1
|
Zuo T, Tao C, Liu X. Absorbing molecules as optical clearing agents improve the resolution and sensitivity of photoacoustic microscopy. OPTICS LETTERS 2025; 50:2282-2285. [PMID: 40167701 DOI: 10.1364/ol.555723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Photoacoustic microscopy (PAM) offers high resolution and 100% sensitivity to optical absorption, making it promising for biomedicine. However, strong light scattering in tissues limits its imaging depth, intensity, and resolution. Optical clearing agents (OCA) can reduce light scattering. However, traditional methods often use toxic substances or damage tissue components, restricting their application in living tissues. Recently, tartrazine, a common food pigment, has been shown to significantly improve tissue optical transparency while maintaining good biosafety. However, it is unclear whether tartrazine as an absorbing molecule is suitable for use in PAM. In this study, we show that tartrazine, despite its strong light absorption, can significantly enhance the performance of PAM, when used at an appropriate concentration. Our ex vivo experiments demonstrate tartrazine solution enables PAM to achieve an optical resolution of 21 μm even through the skin. A 0.6 M tartrazine solution improves resolution by 3.5 times and the imaging intensity by 4.5 times. Finally, in vivo brain imaging of a mouse with an intact scalp reveals that tartrazine not only increases the imaging intensity by about 4 times but also allows PAM to achieve an optical resolution of brain through the scalp and skull, revealing much more details of the microvasculature in the brain.
Collapse
|
2
|
Yang M, Qu Z, Amjadian M, Tang X, Chen J, Wang L. All-fiber three-wavelength laser for functional photoacoustic microscopy. PHOTOACOUSTICS 2025; 42:100703. [PMID: 40084182 PMCID: PMC11905847 DOI: 10.1016/j.pacs.2025.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Advanced multi-wavelength pulsed laser is a key technique for functional optical-resolution photoacoustic microscopy (OR-PAM). By utilizing the stimulated Raman scattering (SRS) effect, we can generate various wavelengths from a single-wavelength pump laser, offering a simple and cost-effective solution for OR-PAM. However, existing multi-wavelength SRS lasers typically require fine alignment of many free-space optical components with single-mode fibers, which are susceptible to mechanical disturbances and temperature fluctuations, leading to high maintenance costs. To address this challenge, we develop an all-fiber three-wavelength SRS laser source for functional OR-PAM. A pump laser beam is launched into an optical fiber network, which splits and delays these laser pulses and generates different optical wavelengths in different fiber branches, and then merges them at the output end of the fiber network. This approach requires only one instance of fiber launching, dramatically simplifying the alignment and improving the laser stability. Using a decoding algorithm, we can separate the PA signals from different optical wavelengths and then calculate oxygen saturation (sO2) and flow speed. The SRS fiber network provides stable energy ratios among different optical wavelengths during long-time operation. We use the all-fiber OR-PAM system to monitor the brain function for four hours, demonstrating exceptional stability in functional imaging. The small size, simple structure, and low cost make it suitable for many preclinical and clinical applications.
Collapse
Affiliation(s)
- Mingxuan Yang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
| | - Zheng Qu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
| | - Mohammadreza Amjadian
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
| | - Xu Tang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
| | - Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
- School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Shenzhen, Guang Dong 518057, China
| |
Collapse
|
3
|
Zhu X, Menozzi L, Cho SW, Yao J. High speed innovations in photoacoustic microscopy. NPJ IMAGING 2024; 2:46. [PMID: 39525278 PMCID: PMC11541221 DOI: 10.1038/s44303-024-00052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Photoacoustic microscopy (PAM) is a key implementation of photoacoustic imaging (PAI). PAM merges rich optical contrast with deep acoustic detection, allowing for broad biomedical research and diverse clinical applications. Recent advancements in PAM technology have dramatically improved its imaging speed, enabling real-time observation of dynamic biological processes in vivo and motion-sensitive targets in situ, such as brain activities and placental development. This review introduces the engineering principles of high-speed PAM, focusing on various excitation and detection methods, each presenting unique benefits and challenges. Driven by these technological innovations, high-speed PAM has expanded its applications across fundamental, preclinical, and clinical fields. We highlight these notable applications, discuss ongoing technical challenges, and outline future directions for the development of high-speed PAM.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Soon-Woo Cho
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| |
Collapse
|
4
|
Mi J, Liu C, Chen H, Qian Y, Zhu J, Zhang Y, Liang Y, Wang L, Ta D. Light on Alzheimer's disease: from basic insights to preclinical studies. Front Aging Neurosci 2024; 16:1363458. [PMID: 38566826 PMCID: PMC10986738 DOI: 10.3389/fnagi.2024.1363458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD), referring to a gradual deterioration in cognitive function, including memory loss and impaired thinking skills, has emerged as a substantial worldwide challenge with profound social and economic implications. As the prevalence of AD continues to rise and the population ages, there is an imperative demand for innovative imaging techniques to help improve our understanding of these complex conditions. Photoacoustic (PA) imaging forms a hybrid imaging modality by integrating the high-contrast of optical imaging and deep-penetration of ultrasound imaging. PA imaging enables the visualization and characterization of tissue structures and multifunctional information at high resolution and, has demonstrated promising preliminary results in the study and diagnosis of AD. This review endeavors to offer a thorough overview of the current applications and potential of PA imaging on AD diagnosis and treatment. Firstly, the structural, functional, molecular parameter changes associated with AD-related brain imaging captured by PA imaging will be summarized, shaping the diagnostic standpoint of this review. Then, the therapeutic methods aimed at AD is discussed further. Lastly, the potential solutions and clinical applications to expand the extent of PA imaging into deeper AD scenarios is proposed. While certain aspects might not be fully covered, this mini-review provides valuable insights into AD diagnosis and treatment through the utilization of innovative tissue photothermal effects. We hope that it will spark further exploration in this field, fostering improved and earlier theranostics for AD.
