1
|
Jiao C, Liao J, He S. An aberration-free line scan confocal Raman imager and type classification and distribution detection of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134191. [PMID: 38579584 DOI: 10.1016/j.jhazmat.2024.134191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
An aberration-free line scanning confocal Raman imager (named AFLSCRI) is developed to achieve rapid Raman imaging. As an application example, various types and sizes of MPs are identified through Raman imaging combined with a machine learning algorithm. The system has excellent performance with a spatial resolution of 2 µm and spectral resolution of 4 cm-1. Compared to traditional point-scanning Raman imaging systems, the detection speed is improved by 2 orders of magnitude. The pervasive nature of MPs results in their infiltration into the food chain, raising concerns for human health due to the potential for chemical leaching and the introduction of persistent organic pollutants. We conducted a series of experiments on various types and sizes of MPs. The system can give a classification accuracy of 98% for seven different types of plastics, and Raman imaging and species identification for MPs as small as 1 µm in diameter were achieved. We also identified toxic and harmful substances remaining in plastics, such as Dioctyl Phthalate (DOP) residues. This demonstrates a strong performance in microplastic species identification, size recognition and identification of hazardous substance contamination in microplastics.
Collapse
Affiliation(s)
- Changwei Jiao
- Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China; Taizhou Hospital, Zhejiang University, Taizhou, China
| | - Jiaqi Liao
- Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
| | - Sailing He
- Taizhou Hospital, Zhejiang University, Taizhou, China; National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China; Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, 100 44 Stockholm, Sweden.
| |
Collapse
|
2
|
Kaniyala Melanthota S, Kistenev YV, Borisova E, Ivanov D, Zakharova O, Boyko A, Vrazhnov D, Gopal D, Chakrabarti S, K SP, Mazumder N. Types of spectroscopy and microscopy techniques for cancer diagnosis: a review. Lasers Med Sci 2022; 37:3067-3084. [PMID: 35834141 PMCID: PMC9525344 DOI: 10.1007/s10103-022-03610-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Cancer is a life-threatening disease that has claimed the lives of many people worldwide. With the current diagnostic methods, it is hard to determine cancer at an early stage, due to its versatile nature and lack of genomic biomarkers. The rapid development of biophotonics has emerged as a potential tool in cancer detection and diagnosis. Using the fluorescence, scattering, and absorption characteristics of cells and tissues, it is possible to detect cancer at an early stage. The diagnostic techniques addressed in this review are highly sensitive to the chemical and morphological changes in the cell and tissue during disease progression. These changes alter the fluorescence signal of the cell/tissue and are detected using spectroscopy and microscopy techniques including confocal and two-photon fluorescence (TPF). Further, second harmonic generation (SHG) microscopy reveals the morphological changes that occurred in non-centrosymmetric structures in the tissue, such as collagen. Again, Raman spectroscopy is a non-destructive method that provides a fingerprinting technique to differentiate benign and malignant tissue based on Raman signal. Photoacoustic microscopy and spectroscopy of tissue allow molecule-specific detection with high spatial resolution and penetration depth. In addition, terahertz spectroscopic studies reveal the variation of tissue water content during disease progression. In this review, we address the applications of spectroscopic and microscopic techniques for cancer detection based on the optical properties of the tissue. The discussed state-of-the-art techniques successfully determines malignancy to its rapid diagnosis.
Collapse
Affiliation(s)
- Sindhoora Kaniyala Melanthota
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Yury V Kistenev
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
- Central Research Laboratory, Siberian State Medical University, Tomsk, 634050, Russia
| | - Ekaterina Borisova
- Laboratory of Biophotonics, Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd, 72, 1784, Sofia, Bulgaria.
- Biology Faculty, Saratov State University, 83, Astrakhanskaya Str, 410012, Saratov, Russia.
