, UK
| | - Lixin Chin
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| |
Collapse
|
25
|
Lo WCY, Uribe-Patarroyo N, Hoebel K, Beaudette K, Villiger M, Nishioka NS, Vakoc BJ, Bouma BE. Balloon catheter-based radiofrequency ablation monitoring in porcine esophagus using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:2067-2089. [PMID: 31086717 PMCID: PMC6484999 DOI: 10.1364/boe.10.002067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
We present a microscopic image guidance platform for radiofrequency ablation (RFA) using a clinical balloon-catheter-based optical coherence tomography (OCT) system, currently used in the surveillance of Barrett's esophagus patients. Our integrated thermal therapy delivery and monitoring platform consists of a flexible, customized bipolar RFA electrode array designed for use with a clinical balloon OCT catheter and a processing algorithm to accurately map the thermal coagulation process. Non-uniform rotation distortion was corrected using a feature tracking-based technique, which enables robust, frame-to-frame analysis of the temporal fluctuation of the complex OCT signal. With proper noise calibration, precise delineation of the thermal therapy zone was demonstrated using cumulative complex differential variance in porcine esophagus ex vivo with the integrated OCT-RFA system, as validated by nitroblue tetrazolium chloride (NBTC) histology. The ability to directly and accurately visualize the thermal coagulation process at high resolution is critical to the precise delivery of thermal energy to a wide range of epithelial lesions.
Collapse
Affiliation(s)
- William C Y Lo
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Katharina Hoebel
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Kathy Beaudette
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Norman S Nishioka
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Department of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Benjamin J Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Brett E Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
26
|
Li K, Liang W, Mavadia-Shukla J, Park HC, Li D, Yuan W, Wan S, Li X. Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus. JOURNAL OF BIOPHOTONICS 2019; 12:e201800205. [PMID: 30302923 PMCID: PMC6416074 DOI: 10.1002/jbio.201800205] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/08/2018] [Indexed: 05/19/2023]
Abstract
Endoscopic optical coherence tomography (OCT) is a noninvasive technology allowing for imaging of tissue microanatomies of luminal organs in real time. Conventional endoscopic OCT operates at 1300 nm wavelength region with a suboptimal axial resolution limited to 8-20 μm. In this paper, we present the first ultrahigh-resolution tethered OCT capsule operating at 800 nm and offering about 3- to 4-fold improvement of axial resolution (plus enhanced imaging contrast). The capsule uses diffractive optics to manage chromatic aberration over a full ~200 nm spectral bandwidth centering around 830 nm, enabling to achieve super-achromaticity and an axial resolution of ~2.6 μm in air. The performance of the OCT capsule is demonstrated by volumetric imaging of swine esophagus ex vivo and sheep esophagus in vivo, where fine anatomic structures including the sub-epithelial layers are clearly identified. The ultrahigh resolution and excellent imaging contrast at 800 nm of the tethered capsule suggest the potential of the technology as an enabling tool for surveillance of early esophageal diseases on awake patients without the need for sedation.
Collapse
Affiliation(s)
| | - Wenxuan Liang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA 21205
| | - Jessica Mavadia-Shukla
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA 21205
| | - Hyeon-Cheol Park
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA 21205
| | - Dawei Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA 21205
| | - Wu Yuan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA 21205
| | - Suiren Wan
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China 210096
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA 21205
| |
Collapse
|
27
|
Computer-Aided Analysis of Gland-Like Subsurface Hyposcattering Structures in Barrett’s Esophagus Using Optical Coherence Tomography. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
(1) Background: Barrett’s esophagus (BE) is a complication of chronic gastroesophageal reflux disease and is a precursor to esophageal adenocarcinoma. The clinical implication of subsurface glandular structures of Barrett’s esophagus is not well understood. Optical coherence tomography (OCT), also known as volumetric laser endomicroscopy (VLE), can assess subsurface glandular structures, which appear as subsurface hyposcattering structures (SHSs). The aim of this study is to develop a computer-aided algorithm and apply it to investigate the characteristics of SHSs in BE using clinical VLE data; (2) Methods: SHSs were identified with an initial detection followed by machine learning. Comprehensive SHS characteristics including the number, volume, depth, size and shape were quantified. Clinical VLE datasets collected from 35 patients with a history of dysplasia undergoing BE surveillance were analyzed to study the general SHS distribution and characteristics in BE. A subset of radiofrequency ablation (RFA) patient data were further analyzed to investigate the pre-RFA SHS characteristics and post-RFA treatment response; (3) Results: SHSs in the BE region were significantly shallower, more vertical, less eccentric, and more regular, as compared with squamous SHSs. SHSs in the BE region which became neosquamous epithelium after RFA were shallower than those in the regions that remained BE. Pre-ablation squamous SHSs with higher eccentricity correlated strongly with larger reduction of post-ablation BE length for less elderly patients; (4) Conclusions: The computer algorithm is potentially a valuable tool for studying the roles of SHSs in BE.