Collapse
Affiliation(s)
- Jie Mi
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Chao Liu
- Yiwu Research Institute, Fudan University, Yiwu, China
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Honglei Chen
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Yan Qian
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yachao Zhang
- Medical Ultrasound Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Dean Ta
- Yiwu Research Institute, Fudan University, Yiwu, China
- Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Cho SW, Nguyen VT, DiSpirito A, Yang J, Kim CS, Yao J. Sounding out the dynamics: a concise review of high-speed photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11521. [PMID: 38323297 PMCID: PMC10846286 DOI: 10.1117/1.jbo.29.s1.s11521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Significance Photoacoustic microscopy (PAM) offers advantages in high-resolution and high-contrast imaging of biomedical chromophores. The speed of imaging is critical for leveraging these benefits in both preclinical and clinical settings. Ongoing technological innovations have substantially boosted PAM's imaging speed, enabling real-time monitoring of dynamic biological processes. Aim This concise review synthesizes historical context and current advancements in high-speed PAM, with an emphasis on developments enabled by ultrafast lasers, scanning mechanisms, and advanced imaging processing methods. Approach We examine cutting-edge innovations across multiple facets of PAM, including light sources, scanning and detection systems, and computational techniques and explore their representative applications in biomedical research. Results This work delineates the challenges that persist in achieving optimal high-speed PAM performance and forecasts its prospective impact on biomedical imaging. Conclusions Recognizing the current limitations, breaking through the drawbacks, and adopting the optimal combination of each technology will lead to the realization of ultimate high-speed PAM for both fundamental research and clinical translation.
Collapse
Affiliation(s)
- Soon-Woo Cho
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Pusan National University, Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Busan, Republic of Korea
| | - Van Tu Nguyen
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Anthony DiSpirito
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Joseph Yang
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Chang-Seok Kim
- Pusan National University, Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Busan, Republic of Korea
| | - Junjie Yao
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| |
Collapse
|
6
|
Li D, Yao Y, Zuo T, Xu J, Tao C, Qian X, Liu X. In vivo structural and functional imaging of human nailbed microvasculature using photoacoustic microscopy. OPTICS LETTERS 2023; 48:5711-5714. [PMID: 37910740 DOI: 10.1364/ol.502305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Monitoring microvascular structure and function is of great significance for the diagnosis of many diseases. In this study, we demonstrate the feasibility of OR-PAM to nailbed microcirculation detection as a new, to the best of our knowledge, application scenario in humans. We propose a dual-wavelength optical-resolution photoacoustic microscopy (OR-PAM) with improved local-flexible coupling to image human nailbed microvasculature. Microchip lasers with 532 nm wavelength are employed as the pump sources. The 558 nm laser is generated from the 532 nm laser through the stimulated Raman scattering effect. The flowing water, circulated by a peristaltic pump, maintains the acoustic coupling between the ultrasonic transducer and the sample. These designs improve the sensitivity, practicality, and stability of the OR-PAM system for human in vivo experiments. The imaging of the mouse ear demonstrates the ability of our system to acquire structural and functional information. Then, the system is applied to image human nailbed microvasculature. The imaging results reveal that the superficial capillaries are arranged in a straight sagittal pattern, approximately parallel to the long axis of the finger. The arterial and venular limbs are distinguished according to their oxygen saturation differences. Additionally, the images successfully discover the capillary loops with single or multiple twists, the oxygen release at the end of the capillary loop, and the changes when the nailbed is abnormal.
Collapse
|
7
|
Zhu J, Chen J, Amjadian M, Liang S, Qu Z, Wang Y, Zhang Y, Wang L. Simultaneous dual-modal photoacoustic and harmonic ultrasound microscopy with an optimized acoustic combiner. BIOMEDICAL OPTICS EXPRESS 2023; 14:1626-1635. [PMID: 37078044 PMCID: PMC10110316 DOI: 10.1364/boe.484038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/03/2023]
Abstract
Simultaneous photoacoustic (PA) and ultrasound (US) imaging provides rich optical and acoustic contrasts with high sensitivity, specificity, and resolution, making it a promising tool for diagnosing and assessing various diseases. However, the resolution and penetration depth tend to be contradictory due to the increased attenuation of high-frequency ultrasound. To address this issue, we present simultaneous dual-modal PA/US microscopy with an optimized acoustic combiner that can maintain high resolution while improving the penetration of ultrasound imaging. A low-frequency ultrasound transducer is used for acoustic transmission, and a high-frequency transducer is used for PA and US detection. An acoustic beam combiner is utilized to merge the transmitting and receiving acoustic beams with a predetermined ratio. By combining the two different transducers, harmonic US imaging and high-frequency photoacoustic microscopy are implemented. In vivo experiments on the mouse brain demonstrate the simultaneous PA and US imaging ability. The harmonic US imaging of the mouse eye reveals finer iris and lens boundary structures than conventional US imaging, providing a high-resolution anatomical reference for co-registered PA imaging.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Mohammadreza Amjadian
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Siyi Liang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Zheng Qu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Yue Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, China
| |
Collapse
|
8
|
Chen Q, Wang Z, Yang C, Li B, Ren X, Liu C, Xi L. High resolution intravital photoacoustic microscopy reveals VEGF-induced bone regeneration in mouse tibia. Bone 2023; 167:116631. [PMID: 36435450 DOI: 10.1016/j.bone.2022.116631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Osteogenesis and angiogenesis are essential for bone homeostasis and repair. Newly formed vessels convey osteogenic progenitors during bone regeneration. However, the lack of continuous and label-free visualization of the bone microvasculature has resulted in little understanding of the neovascular dynamics. Here, we take advantage of optical-resolution photoacoustic microscopy (ORPAM) for label-free, intravital, long-term observation of the bone vascular dynamics, including angiogenesis, remodeling and quantified angiogenic effect of locally-applied vascular endothelial growth factor (VEGF) in the murine tibial defect model. We employed ex vivo confocal microscopy and micro-computed tomography (micro-CT) imaging to verify the positive role of VEGF treatment. VEGF treatment increased the concentration of total hemoglobin, vascular branching, and vascular density, which correlated with more osteoprogenitors and increased bone formation within the defect. These data demonstrated ORPAM as a useful imaging tool that detected functional capillaries to understand hemodynamics, and revealed the effectiveness of locally delivered therapeutic agents with sufficient sensitivity, contributing to the understanding of spatiotemporal regulatory mechanisms on blood vessels during bone regeneration.