| | - Deyan Ivanov
- Laboratory of Biophotonics, Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd, 72, 1784, Sofia, Bulgaria
| | - Olga Zakharova
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Andrey Boyko
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Denis Vrazhnov
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Dharshini Gopal
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Shweta Chakrabarti
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Shama Prasada K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
3
|
Mazaheri L, Jelken J, Avilés MO, Legge S, Lagugné-Labarthet F. Investigating the Performances of Wide-Field Raman Microscopy with Stochastic Optical Reconstruction Post-Processing. APPLIED SPECTROSCOPY 2022; 76:340-351. [PMID: 35128956 PMCID: PMC8915227 DOI: 10.1177/00037028211056975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/07/2021] [Indexed: 05/25/2023]
Abstract
Super-resolution fluorescence microscopy based on localization algorithms has tremendously impacted the field of imaging by improving the spatial resolution of optical measurements with specific blinking fluorophores and concomitant reduction of acquisition time. In vibrational spectroscopy and imaging, various methods have been developed to surpass the diffraction limit including near-field scattering methods, such as in tip-enhanced Raman and infrared spectroscopies. Although these scanning-probe techniques can provide exquisite spatial resolution, they often require long acquisition times and tedious fabrication of nano-scale scanning probes. Herein, stochastic optical reconstruction microscopy (STORM) protocol is applied on Raman measurements acquired using a wide-field home-built microscopy setup. We explore how the fluctuations of the Raman signal acquired over a series of time-lapse images at specific spectral ranges can be exploited with STORM processing, possibly revealing details with improved spatial resolution, under lower irradiance and with faster acquisition speed that cannot be achieved in point scanning mode over the same field of view. Samples studied here include patterned silicon, polystyrene microspheres on a silicon wafer, and graphene on a silicon/silicon dioxide substrate. The outcome presents an effective way to collect Raman images at selected spectral ranges with spatial resolutions of ∼200 nm over a large field of view under 532 nm excitation together with an acquisition speed improved by two orders of magnitude and under a significantly reduced irradiance compared to confocal laser scanning acquisition.
Collapse
Affiliation(s)
| | | | | | | | - François Lagugné-Labarthet
- François Lagugné-Labarthet, Department of Chemistry, The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario (Western University), 1151 Richmond St., London, ON N6A 5B7, Canada.
| |
Collapse
|
4
|
Kenry, Nicolson F, Clark L, Panikkanvalappil SR, Andreiuk B, Andreou C. Advances in Surface Enhanced Raman Spectroscopy for in Vivo Imaging in Oncology. Nanotheranostics 2022; 6:31-49. [PMID: 34976579 PMCID: PMC8671959 DOI: 10.7150/ntno.62970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the application of surface enhanced Raman scattering (SERS) nanoparticles for preclinical cancer imaging has attracted increasing attention. Raman imaging with SERS nanoparticles offers unparalleled sensitivity, providing a platform for molecular targeting, and granting multiplexed and multimodal imaging capabilities. Recent progress has been facilitated not only by the optimization of the SERS contrast agents themselves, but also by the developments in Raman imaging approaches and instrumentation. In this article, we review the principles of Raman scattering and SERS, present advances in Raman instrumentation specific to cancer imaging, and discuss the biological means of ensuring selective in vivo uptake of SERS contrast agents for targeted, multiplexed, and multimodal imaging applications. We offer our perspective on areas that must be addressed in order to facilitate the clinical translation of SERS contrast agents for in vivo imaging in oncology.
Collapse
Affiliation(s)
- Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Chrysafis Andreou
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
Daoust F, Nguyen T, Orsini P, Bismuth J, de Denus-Baillargeon MM, Veilleux I, Wetter A, Mckoy P, Dicaire I, Massabki M, Petrecca K, Leblond F. Handheld macroscopic Raman spectroscopy imaging instrument for machine-learning-based molecular tissue margins characterization. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200306SSR. [PMID: 33580641 PMCID: PMC7880244 DOI: 10.1117/1.jbo.26.2.022911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/19/2021] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE Raman spectroscopy has been developed for surgical guidance applications interrogating live tissue during tumor resection procedures to detect molecular contrast consistent with cancer pathophysiological changes. To date, the vibrational spectroscopy systems developed for medical applications include single-point measurement probes and intraoperative microscopes. There is a need to develop systems with larger fields of view (FOVs) for rapid intraoperative cancer margin detection during surgery. AIM We design a handheld macroscopic Raman imaging system for in vivo tissue margin characterization and test its performance in a model system. APPROACH The system is made of a sterilizable line scanner employing a coherent fiber bundle for relaying excitation light from a 785-nm laser to the tissue. A second coherent fiber bundle is used for hyperspectral detection of the fingerprint Raman signal over an area of 1 cm2. Machine learning classifiers were trained and validated on porcine adipose and muscle tissue. RESULTS Porcine adipose versus muscle margin detection was validated ex vivo with an accuracy of 99% over the FOV of 95 mm2 in ∼3 min using a support vector machine. CONCLUSIONS This system is the first large FOV Raman imaging system designed to be integrated in the workflow of surgical cancer resection. It will be further improved with the aim of discriminating brain cancer in a clinically acceptable timeframe during glioma surgery.