Collapse
|
28
|
Peng J, Ma L, Li X, Tang H, Li Y, Chen S. A Novel Synchronous Micro Motor for Intravascular Ultrasound Imaging. IEEE Trans Biomed Eng 2018; 66:802-809. [PMID: 30028687 DOI: 10.1109/tbme.2018.2856930] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Intravascular ultrasound (IVUS) is an important method for evaluating lumen dimensions and guiding intervention. However, the current IVUS catheter using a proximal motor and flexible drive shaft is easily rotated at an unstable speed when it passes through along bending vessel. One approach to solve this problem is to develop a catheter driven by a distal motor. METHODS This paper presents a rotation device incorporating a high-frequency transducer as an attempt to facilitate this approach. A novel micro distal synchronous micro motor with 3.7 mm length and 1.2 mm outer diameter was proposed as an actuator for the IVUS catheter. A 0.5 mm × 0.5 mm Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal 1-3 composite single-element transducer was designed and manufactured. The probe is fixed to the front end of the catheter. The 45° reflector, which is opposite to the probe, was used to steer ultrasound to the tissue. RESULTS The results showed that the maximum torque and rotation speed of the motor were 2.79 μNm and 275 revolutions per second, respectively, at a driving current of 0.34 A. The maximum angular error was 7° at 0.13 A and 30 Hz. The center frequency and -6 dB fractional bandwidth of single element were 34 MHz and 72%, respectively. At the center frequency, the two-way insertion loss was 14 dB. CONCLUSION The integrated distal motor IVUS catheter, with small dimensions, a good torque, speed stability, and good ultrasound imaging performance, has tremendous potential in blood vessel imaging. SIGNIFICANCE The novel structure of the catheter could facilitate endoluminal sonography, reducing risks of the clinical diagnosis.
Collapse
|
29
|
Harlow M, MacAulay C, Lane P, Lee AMD. Dual-beam manually actuated distortion-corrected imaging (DMDI): two dimensional scanning with a single-axis galvanometer. OPTICS EXPRESS 2018; 26:18758-18772. [PMID: 30114048 DOI: 10.1364/oe.26.018758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We recently demonstrated a new two-dimensional imaging paradigm called dual-beam manually actuated distortion-corrected imaging (DMDI). This technique uses a single mechanical scanner and two spatially separated beams to determine relative sample velocity and simultaneously corrects image distortions due to manual actuation. DMDI was first demonstrated using a rotating dual-beam micromotor catheter. Here, we present a new implementation of DMDI using a single axis galvanometer to scan a pair of beams in approximately parallel lines onto a sample. Furthermore, we present a method for automated distortion correction based on frame co-registration between images acquired by the two beams. Distortion correction is possible for manually actuated motion both perpendicular and parallel to the galvanometer-scanned lines. Using en face OCT as the imaging modality, we demonstrate DMDI and the automated distortion correction algorithm for imaging a printed paper phantom, a dragon fruit, and a fingerprint.