Collapse
Affiliation(s)
- Qian Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ziyan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chengyu Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Baochen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xingxing Ren
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| |
Collapse
|
9
|
Cho SW, Phan TTV, Nguyen VT, Park SM, Lee H, Oh J, Kim CS. Efficient label-free in vivo photoacoustic imaging of melanoma cells using a condensed NIR-I spectral window. PHOTOACOUSTICS 2023; 29:100456. [PMID: 36785577 PMCID: PMC9918423 DOI: 10.1016/j.pacs.2023.100456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In this paper, we propose an efficient label-free in vivo photoacoustic (PA) imaging of melanoma using a condensed near infrared-I (NIR-I) supercontinuum light source. Although NIR-II spectral window is advantageous such as longer penetration depth compared to the NIR-I region, supercontinuum light sources emitting both NIR-I and NIR-II region could lower the efficiency to target melanoma because of low optical power density in the melanoma's absorption spectra. To exploit efficient in vivo PA imaging of melanoma, we demonstrated the light source emitting from visible (532-600 nm) to NIR-I (600-1000 nm) by optimizing stimulated Raman scattering induced supercontinuum generation. The melanoma's structure is successfully differentiated from blood vessels at a high pulse energy of 2.5 µJ and a flexible pulse repetition rate (PRR) of 5-50 kHz. The proposed light source with the microjoules energies and tens of kHz of PRR can potentially accelerate clinical trials such as early diagnosis of melanoma.
Collapse
Affiliation(s)
- Soon-Woo Cho
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam
- Department of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Viet Nam
| | - Van Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Sang Min Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, the Republic of Korea
| | - Hwidon Lee
- Harvard Medical School, Boston, Massachusetts MA 02115, USA
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
| | - Junghwan Oh
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, the Republic of Korea
- Ohlabs Corporation, Busan 48513, the Republic of Korea
| | - Chang-Seok Kim
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, the Republic of Korea
| |
Collapse
|
10
|
Chen M, Jiang L, Cook C, Zeng Y, Vu T, Chen R, Lu G, Yang W, Hoffmann U, Zhou Q, Yao J. High-speed wide-field photoacoustic microscopy using a cylindrically focused transparent high-frequency ultrasound transducer. PHOTOACOUSTICS 2022; 28:100417. [PMID: 36299642 PMCID: PMC9589025 DOI: 10.1016/j.pacs.2022.100417] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/07/2023]
Abstract
Combining focused optical excitation and high-frequency ultrasound detection, optical-resolution photoacoustic microscopy (OR-PAM) can provide micrometer-level spatial resolution with millimeter-level penetration depth and has been employed in a variety of biomedical applications. However, it remains a challenge for OR-PAM to achieve a high imaging speed and a large field of view at the same time. In this work, we report a new approach to implement high-speed wide-field OR-PAM, using a cylindrically-focused transparent ultrasound transducer (CFT-UT). The CFT-UT is made of transparent lithium niobate coated with indium-tin-oxide as electrodes. A transparent cylindrical lens is attached to the transducer surface to provide an acoustic focal line with a length of 9 mm. The excitation light can pass directly through the CFT-UT from the above and thus enables a reflection imaging mode. High-speed imaging is achieved by fast optical scanning of the focused excitation light along the CFT-UT focal line. With the confocal alignment of the optical excitation and acoustic detection, a relatively high detection sensitivity is maintained over the entire scanning range. The CFT-UT-based OR-PAM system has achieved a cross-sectional frame rate of 500 Hz over the scanning range of 9 mm. We have characterized the system's performance on phantoms and demonstrated its application on small animal models in vivo. We expect the new CFT-UT-based OR-PAM will find matched biomedical applications that need high imaging speed over a large field of view.
Collapse
Affiliation(s)
- Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Clare Cook
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yushun Zeng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ruimin Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anaesthesiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Ulrike Hoffmann
- Multidisciplinary Brain Protection Program, Department of Anaesthesiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Qu Z, Liu C, Zhu J, Zhang Y, Zhou Y, Wang L. Two-step proximal gradient descent algorithm for photoacoustic signal unmixing. PHOTOACOUSTICS 2022; 27:100379. [PMID: 35722270 PMCID: PMC9198964 DOI: 10.1016/j.pacs.2022.100379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/22/2022] [Accepted: 06/07/2022] [Indexed: 05/02/2023]
Abstract
Photoacoustic microscopy uses multiple wavelengths to measure concentrations of different absorbers. The speed of sound limits the shortest wavelength switching time to sub-microseconds, which is a bottleneck for high-speed broad-spectrum imaging. Via computational separation of overlapped signals, we can break the sound-speed limit on the wavelength switching time. This paper presents a new signal unmixing algorithm named two-step proximal gradient descent. It is advantageous in separating multiple wavelengths with long overlapping and high noise. In the simulation, we can unmix up to nine overlapped signals and successfully separate three overlapped signals with 12-ns delay and 15.9-dB signal-to-noise ratio. We apply this technique to separate three-wavelength photoacoustic images in microvessels. In vivo results show that the algorithm can successfully unmix overlapped multi-wavelength photoacoustic signals, and the unmixed data can improve accuracy in oxygen saturation imaging.