Collapse
Affiliation(s)
- François Daoust
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Tien Nguyen
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | - Israel Veilleux
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | - Kevin Petrecca
- McGill University, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, Montreal, Quebec, Canada
| | - Frédéric Leblond
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Address all correspondence to Frédéric Leblond,
| |
Collapse
|
6
|
Picot F, Daoust F, Sheehy G, Dallaire F, Chaikho L, Bégin T, Kadoury S, Leblond F. Data consistency and classification model transferability across biomedical Raman spectroscopy systems. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.202000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Fabien Picot
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
| | - François Daoust
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
| | - Guillaume Sheehy
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
| | - Frédérick Dallaire
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
| | - Layal Chaikho
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
| | - Théophile Bégin
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
| | - Samuel Kadoury
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
| | - Frédéric Leblond
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
- Institut du Cancer de Montréal Montreal Quebec Canada
| |
Collapse
|
7
|
DePaoli D, Lemoine É, Ember K, Parent M, Prud’homme M, Cantin L, Petrecca K, Leblond F, Côté DC. Rise of Raman spectroscopy in neurosurgery: a review. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-36. [PMID: 32358930 PMCID: PMC7195442 DOI: 10.1117/1.jbo.25.5.050901] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/10/2020] [Indexed: 05/21/2023]
Abstract
SIGNIFICANCE Although the clinical potential for Raman spectroscopy (RS) has been anticipated for decades, it has only recently been used in neurosurgery. Still, few devices have succeeded in making their way into the operating room. With recent technological advancements, however, vibrational sensing is poised to be a revolutionary tool for neurosurgeons. AIM We give a summary of neurosurgical workflows and key translational milestones of RS in clinical use and provide the optics and data science background required to implement such devices. APPROACH We performed an extensive review of the literature, with a specific emphasis on research that aims to build Raman systems suited for a neurosurgical setting. RESULTS The main translatable interest in Raman sensing rests in its capacity to yield label-free molecular information from tissue intraoperatively. Systems that have proven usable in the clinical setting are ergonomic, have a short integration time, and can acquire high-quality signal even in suboptimal conditions. Moreover, because of the complex microenvironment of brain tissue, data analysis is now recognized as a critical step in achieving high performance Raman-based sensing. CONCLUSIONS The next generation of Raman-based devices are making their way into operating rooms and their clinical translation requires close collaboration between physicians, engineers, and data scientists.
Collapse
Affiliation(s)
- Damon DePaoli
- Université Laval, CERVO Brain Research Center, Québec, Canada
- Université Laval, Centre d’optique, Photonique et Lasers, Québec, Canada
| | - Émile Lemoine
- Polytechnique Montréal, Department of Engineering Physics, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
| | - Katherine Ember
- Polytechnique Montréal, Department of Engineering Physics, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
| | - Martin Parent
- Université Laval, CERVO Brain Research Center, Québec, Canada
| | - Michel Prud’homme
- Hôpital de l’Enfant-Jésus, Department of Neurosurgery, Québec, Canada
| | - Léo Cantin
- Hôpital de l’Enfant-Jésus, Department of Neurosurgery, Québec, Canada
| | - Kevin Petrecca
- McGill University, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, Montreal, Canada
| | - Frédéric Leblond
- Polytechnique Montréal, Department of Engineering Physics, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
| | - Daniel C. Côté
- Université Laval, CERVO Brain Research Center, Québec, Canada
- Université Laval, Centre d’optique, Photonique et Lasers, Québec, Canada
| |
Collapse
|
8
|
Wang N, Cao H, Wang L, Ren F, Zeng Q, Xu X, Liang J, Zhan Y, Chen X. Recent Advances in Spontaneous Raman Spectroscopic Imaging: Instrumentation and Applications. Curr Med Chem 2019; 27:6188-6207. [PMID: 31237196 DOI: 10.2174/0929867326666190619114431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Spectroscopic imaging based on the spontaneous Raman scattering effects can provide unique fingerprint information in relation to the vibration bands of molecules. Due to its advantages of high chemical specificity, non-invasive detection capability, low sensitivity to water, and no special sample pretreatment, Raman Spectroscopic Imaging (RSI) has become an invaluable tool in the field of biomedicine and medicinal chemistry. METHODS There are three methods to implement RSI, including point scanning, line scanning and wide-field RSI. Point-scanning can achieve two-and three-dimensional imaging of target samples. High spectral resolution, full spectral range and confocal features render this technique highly attractive. However, point scanning based RSI is a time-consuming process that can take several hours to map a small area. Line scanning RSI is an extension of point scanning method, with an imaging speed being 300-600 times faster. In the wide-field RSI, the laser illuminates the entire region of interest directly and all the images then collected for analysis. In general, it enables more accurate chemical imaging at faster speeds. RESULTS This review focuses on the recent advances in RSI, with particular emphasis on the latest developments on instrumentation and the related applications in biomedicine and medicinal chemistry. Finally, we prospect the development trend of RSI as well as its potential to translation from bench to bedside. CONCLUSION RSI is a powerful technique that provides unique chemical information, with a great potential in the fields of biomedicine and medicinal chemistry.