Collapse
|
30
|
Cuartas-Vélez C, Restrepo R, Bouma BE, Uribe-Patarroyo N. Volumetric non-local-means based speckle reduction for optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2018; 9:3354-3372. [PMID: 29984102 PMCID: PMC6033569 DOI: 10.1364/boe.9.003354] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 05/19/2023]
Abstract
We present a novel tomographic non-local-means based despeckling technique, TNode, for optical coherence tomography. TNode is built upon a weighting similarity criterion derived for speckle in a three-dimensional similarity window. We present an implementation using a two-dimensional search window, enabling the despeckling of volumes in the presence of motion artifacts, and an implementation using a three-dimensional window with improved performance in motion-free volumes. We show that our technique provides effective speckle reduction, comparable with B-scan compounding or out-of-plane averaging, while preserving isotropic resolution, even to the level of speckle-sized structures. We demonstrate its superior despeckling performance in a phantom data set, and in an ophthalmic data set we show that small, speckle-sized retinal vessels are clearly preserved in intensity images en-face and in two orthogonal, cross-sectional views. TNode does not rely on dictionaries or segmentation and therefore can readily be applied to arbitrary optical coherence tomography volumes. We show that despeckled esophageal volumes exhibit improved image quality and detail, even in the presence of significant motion artifacts.
Collapse
Affiliation(s)
- Carlos Cuartas-Vélez
- Applied Optics Group, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín,
Colombia
| | - René Restrepo
- Applied Optics Group, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín,
Colombia
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114,
USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142,
USA
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114,
USA
| |
Collapse
|
31
|
Jelvehgaran P, de Bruin DM, Salguero FJ, Borst GR, Song JY, van Leeuwen TG, de Boer JF, Alderliesten T, van Herk M. Feasibility of using optical coherence tomography to detect acute radiation-induced esophageal damage in small animal models. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-12. [PMID: 29651825 DOI: 10.1117/1.jbo.23.4.046004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/26/2018] [Indexed: 05/25/2023]
Abstract
Lung cancer survival is poor, and radiation therapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to acute radiation-induced esophageal damage (ARIED). We investigated the feasibility of optical coherence tomography (OCT) for minimally invasive imaging of the esophagus with high resolution (10 μm) to detect ARIED in mice. Thirty mice underwent cone-beam computed tomography imaging for initial setup assessment and dose planning followed by a single-dose delivery of 4.0, 10.0, 16.0, and 20.0 Gy on 5.0-mm spots, spaced 10.0 mm apart in the esophagus. They were repeatedly imaged using OCT up to three months postirradiation. We compared OCT findings with histopathology obtained three months postirradiation qualitatively and quantitatively using the contrast-to-background-noise ratio (CNR). Histopathology mostly showed inflammatory infiltration and edema at higher doses; OCT findings were in agreement with most of the histopathological reports. We were able to identify the ARIED on OCT as a change in tissue scattering and layer thickness. Our statistical analysis showed significant difference between the CNR values of healthy tissue, edema, and inflammatory infiltration. Overall, the average CNR for inflammatory infiltration and edema damages was 1.6-fold higher and 1.6-fold lower than for the healthy esophageal wall, respectively. Our results showed the potential role of OCT to detect and monitor the ARIED in mice, which may translate to humans.
Collapse
Affiliation(s)
- Pouya Jelvehgaran
- Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Academic Medical Center, Department of Radiation Oncology, Amsterdam, The Netherlands
- Institute for Laser Life and Biophotonics Amsterdam, Department of Physics and Astronomy, Amsterdam, The Netherlands
| | - Daniel Martijn de Bruin
- Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Academic Medical Center, Department of Urology, Amsterdam, The Netherlands
| | - F Javier Salguero
- The Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam, The Netherlands
| | - Gerben Roelof Borst
- The Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam, The Netherlands
| | - Ji-Ying Song
- The Netherlands Cancer Institute, Department of Experimental Animal Pathology, Amsterdam, The Netherlands
| | - Ton G van Leeuwen
- Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Johannes F de Boer
- Institute for Laser Life and Biophotonics Amsterdam, Department of Physics and Astronomy, Amsterdam, The Netherlands
| | - Tanja Alderliesten
- Academic Medical Center, Department of Radiation Oncology, Amsterdam, The Netherlands
| | - Marcel van Herk
- Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- University of Manchester, Institute of Cancer Sciences, Manchester, United Kingdom
| |
Collapse
|
32
|
Lu Y, Li Z, Nan N, Bu Y, Liu X, Xu X, Wang X, Sasaki O, Wang X. Passively Driven Probe Based on Miniaturized Propeller for Intravascular Optical Coherence Tomography. Sci Rep 2018; 8:5150. [PMID: 29581592 PMCID: PMC5980104 DOI: 10.1038/s41598-018-23547-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/21/2018] [Indexed: 01/05/2023] Open
Abstract
Optical coherent tomography (OCT) has enabled clinical applications ranging from ophthalmology to cardiology that revolutionized in vivo medical diagnostics in the last few decades, and a variety of endoscopic probes have been developed in order to meet the needs of various endoscopic OCT imaging. We propose a passive driven intravascular optical coherent tomography (IV-OCT) probe in this paper. Instead of using any electrically driven scanning device, the probe makes use of the kinetic energy of the fluid that flushes away the blood during the intravascular optical coherence tomography imaging. The probe converts it into the rotational kinetic energy of the propeller, and the rotation of the rectangular prism mounted on the propeller shaft enables the scanning of the beam. The probe is low cost, and enables unobstructed stable circumferential scanning over 360 deg. The experimental results show that the probe scanning speed can exceed 100 rotations per second (rps). Spectral-domain OCT imaging of a phantom and porcine cardiac artery are demonstrated with axial resolution of 13.6 μm, lateral resolution of 22 μm, and sensitivity of 101.7 dB. We present technically the passively driven IV-OCT probe in full detail and discuss how to optimize the probe in further.