Collapse
Affiliation(s)
- Zheng Qu
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Chao Liu
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Jingyi Zhu
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Yachao Zhang
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Yingying Zhou
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Lidai Wang
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Shenzhen, Guang Dong 518057, China
- Corresponding author at: City University of Hong Kong, Department of Biomedical Engineering, Kowloon, .Hong Kong, China
| |
Collapse
|
12
|
Chen N, Yu J, Liu L, Xu Z, Gao R, Chen T, Song L, Zheng W, Liu C. Video-rate high-resolution single-pixel nonscanning photoacoustic microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3823-3835. [PMID: 35991922 PMCID: PMC9352284 DOI: 10.1364/boe.459363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) is widely utilized in biomedical applications because of its ability to noninvasively image biological tissues in vivo while providing high-resolution morphological and functional information. However, one drawback of conventional OR-PAM is its imaging speed, which is restricted by the scanning technique employed. To achieve a higher imaging frame rate, we present video-rate high-resolution single-pixel nonscanning photoacoustic microscopy (SPN-PAM), which utilizes Fourier orthogonal basis structured planar illumination to overcome the above-mentioned limitations. A 473 × 473 µm2 imaging field of view (FOV) with 3.73 µm lateral resolution and video-rate imaging of 30 Hz were achieved. In addition, in both in vitro cell and in vivo mouse vascular hemodynamic imaging experiments, high-quality images were obtained at ultralow sampling rates. Thus, the proposed high-resolution SPN-PAM with video-rate imaging speed provides new insights into high-speed PA imaging and could be a powerful tool for rapid biological imaging.
Collapse
Affiliation(s)
- Ningbo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Equal contributors
| | - Jia Yu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Equal contributors
| | - Liangjian Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
- National Innovation Center for Advanced Medical Devices, Shenzhen 518131, China
- Equal contributors
| | - Zhiqiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tao Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
13
|
Zhu X, Huang Q, DiSpirito A, Vu T, Rong Q, Peng X, Sheng H, Shen X, Zhou Q, Jiang L, Hoffmann U, Yao J. Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy. LIGHT, SCIENCE & APPLICATIONS 2022; 11:138. [PMID: 35577780 PMCID: PMC9110749 DOI: 10.1038/s41377-022-00836-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 05/10/2023]
Abstract
High-speed high-resolution imaging of the whole-brain hemodynamics is critically important to facilitating neurovascular research. High imaging speed and image quality are crucial to visualizing real-time hemodynamics in complex brain vascular networks, and tracking fast pathophysiological activities at the microvessel level, which will enable advances in current queries in neurovascular and brain metabolism research, including stroke, dementia, and acute brain injury. Further, real-time imaging of oxygen saturation of hemoglobin (sO2) can capture fast-paced oxygen delivery dynamics, which is needed to solve pertinent questions in these fields and beyond. Here, we present a novel ultrafast functional photoacoustic microscopy (UFF-PAM) to image the whole-brain hemodynamics and oxygenation. UFF-PAM takes advantage of several key engineering innovations, including stimulated Raman scattering (SRS) based dual-wavelength laser excitation, water-immersible 12-facet-polygon scanner, high-sensitivity ultrasound transducer, and deep-learning-based image upsampling. A volumetric imaging rate of 2 Hz has been achieved over a field of view (FOV) of 11 × 7.5 × 1.5 mm3 with a high spatial resolution of ~10 μm. Using the UFF-PAM system, we have demonstrated proof-of-concept studies on the mouse brains in response to systemic hypoxia, sodium nitroprusside, and stroke. We observed the mouse brain's fast morphological and functional changes over the entire cortex, including vasoconstriction, vasodilation, and deoxygenation. More interestingly, for the first time, with the whole-brain FOV and micro-vessel resolution, we captured the vasoconstriction and hypoxia simultaneously in the spreading depolarization (SD) wave. We expect the new imaging technology will provide a great potential for fundamental brain research under various pathological and physiological conditions.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Anthony DiSpirito
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xiaorui Peng
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Huaxin Sheng
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Qifa Zhou
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Laiming Jiang
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Ulrike Hoffmann
- Department of Anesthesiology, Duke University, Durham, NC, 27708, USA.
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
14
|
Functional photoacoustic microscopy of hemodynamics: a review. Biomed Eng Lett 2022; 12:97-124. [PMID: 35529339 PMCID: PMC9046529 DOI: 10.1007/s13534-022-00220-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/19/2022] Open
Abstract
Functional blood imaging can reflect tissue metabolism and organ viability, which is important for life science and biomedical studies. However, conventional imaging modalities either cannot provide sufficient contrast or cannot support simultaneous multi-functional imaging for hemodynamics. Photoacoustic imaging, as a hybrid imaging modality, can provide sufficient optical contrast and high spatial resolution, making it a powerful tool for in vivo vascular imaging. By using the optical-acoustic confocal alignment, photoacoustic imaging can even provide subcellular insight, referred as optical-resolution photoacoustic microscopy (OR-PAM). Based on a multi-wavelength laser source and developed the calculation methods, OR-PAM can provide multi-functional hemodynamic microscopic imaging of the total hemoglobin concentration (CHb), oxygen saturation (sO2), blood flow (BF), partial oxygen pressure (pO2), oxygen extraction fraction, and metabolic rate of oxygen (MRO2). This concise review aims to systematically introduce the principles and methods to acquire various functional parameters for hemodynamics by photoacoustic microscopy in recent studies, with characteristics and advantages comparison, typical biomedical applications introduction, and future outlook discussion.