Collapse
Affiliation(s)
- Nan Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Honghao Cao
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Lin Wang
- School of Information Sciences and Techonlogy, Northwest University, Xi’an, Shaanxi 710127, China
| | - Feng Ren
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Xinyi Xu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| |
Collapse
|
9
|
Santos IP, Barroso EM, Bakker Schut TC, Caspers PJ, van Lanschot CGF, Choi DH, van der Kamp MF, Smits RWH, van Doorn R, Verdijk RM, Noordhoek Hegt V, von der Thüsen JH, van Deurzen CHM, Koppert LB, van Leenders GJLH, Ewing-Graham PC, van Doorn HC, Dirven CMF, Busstra MB, Hardillo J, Sewnaik A, Ten Hove I, Mast H, Monserez DA, Meeuwis C, Nijsten T, Wolvius EB, Baatenburg de Jong RJ, Puppels GJ, Koljenović S. Raman spectroscopy for cancer detection and cancer surgery guidance: translation to the clinics. Analyst 2018; 142:3025-3047. [PMID: 28726868 DOI: 10.1039/c7an00957g] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oncological applications of Raman spectroscopy have been contemplated, pursued, and developed at academic level for at least 25 years. Published studies aim to detect pre-malignant lesions, detect cancer in less invasive stages, reduce the number of unnecessary biopsies and guide surgery towards the complete removal of the tumour with adequate tumour resection margins. This review summarizes actual clinical needs in oncology that can be addressed by spontaneous Raman spectroscopy and it provides an overview over the results that have been published between 2007 and 2017. An analysis is made of the current status of translation of these results into clinical practice. Despite many promising results, most of the applications addressed in scientific studies are still far from clinical adoption and commercialization. The main hurdles are identified, which need to be overcome to ensure that in the near future we will see the first Raman spectroscopy-based solutions being used in routine oncologic diagnostic and surgical procedures.
Collapse
Affiliation(s)
- Inês P Santos
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
St-Arnaud K, Aubertin K, Strupler M, Madore WJ, Grosset AA, Petrecca K, Trudel D, Leblond F. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales. Med Phys 2017; 45:328-339. [PMID: 29106741 DOI: 10.1002/mp.12657] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Raman spectroscopy is a promising cancer detection technique for surgical guidance applications. It can provide quantitative information relating to global tissue properties associated with structural, metabolic, immunological, and genetic biochemical phenomena in terms of molecular species including amino acids, lipids, proteins, and nucleic acid (DNA). To date in vivo Raman spectroscopy systems mostly included probes and biopsy needles typically limited to single-point tissue interrogation over a scale between 100 and 500 microns. The development of wider field handheld systems could improve tumor localization for a range of open surgery applications including brain, ovarian, and skin cancers. METHODS Here we present a novel Raman spectroscopy implementation using a coherent imaging bundle of fibers to create a probe capable of reconstructing molecular images over mesoscopic fields of view. Detection is performed using linear scanning with a rotation mirror and an imaging spectrometer. Different slits widths were tested at the entrance of the spectrometer to optimize spatial and spectral resolution while preserving sufficient signal-to-noise ratios to detect the principal Raman tissue features. The nonbiological samples, calcite and polytetrafluoroethylene (PTFE), were used to characterize the performance of the system. The new wide-field probe was tested on ex vivo samples of calf brain and swine tissue. Raman spectral content of both tissue types were validated with data from the literature and compared with data acquired with a single-point Raman spectroscopy probe. The single-point probe was used as the gold standard against which the new instrument was benchmarked as it has already been thoroughly validated for biological tissue characterization. RESULT We have developed and characterized a practical noncontact handheld Raman imager providing tissue information at a spatial resolution of 115 microns over a field of view >14 mm2 and a spectral resolution of 6 cm-1 over the whole fingerprint region. Typical integration time to acquire an entire Raman image over swine tissue was set to approximately 100 s. Spectra acquired with both probes (single-point and wide-field) showed good agreement, with a Pearson correlation factor >0.85 over different tissue categories. Protein and lipid content of imaged tissue were manifested into the measured spectra which correlated well with previous findings in the literature. An example of quantitative molecular map is presented for swine tissue and calf brain based on the ratio of protein-to-lipid content showing clear delineations between white and gray matter as well as between adipose and muscle tissue. CONCLUSION We presented the development of a Raman imaging probe with a field of view of a few millimeters and a spatial resolution consistent with standard surgical imaging methods using an imaging bundle. Spectra acquired with the newly developed system on swine tissue and calf brain correlated well with an establish single-point probe and observed spectral features agreed with previous finding in the literature. The imaging probe has demonstrated its ability to reconstruct molecular images of soft tissues. The approach presented here has a lot of potential for the development of surgical Raman imaging probe to guide the surgeon during cancer surgery.