Collapse
Affiliation(s)
- Yu Lu
- Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongliang Li
- Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Nan Nan
- Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yang Bu
- Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai, 200065, China
| | - Xiangdong Xu
- Cardiovascular department, Central hospital of Jiading District, Hospital affiliated to shanghai university of medicine and health sciences, Shanghai, 201800, China
| | - Xuan Wang
- Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Osami Sasaki
- Faculty of Engineering, Niigata University, Niigata-shi, 9502181, Japan
| | - Xiangzhao Wang
- Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Liang K, Wang Z, Ahsen OO, Lee HC, Potsaid BM, Jayaraman V, Cable A, Mashimo H, Li X, Fujimoto JG. Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo. OPTICA 2018; 5:36-43. [PMID: 29682598 PMCID: PMC5909979 DOI: 10.1364/optica.5.000036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/27/2017] [Indexed: 05/18/2023]
Abstract
Devices that perform wide field-of-view (FOV) precision optical scanning are important for endoscopic assessment and diagnosis of luminal organ disease such as in gastroenterology. Optical scanning for in vivo endoscopic imaging has traditionally relied on one or more proximal mechanical actuators, limiting scan accuracy and imaging speed. There is a need for rapid and precise two-dimensional (2D) microscanning technologies to enable the translation of benchtop scanning microscopies to in vivo endoscopic imaging. We demonstrate a new cycloid scanner in a tethered capsule for ultrahigh speed, side-viewing optical coherence tomography (OCT) endomicroscopy in vivo. The cycloid capsule incorporates two scanners: a piezoelectrically actuated resonant fiber scanner to perform a precision, small FOV, fast scan and a micromotor scanner to perform a wide FOV, slow scan. Together these scanners distally scan the beam circumferentially in a 2D cycloid pattern, generating an unwrapped 1 mm × 38 mm strip FOV. Sequential strip volumes can be acquired with proximal pullback to image centimeter-long regions. Using ultrahigh speed 1.3 μm wavelength swept-source OCT at a 1.17 MHz axial scan rate, we imaged the human rectum at 3 volumes/s. Each OCT strip volume had 166 × 2322 axial scans with 8.5 μm axial and 30 μm transverse resolution. We further demonstrate OCT angiography at 0.5 volumes/s, producing volumetric images of vasculature. In addition to OCT applications, cycloid scanning promises to enable precision 2D optical scanning for other imaging modalities, including fluorescence confocal and nonlinear microscopy.