Collapse
|
15
|
Chen M, Duan X, Lan B, Vu T, Zhu X, Rong Q, Yang W, Hoffmann U, Zou J, Yao J. High-speed functional photoacoustic microscopy using a water-immersible two-axis torsion-bending scanner. PHOTOACOUSTICS 2021; 24:100309. [PMID: 34956833 PMCID: PMC8674646 DOI: 10.1016/j.pacs.2021.100309] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 05/05/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) can provide functional, anatomical, and molecular images at micrometer level resolution with an imaging depth of less than 1 mm in tissue. However, the imaging speed of traditional OR-PAM is often low due to the point-by-point mechanical scanning and cannot capture time-sensitive dynamic information. In this work, we demonstrate a recent effort in improving the imaging speed of OR-PAM, using a newly developed water-immersible two-axis scanner. Driven by water-compatible electromagnetic actuation force, the new scanning mirror employs a novel torsion-bending mechanism to achieve fast 2D scanning. The torsion scanning along the fast-axis works in the resonant model, and the bending scanning along the slow-axis operate at the quasi-static mode. The scanning speed and scanning range along the two axes can be independently adjusted. Steered by the two-axis torsion-bending scanning mirror immersed in water, the focused excitation light and the generated acoustic wave can be confocally aligned over the entire imaging area. Thus, a high imaging speed can be achieved without sacrificing the detection sensitivity. Equipped with the torsion-bending scanner, the high-speed OR-PAM system has achieved a cross-sectional frame rate of 400 Hz, and a volumetric imaging speed of 1 Hz over a field of view of 1.5 × 2.5 mm2. We have also demonstrated high-speed OR-PAM of the hemodynamic changes in response to pharmaceutical and physiological challenges in small animal models in vivo. We expect the torsion-bending scanner based OR-PAM will find matched biomedical studies of tissue dynamics.
Collapse
Affiliation(s)
- Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Xiaoyu Duan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Bangxin Lan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Xiaoyi Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wei Yang
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Ulrike Hoffmann
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Jun Zou
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Wang K, Li C, Chen R, Shi J. Recent advances in high-speed photoacoustic microscopy. PHOTOACOUSTICS 2021; 24:100294. [PMID: 34458095 PMCID: PMC8379700 DOI: 10.1016/j.pacs.2021.100294] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 05/02/2023]
Abstract
Photoacoustic (PA) microscopy (PAM) has achieved remarkable progress in biomedicine in the past decade. It is a fast-rising imaging modality with diverse applications, such as hemodynamics, oncology, metabolism, and neuroimaging. Combining optical excitation and acoustic detection, the hybrid nature of PAM provides advantages of rich contrast and deep penetration. In recent years, high-speed PAM has flourished and enabled high-speed wide-field imaging of functional activity. In this review, we summarize the most recent advances in high-speed PAM technologies, including high-repetition-rate multi-wavelength laser development, fast scanning techniques, and novel PA signal acquisition strategies.
Collapse
|
17
|
Cho SW, Park SM, Park B, Kim DY, Lee TG, Kim BM, Kim C, Kim J, Lee SW, Kim CS. High-speed photoacoustic microscopy: A review dedicated on light sources. PHOTOACOUSTICS 2021; 24:100291. [PMID: 34485074 PMCID: PMC8403586 DOI: 10.1016/j.pacs.2021.100291] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/18/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
In recent years, many methods have been investigated to improve imaging speed in photoacoustic microscopy (PAM). These methods mainly focused upon three critical factors contributing to fast PAM: laser pulse repetition rate, scanning speed, and computing power of the microprocessors. A high laser repetition rate is fundamentally the most crucial factor to increase the PAM speed. In this paper, we review methods adopted for fast PAM systems in detail, specifically with respect to light sources. To the best of our knowledge, ours is the first review article analyzing the fundamental requirements for developing high-speed PAM and their limitations from the perspective of light sources.
Collapse
Affiliation(s)
- Soon-Woo Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sang Min Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Do Yeon Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Beop-Min Kim
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sang-Won Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
- Department of Medical Physics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
18
|
Multi-Scale Photoacoustic Assessment of Wound Healing Using Chitosan-Graphene Oxide Hemostatic Sponge. NANOMATERIALS 2021; 11:nano11112879. [PMID: 34835644 PMCID: PMC8623563 DOI: 10.3390/nano11112879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Hemostasis is vital to save lives, reducing risks of organ failure and hemorrhagic shock. Exploring novel hemostatic materials and precise monitoring of the hemostatic status is of great importance for efficient hemostasis. We present the development of chitosan-graphene oxide-based hemostatic composite and multi-scale photoacoustic evaluation of the hemostatic performance. The hemostatic sponge can quickly and efficiently absorb the blood with its porous cavity and specific surficial property. We inspect the hemostatic performance via an in vitro blood absorption test and in vivo mouse bleeding injury experiments. Results show that the synthesized hemostatic sponge can not only absorb plasma in blood fast with its interior porous structure but also stimulate the interfacial reaction with erythrocytes and platelets. The superiority of multi-scale photoacoustic imaging for guiding, monitoring, and evaluating the hemostatic stages of sponges is demonstrated with high spatial resolution and great sensitivity at depths. Photoacoustic evaluation of a chitosan-graphene oxide-based hemostatic sponge has the potential to be transferred toward the clinical assessment of wound healing.