Collapse
Affiliation(s)
- Karl St-Arnaud
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada.,Imaging & Engineering, Centre Hospitalier Universitaire de Montréal Research Center (CRCHUM), 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
| | - Kelly Aubertin
- Imaging & Engineering, Centre Hospitalier Universitaire de Montréal Research Center (CRCHUM), 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada.,CRCHUM/Montreal Cancer Institute, 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
| | - Mathias Strupler
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
| | - Wendy-Julie Madore
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada.,Imaging & Engineering, Centre Hospitalier Universitaire de Montréal Research Center (CRCHUM), 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
| | - Andrée-Anne Grosset
- CRCHUM/Montreal Cancer Institute, 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada.,Dept. of Pathology and Cellular Biology, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Dominique Trudel
- Dept. of Pathology, Centre Hospitalier Universitaire de Montréal (CHUM), Montreal, QC, H2X 3J4, Canada.,CRCHUM/Montreal Cancer Institute, 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada.,Dept. of Pathology and Cellular Biology, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Frédéric Leblond
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada.,Imaging & Engineering, Centre Hospitalier Universitaire de Montréal Research Center (CRCHUM), 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
| |
Collapse
|
11
|
Jermyn M, Mercier J, Aubertin K, Desroches J, Urmey K, Karamchandiani J, Marple E, Guiot MC, Leblond F, Petrecca K. Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy. Cancer Res 2017; 77:3942-3950. [PMID: 28659435 DOI: 10.1158/0008-5472.can-17-0668] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/11/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022]
Abstract
Effectiveness of surgery as a cancer treatment is reduced when all cancer cells are not detected during surgery, leading to recurrences that negatively impact survival. To maximize cancer cell detection during cancer surgery, we designed an in situ intraoperative, label-free, optical cancer detection system that combines intrinsic fluorescence spectroscopy, diffuse reflectance spectroscopy, and Raman spectroscopy. Using this multimodal optical cancer detection system, we found that brain, lung, colon, and skin cancers could be detected in situ during surgery with an accuracy, sensitivity, and specificity of 97%, 100%, and 93%, respectively. This highly sensitive optical molecular imaging approach can profoundly impact a wide range of surgical and noninvasive interventional oncology procedures by improving cancer detection capabilities, thereby reducing cancer burden and improving survival and quality of life. Cancer Res; 77(14); 3942-50. ©2017 AACR.
Collapse
Affiliation(s)
- Michael Jermyn
- Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Engineering Physics, Polytechnique Montreal, Montreal, Quebec, Canada
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jeanne Mercier
- Department of Engineering Physics, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Kelly Aubertin
- Department of Engineering Physics, Polytechnique Montreal, Montreal, Quebec, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Quebec, Canada
| | - Joannie Desroches
- Department of Engineering Physics, Polytechnique Montreal, Montreal, Quebec, Canada
| | | | - Jason Karamchandiani
- Division of Neuropathology, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | - Marie-Christine Guiot
- Division of Neuropathology, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Frederic Leblond
- Department of Engineering Physics, Polytechnique Montreal, Montreal, Quebec, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Quebec, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Gusachenko I, Chen M, Dholakia K. Raman imaging through a single multimode fibre. OPTICS EXPRESS 2017; 25:13782-13798. [PMID: 28788920 DOI: 10.1364/oe.25.013782] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Vibrational spectroscopy is a widespread, powerful method of recording the molecular spectra of constituent molecules within a sample in a label-free manner. As an example, Raman spectroscopy has major applications in materials science, biomedical analysis and clinical studies. The need to access deep tissues and organs in vivo has triggered major advances in fibre Raman probes that are compatible with endoscopic settings. However, imaging in confined geometries still remains out of reach for the current state of art fibre Raman systems without compromising the compactness and flexibility. Here we demonstrate Raman spectroscopic imaging via complex correction in single multimode fibre without using any additional optics and filters in the probe design. Our approach retains the information content typical to traditional fibre bundle imaging, yet within an ultra-thin footprint of diameter 125 μm which is the thinnest Raman imaging probe realised to date. We are able to acquire Raman images, including for bacteria samples, with fields of view exceeding 200 μm in diameter.
Collapse
|