Collapse
Affiliation(s)
- Kaicheng Liang
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zhao Wang
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Osman O. Ahsen
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hsiang-Chieh Lee
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Benjamin M. Potsaid
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Thorlabs, Newton, New Jersey 07860, USA
| | | | | | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
34
|
Abouei E, Lee AMD, Pahlevaninezhad H, Hohert G, Cua M, Lane P, Lam S, MacAulay C. Correction of motion artifacts in endoscopic optical coherence tomography and autofluorescence images based on azimuthal en face image registration. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-13. [PMID: 29302954 DOI: 10.1117/1.jbo.23.1.016004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/12/2017] [Indexed: 05/23/2023]
Abstract
We present a method for the correction of motion artifacts present in two- and three-dimensional in vivo endoscopic images produced by rotary-pullback catheters. This method can correct for cardiac/breathing-based motion artifacts and catheter-based motion artifacts such as nonuniform rotational distortion (NURD). This method assumes that en face tissue imaging contains slowly varying structures that are roughly parallel to the pullback axis. The method reduces motion artifacts using a dynamic time warping solution through a cost matrix that measures similarities between adjacent frames in en face images. We optimize and demonstrate the suitability of this method using a real and simulated NURD phantom and in vivo endoscopic pulmonary optical coherence tomography and autofluorescence images. Qualitative and quantitative evaluations of the method show an enhancement of the image quality.
Collapse
Affiliation(s)
- Elham Abouei
- University of British Columbia, Department of Physics and Astronomy, Vancouver, British Columbia, Canada
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Anthony M D Lee
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Hamid Pahlevaninezhad
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Geoffrey Hohert
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Michelle Cua
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Pierre Lane
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Stephen Lam
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| | - Calum MacAulay
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, British Colu, Canada
| |
Collapse
|
35
|
Li J, Quirk BC, Noble PB, Kirk RW, Sampson DD, McLaughlin RA. Flexible needle with integrated optical coherence tomography probe for imaging during transbronchial tissue aspiration. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-5. [PMID: 29022301 DOI: 10.1117/1.jbo.22.10.106002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Transbronchial needle aspiration (TBNA) of small lesions or lymph nodes in the lung may result in nondiagnostic tissue samples. We demonstrate the integration of an optical coherence tomography (OCT) probe into a 19-gauge flexible needle for lung tissue aspiration. This probe allows simultaneous visualization and aspiration of the tissue. By eliminating the need for insertion and withdrawal of a separate imaging probe, this integrated design minimizes the risk of dislodging the needle from the lesion prior to aspiration and may facilitate more accurate placement of the needle. Results from in situ imaging in a sheep lung show clear distinction between solid tissue and two typical constituents of nondiagnostic samples (adipose and lung parenchyma). Clinical translation of this OCT-guided aspiration needle holds promise for improving the diagnostic yield of TBNA.
Collapse
Affiliation(s)
- Jiawen Li
- University of Adelaide, Adelaide Medical School, Australian Research Council Centre of Excellence fo, Australia
- University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
| | - Bryden C Quirk
- University of Adelaide, Adelaide Medical School, Australian Research Council Centre of Excellence fo, Australia
- University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
| | - Peter B Noble
- University of Western Australia, School of Human Sciences, Perth, Western Australia, Australia
- University of Western Australia, School of Paediatrics and Child Health, Centre for Neonatal Researc, Australia
| | - Rodney W Kirk
- University of Adelaide, Adelaide Medical School, Australian Research Council Centre of Excellence fo, Australia
- University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
| | - David D Sampson
- University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+, Australia
- University of Western Australia, Centre for Microscopy, Characterisation and Analysis, Perth, Wester, Australia
| | - Robert A McLaughlin
- University of Adelaide, Adelaide Medical School, Australian Research Council Centre of Excellence fo, Australia
- University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Fu L, Su Y, Wang Y, Chen L, Li W, Wang H, Li Z, Steve Yao X. Rapid measurement of transversal flow velocity vector with high spatial resolution using speckle decorrelation optical coherence tomography. OPTICS LETTERS 2017; 42:3545-3548. [PMID: 28914896 DOI: 10.1364/ol.42.003545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
We propose and demonstrate a novel method that uses only three sets of B-scans to accurately determine both the direction and the speed of a transversal flow using speckle decorrelation optical coherence tomography. Our tri-scan method has the advantages of high measurement speed, high spatial resolution, and insensitivity to the flow speed. By introducing error maps, we show that the flow angle inaccuracy can be minimized by choosing the measurement result with a lesser error between results obtained from the x- and y-scans. Finally, we demonstrate that the flow angle measurement accuracy can be further improved for the high-speed flows by increasing the speed of the x- and y-scans.