Collapse
|
19
|
Hosseinaee Z, Ecclestone B, Pellegrino N, Khalili L, Mukhangaliyeva L, Fieguth P, Reza PH. Functional photoacoustic remote sensing microscopy using a stabilized temperature-regulated stimulated Raman scattering light source. OPTICS EXPRESS 2021; 29:29745-29754. [PMID: 34614713 DOI: 10.1364/oe.434004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Stimulated Raman scattering (SRS) has been widely used in functional photoacoustic microscopy to generate multiwavelength light and target multiple chromophores inside tissues. Despite offering a simple, cost-effective technique with a high pulse repetition rate; it suffers from pulse-to-pulse intensity fluctuations and power drift that can affect image quality. Here, we propose a new technique to improve the temporal stability of the pulsed SRS multiwavelength source. We achieve this by lowering the temperature of the SRS medium. The results suggest that a decrease in temperature causes an improvement of temporal stability of the output, considerable rise in the intensity of the SRS peaks, and significant increase of SRS cross section. The application of the method is shown for in vivo functional imaging of capillary networks in a chicken embryo chorioallantois membrane using photoacoustic remote sensing microscopy.
Collapse
|
20
|
Chen J, Zhang Y, Bai S, Zhu J, Chirarattananon P, Ni K, Zhou Q, Wang L. Dual-foci fast-scanning photoacoustic microscopy with 3.2-MHz A-line rate. PHOTOACOUSTICS 2021; 23:100292. [PMID: 34430201 PMCID: PMC8367837 DOI: 10.1016/j.pacs.2021.100292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 05/02/2023]
Abstract
We report fiber-based dual-foci fast-scanning OR-PAM that can double the scanning rate without compromising the imaging resolution, the field of view, and the detection sensitivity. To achieve fast scanning speed, the OR-PAM system uses a single-axis water-immersible resonant scanning mirror that can confocally scan the optical and acoustic beams at 1018 Hz with a 3-mm range. Pulse energies of 45∼100-nJ are sufficient for acquiring vascular and oxygen-saturation images. The dual-foci method can double the B-scan rate to 2036 Hz. Using two lasers and stimulated Raman scattering, we achieve dual-wavelength excitation on both foci, and the total A-line rate is 3.2-MHz. In in vivo experiments, we inject epinephrine and monitor the hemodynamic and oxygen saturation response in the peripheral vessels at 1.7 Hz over 2.5 × 6.7 mm2. Dual-foci OR-PAM offers a new imaging tool for the study of fast physiological and pathological changes.
Collapse
Affiliation(s)
- Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Songnan Bai
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Pakpong Chirarattananon
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Kai Ni
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qian Zhou
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Shenzhen, Guang Dong, 518057, China
- Corresponding author at: Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Shenzhen, Guang Dong, 518057, China.
| |
Collapse
|
21
|
Qin W, Gan Q, Yang L, Wang Y, Qi W, Ke B, Xi L. High-resolution in vivo imaging of rhesus cerebral cortex with ultrafast portable photoacoustic microscopy. Neuroimage 2021; 238:118260. [PMID: 34118393 DOI: 10.1016/j.neuroimage.2021.118260] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Revealing the structural and functional change of microvasculature is essential to match vascular response with neuronal activities in the investigation of neurovascular coupling. The increasing use of rhesus models in fundamental and clinical studies of neurovascular coupling presents an emerging need for a new imaging modality. Here we report a structural and functional cerebral vascular study of rhesus monkeys using an ultrafast, portable, and high resolution photoacoustic microscopic system with a long working distance and a special scanning mechanism to eliminate the relative displacement between the imaging interface and samples. We derived the structural and functional response of the cerebral vasculature to the alternating normoxic and hypoxic conditions by calculating the vascular diameter and functional connectivity. Both vasodilatation and vasoconstriction were observed in hypoxia. In addition to the change of vascular diameter, the decrease of functional connectivity is also an important phenomenon induced by the reduction of oxygen ventilatory. These results suggest that photoacoustic microscopy is a promising method to study the neurovascular coupling and cerebral vascular diseases due to the advanced features of high spatiotemporal resolution, excellent sensitivity to hemoglobin, and label-free imaging capability of observing hemodynamics.
Collapse
Affiliation(s)
- Wei Qin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Qi Gan
- Department of Neurosurgery, West China Hospital Sichuan University, Chengdu 610040, Sichuan, China
| | - Lei Yang
- Department of Anesthesiology and Critical Care Medicine, West China Hospital Sichuan University, Chengdu 610040, Sichuan, China
| | - Yongchao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Bowen Ke
- Department of Anesthesiology and Critical Care Medicine, West China Hospital Sichuan University, Chengdu 610040, Sichuan, China.
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
22
|
Zhou Y, Zhong F, Hu S. Temporal and spectral unmixing of photoacoustic signals by deep learning. OPTICS LETTERS 2021; 46:2690-2693. [PMID: 34061089 PMCID: PMC9385116 DOI: 10.1364/ol.426678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/09/2021] [Indexed: 05/18/2023]
Abstract
Improving the imaging speed of multi-parametric photoacoustic microscopy (PAM) is essential to leveraging its impact in biomedicine. However, to avoid temporal overlap, the A-line rate is limited by the acoustic speed in biological tissues to a few megahertz. Moreover, to achieve high-speed PAM of the oxygen saturation of hemoglobin, the stimulated Raman scattering effect in optical fibers has been widely used to generate 558 nm from a commercial 532 nm laser for dual-wavelength excitation. However, the fiber length for effective wavelength conversion is typically short, corresponding to a small time delay that leads to a significant overlap of the A-lines acquired at the two wavelengths. Increasing the fiber length extends the time interval but limits the pulse energy at 558 nm. In this Letter, we report a conditional generative adversarial network-based approach that enables temporal unmixing of photoacoustic A-line signals with an interval as short as ${\sim}{38}\;{\rm ns}$, breaking the physical limit on the A-line rate. Moreover, this deep learning approach allows the use of multi-spectral laser pulses for PAM excitation, addressing the insufficient energy of monochromatic laser pulses. This technique lays the foundation for ultrahigh-speed multi-parametric PAM.
Collapse
Affiliation(s)
- Yifeng Zhou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Fenghe Zhong
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Song Hu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
23
|
Jin L, Liang Y. Fiber laser technologies for photoacoustic microscopy. Vis Comput Ind Biomed Art 2021; 4:11. [PMID: 33928461 PMCID: PMC8085136 DOI: 10.1186/s42492-021-00076-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/05/2021] [Indexed: 12/04/2022] Open
Abstract
Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing, medical care, and industrial applications, including laser welding, cleaning, and manufacturing. A fiber laser can output laser pulses with high energy, a high repetition rate, a controllable wavelength, low noise, and good beam quality, making it applicable in photoacoustic imaging. Herein, recent developments in fiber-laser-based photoacoustic microscopy (PAM) are reviewed. Multispectral PAM can be used to image oxygen saturation or lipid-rich biological tissues by applying a Q-switched fiber laser, a stimulated Raman scattering-based laser source, or a fiber-based supercontinuum source for photoacoustic excitation. PAM can also incorporate a single-mode fiber laser cavity as a high-sensitivity ultrasound sensor by measuring the acoustically induced lasing-frequency shift. Because of their small size and high flexibility, compact head-mounted, wearable, or hand-held imaging modalities and better photoacoustic endoscopes can be enabled using fiber-laser-based PAM.
Collapse
Affiliation(s)
- Long Jin
- Guangdong Provincial Key Laboratory of Fiber Optic Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Fiber Optic Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
24
|
Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020; 66. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Photoacoustic imaging - a hybrid biomedical imaging modality finding its way to clinical practices. Although the photoacoustic phenomenon was known more than a century back, only in the last two decades it has been widely researched and used for biomedical imaging applications. In this review we focus on the development and progress of the technology in the last decade (2010-2020). From becoming more and more user friendly, cheaper in cost, portable in size, photoacoustic imaging promises a wide range of applications, if translated to clinic. The growth of photoacoustic community is steady, and with several new directions researchers are exploring, it is inevitable that photoacoustic imaging will one day establish itself as a regular imaging system in the clinical practices.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-11, Singapore, 637457, SINGAPORE
| |
Collapse
|
25
|
Ravina K, Lin L, Liu CY, Thomas D, Hasson D, Wang LV, Russin JJ. Prospects of Photo- and Thermoacoustic Imaging in Neurosurgery. Neurosurgery 2020; 87:11-24. [PMID: 31620798 DOI: 10.1093/neuros/nyz420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022] Open
Abstract
The evolution of neurosurgery has been, and continues to be, closely associated with innovations in technology. Modern neurosurgery is wed to imaging technology and the future promises even more dependence on anatomic and, perhaps more importantly, functional imaging. The photoacoustic phenomenon was described nearly 140 yr ago; however, biomedical applications for this technology have only recently received significant attention. Light-based photoacoustic and microwave-based thermoacoustic technologies represent novel biomedical imaging modalities with broad application potential within and beyond neurosurgery. These technologies offer excellent imaging resolution while generally considered safer, more portable, versatile, and convenient than current imaging technologies. In this review, we summarize the current state of knowledge regarding photoacoustic and thermoacoustic imaging and their potential impact on the field of neurosurgery.
Collapse
Affiliation(s)
- Kristine Ravina
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Charles Y Liu
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.,Tianqiao and Chrissy Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, California
| | - Debi Thomas
- Department of Surgery, University of California Davis, Davis, California
| | - Denise Hasson
- Division of Critical Care Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California
| | - Jonathan J Russin
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
26
|
Park SM, Kim DY, Cho SW, Kim BM, Lee TG, Kim CS, Lee SW. Quickly Alternating Green and Red Laser Source for Real-time Multispectral Photoacoustic Microscopy. PHOTOACOUSTICS 2020; 20:100204. [PMID: 33014706 PMCID: PMC7522855 DOI: 10.1016/j.pacs.2020.100204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 05/06/2023]
Abstract
Multispectral photoacoustic microscopy uses a wavelength-dependent absorption difference as a contrast mechanism to image the target molecule. In this paper, we present a novel multispectral pulsed fiber laser source, which selectively alternates the excitation wavelengths between green and red colors based on the stimulated Raman scattering (SRS) effect for imaging. This laser has a high pulse repetition rate (PRR) of 300 kHz and high pulse energy of more than 200 nJ meeting the real-time requirements of optical-resolution photoacoustic microscopy imaging. By switching the polarization state of the pump light and optical paths of the pump light, the operating wavelengths of the light source can be selectively alternated at the same fast PRR for any two SRS peak wavelengths between 545 and 655 nm. At 545 nm excitation wavelength, molecular photoacoustic signals from both blood vessels and gold nanorods were obtained simultaneously. However, at 655 nm, the photoacoustic signals of gold nanorods were dominant because the absorption of light by the blood vessels decreased drastically in the spectral region over 600 nm. Thus the multispectral photoacoustic system designed using the novel laser source implemented here could simultaneously monitor the time-dependent fast movement of two molecules independently, having different wavelength-dependent absorption properties at a high repetition rate of 0.49 frames per second (fps).