Collapse
|
37
|
Lee AMD, Hohert G, Angkiriwang PT, MacAulay C, Lane P. Dual-beam manually-actuated distortion-corrected imaging (DMDI) with micromotor catheters. OPTICS EXPRESS 2017; 25:22164-22177. [PMID: 29041505 DOI: 10.1364/oe.25.022164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/18/2017] [Indexed: 05/23/2023]
Abstract
We present a new paradigm for performing two-dimensional scanning called dual-beam manually-actuated distortion-corrected imaging (DMDI). DMDI operates by imaging the same object with two spatially-separated beams that are being mechanically scanned rapidly in one dimension with slower manual actuation along a second dimension. Registration of common features between the two imaging channels allows remapping of the images to correct for distortions due to manual actuation. We demonstrate DMDI using a 4.7 mm OD rotationally scanning dual-beam micromotor catheter (DBMC). The DBMC requires a simple, one-time calibration of the beam paths by imaging a patterned phantom. DMDI allows for distortion correction of non-uniform axial speed and rotational motion of the DBMC. We show the utility of this technique by demonstrating en face OCT image distortion correction of a manually-scanned checkerboard phantom and fingerprint scan.
Collapse
|
38
|
Liang K, Ahsen OO, Wang Z, Lee HC, Liang W, Potsaid BM, Tsai TH, Giacomelli MG, Jayaraman V, Mashimo H, Li X, Fujimoto JG. Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source. OPTICS LETTERS 2017; 42:3193-3196. [PMID: 28809905 PMCID: PMC5875690 DOI: 10.1364/ol.42.003193] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/20/2017] [Indexed: 05/20/2023]
Abstract
Endoscopic optical coherence tomography (OCT) instruments are mostly side viewing and rely on at least one proximal scan, thus limiting accuracy of volumetric imaging and en face visualization. Previous forward-viewing OCT devices had limited axial scan speeds. We report a forward-viewing fiber scanning 3D-OCT probe with 900 μm field of view and 5 μm transverse resolution, imaging at 1 MHz axial scan rate in the human gastrointestinal tract. The probe is 3.3 mm diameter and 20 mm rigid length, thus enabling passage through the endoscopic channel. The scanner has 1.8 kHz resonant frequency, and each volumetric acquisition takes 0.17 s with 2 volumes/s display. 3D-OCT and angiography imaging of the colon was performed during surveillance colonoscopy.
Collapse
Affiliation(s)
- Kaicheng Liang
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Osman O. Ahsen
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zhao Wang
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hsiang-Chieh Lee
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wenxuan Liang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Benjamin M. Potsaid
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Thorlabs, Newton, New Jersey 07860, USA
| | - Tsung-Han Tsai
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michael G. Giacomelli
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
39
|
Gora MJ, Suter MJ, Tearney GJ, Li X. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2405-2444. [PMID: 28663882 PMCID: PMC5480489 DOI: 10.1364/boe.8.002405] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed.
Collapse
Affiliation(s)
- Michalina J Gora
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- ICube Laboratory, CNRS, Strasbourg University, 1 Place de l'Hopital, Strasbourg 67091, France
| | - Melissa J Suter
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Xingde Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, and Department of Oncology, Johns Hopkins University, 720 Rutland Avenue, Traylor 710, Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Bouma BE, Villiger M, Otsuka K, Oh WY. Intravascular optical coherence tomography [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2660-2686. [PMID: 28663897 PMCID: PMC5480504 DOI: 10.1364/boe.8.002660] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/03/2023]
Abstract
Shortly after the first demonstration of optical coherence tomography for imaging the microstructure of the human eye, work began on developing systems and catheters suitable for intravascular imaging in order to diagnose and investigate atherosclerosis and potentially to monitor therapy. This review covers the driving considerations of the clinical application and its constraints, the major engineering milestones that enabled the current, high-performance commercial imaging systems, the key studies that laid the groundwork for image interpretation, and the clinical research that traces intravascular optical coherence tomography (OCT) from early human pilot studies to current clinical trials.
Collapse
Affiliation(s)
- Brett E Bouma
- Harvard Medical School and Massachusetts General Hospital, Boston, MA 02171, USA
- Institute for Medical Engineering and Science, Cambridge, MA, 02139, USA
| | - Martin Villiger
- Harvard Medical School and Massachusetts General Hospital, Boston, MA 02171, USA
| | - Kenichiro Otsuka
- Harvard Medical School and Massachusetts General Hospital, Boston, MA 02171, USA
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
- KI for Health Science and Technology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
41
|
Bu R, Balakrishnan S, Iftimia N, Price H, Zdanski C, Oldenburg AL. Airway compliance measured by anatomic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:2195-2209. [PMID: 28736665 PMCID: PMC5516819 DOI: 10.1364/boe.8.002195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/16/2017] [Accepted: 03/10/2017] [Indexed: 05/25/2023]
Abstract
Quantification of airway compliance can aid in the diagnosis and treatment of obstructive airway disorders by detecting regions vulnerable to collapse. Here we evaluate the ability of a swept-source anatomic optical coherence tomography (SSaOCT) system to quantify airway cross-sectional compliance (CC) by measuring changes in the luminal cross-sectional area (CSA) under physiologically relevant pressures of 10-40 cmH2O. The accuracy and precision of CC measurements are determined using simulations of non-uniform rotation distortion (NURD) endemic to endoscopic scanning, and experiments performed in a simplified tube phantom and ex vivo porcine tracheas. NURD simulations show that CC measurements are typically more accurate than that of the CSAs from which they are derived. Phantom measurements of CSA versus pressure exhibit high linearity (R2>0.99), validating the dynamic range of the SSaOCT system. Tracheas also exhibited high linearity (R2 = 0.98) suggestive of linear elasticity, while CC measurements were obtained with typically ± 12% standard error.
Collapse
Affiliation(s)
- Ruofei Bu
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216, USA
| | - Santosh Balakrishnan
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216, USA
| | - Nicusor Iftimia
- Physical Sciences Inc., New England Business Center, Andover, MA 01810, USA
| | - Hillel Price
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA
| | - Carlton Zdanski
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7070, USA
| | - Amy L. Oldenburg
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
42
|
Lee HC, Ahsen OO, Liang K, Wang Z, Cleveland C, Booth L, Potsaid B, Jayaraman V, Cable AE, Mashimo H, Langer R, Traverso G, Fujimoto JG. Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter. BIOMEDICAL OPTICS EXPRESS 2016; 7:2927-42. [PMID: 27570688 PMCID: PMC4986804 DOI: 10.1364/boe.7.002927] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 05/18/2023]
Abstract
We demonstrate a micromotor balloon imaging catheter for ultrahigh speed endoscopic optical coherence tomography (OCT) which provides wide area, circumferential structural and angiographic imaging of the esophagus without contrast agents. Using a 1310 nm MEMS tunable wavelength swept VCSEL light source, the system has a 1.2 MHz A-scan rate and ~8.5 µm axial resolution in tissue. The micromotor balloon catheter enables circumferential imaging of the esophagus at 240 frames per second (fps) with a ~30 µm (FWHM) spot size. Volumetric imaging is achieved by proximal pullback of the micromotor assembly within the balloon at 1.5 mm/sec. Volumetric data consisting of 4200 circumferential images of 5,000 A-scans each over a 2.6 cm length, covering a ~13 cm(2) area is acquired in <18 seconds. A non-rigid image registration algorithm is used to suppress motion artifacts from non-uniform rotational distortion (NURD), cardiac motion or respiration. En face OCT images at various depths can be generated. OCT angiography (OCTA) is computed using intensity decorrelation between sequential pairs of circumferential scans and enables three-dimensional visualization of vasculature. Wide area volumetric OCT and OCTA imaging of the swine esophagus in vivo is demonstrated.
Collapse
Affiliation(s)
- Hsiang-Chieh Lee
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Osman Oguz Ahsen
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Kaicheng Liang
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Zhao Wang
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Cody Cleveland
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA, USA
- Brigham and Women’s Hospital, Boston MA, USA
| | - Lucas Booth
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Benjamin Potsaid
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
- Advanced Imaging Group, Thorlabs Inc., Newton NJ, USA
| | | | - Alex E. Cable
- Advanced Imaging Group, Thorlabs Inc., Newton NJ, USA
| | - Hiroshi Mashimo
- Harvard Medical School, Boston, MA, USA
- Veterans Affairs Boston Healthcare System, Boston MA, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA, USA
- Brigham and Women’s Hospital, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
| | - James G. Fujimoto
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
| |
Collapse
|