Collapse
Affiliation(s)
- Sang Min Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Do Yeon Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soon-Woo Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Beop-Min Kim
- Department of Bio-Convergence Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- Corresponding author at: Department of Cogno-Mechatronics Engineering, Busan National University, 46241, Republic of Korea
| | - Sang-Won Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Medical Physics, University of Science and Technology, Daejeon 34113, Republic of Korea
- Corresponding authors.
| |
Collapse
|
27
|
Chen J, Zhang Y, He L, Liang Y, Wang L. Wide-field polygon-scanning photoacoustic microscopy of oxygen saturation at 1-MHz A-line rate. PHOTOACOUSTICS 2020; 20:100195. [PMID: 32577378 PMCID: PMC7300162 DOI: 10.1016/j.pacs.2020.100195] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 05/06/2023]
Abstract
We report wide-field polygon-scanning functional OR-PAM that for the first time achieves 1-MHz A-line rate of oxygen saturation in vivo. We address two technical challenges. The first is a 1-MHz dual-wavelength pulsed laser that has sufficient pulse energy and ultrafast wavelength switching. The second is a polygon-scanning imaging probe that has a fast scanning speed, a large field of view, and great sensitivity. The OR-PAM system offers a B-scan rate of 477.5 Hz in a 12-mm range and a volumetric imaging rate of ∼1 Hz over a 12 × 5 mm2 scanning area. We image microvasculature and blood oxygen saturation in a 12 × 12 mm2 scanning area in 5 s. Dynamic imaging of oxygen saturation in the mouse ear is demonstrated to monitor fast response to epinephrine injection. The new wide-field fast functional imaging ability broadens the biomedical application of OR-PAM.
Collapse
Affiliation(s)
- Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Linyun He
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Shenzhen, Guang Dong, 518057, China
| |
Collapse
|
28
|
Zhang C, Zhao H, Xu S, Chen N, Li K, Jiang X, Liu L, Liu Z, Wang L, Wong KKY, Zou J, Liu C, Song L. Multiscale high-speed photoacoustic microscopy based on free-space light transmission and a MEMS scanning mirror. OPTICS LETTERS 2020; 45:4312-4315. [PMID: 32735286 DOI: 10.1364/ol.397733] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The conventional photoacoustic microscopy (PAM) system allows trade-offs between lateral resolution and imaging depth, limiting its applications in biological imaging in vivo. Here we present an integrated optical-resolution (OR) and acoustic-resolution (AR) multiscale PAM based on free-space light transmission and fast microelectromechanical systems (MEMS) scanning. The lateral resolution for OR is 4.9 µm, and the lateral resolution for AR is 114.5 µm. The maximum imaging depth for OR is 0.7 mm, and the maximum imaging depth for AR is 4.1 mm. The imaging speed can reach 50 k Alines per second. The high signal-to-noise ratios and wavelength throughput are achieved by delivering light via free-space, and the high speed is achieved by a MEMS scanning mirror. The blood vasculature from superficial skin to the deep tissue of a mouse leg was imaged in vivo using two different resolutions to demonstrate the multiscale imaging capability.
Collapse
|
29
|
Zhou Y, Liang S, Li M, Liu C, Lai P, Wang L. Optical-resolution photoacoustic microscopy with ultrafast dual-wavelength excitation. JOURNAL OF BIOPHOTONICS 2020; 13:e201960229. [PMID: 32049415 DOI: 10.1002/jbio.201960229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 05/07/2023]
Abstract
Fast functional and molecular photoacoustic microscopy requires pulsed laser excitations at multiple wavelengths with enough pulse energy and short wavelength-switching time. Recent development of stimulated Raman scattering in optical fiber offers a low-cost laser source for multiwavelength photoacoustic imaging. In this approach, long fibers temporally separate different wavelengths via optical delay. The time delay between adjacent wavelengths may eventually limits the highest A-line rate. In addition, a long-time delay in fiber may limit the highest pulse energy, leading to poor image quality. In order to achieve high pulse energy and ultrafast dual-wavelength excitation, we present optical-resolution photoacoustic microscopy with ultrafast dual-wavelength excitation and a signal separation method. The signal separation method is validated in numerical simulation and phantom experiments. We show that when two photoacoustic signals are partially overlapped with a 50-ns delay, they can be recovered with 98% accuracy. We apply this ultrafast dual-wavelength excitation technique to in vivo OR-PAM. Results demonstrate that A-lines at two wavelengths can be successfully separated, and sO2 values can be reliably computed from the separated data. The ultrafast dual-wavelength excitation enables fast functional photoacoustic microscopy with negligible misalignment among different wavelengths and high pulse energy, which is important for in vivo imaging of microvascular dynamics.
Collapse
Affiliation(s)
- Yingying Zhou
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Siyi Liang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Mingsheng Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Puxiang Lai
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Engineering, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
30
|
He Y, Shi J, Maslov KI, Cao R, Wang LV. Wave of single-impulse-stimulated fast initial dip in single vessels of mouse brains imaged by high-speed functional photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-11. [PMID: 32529816 PMCID: PMC7289453 DOI: 10.1117/1.jbo.25.6.066501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/28/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE The initial dip in hemoglobin-oxygenation response to stimulations is a spatially confined endogenous indicator that is faster than the blood flow response, making it a desired label-free contrast to map the neural activity. A fundamental question is whether a single-impulse stimulus, much shorter than the response delay, could produce an observable initial dip without repeated stimulation. AIM To answer this question, we report high-speed functional photoacoustic (PA) microscopy to investigate the initial dip in mouse brains. APPROACH We developed a Raman-laser-based dual-wavelength functional PA microscope that can image capillary-level blood oxygenation at a 1-MHz one-dimensional imaging rate. This technology was applied to monitor the hemodynamics of mouse cerebral vasculature after applying an impulse stimulus to the forepaw. RESULTS We observed a transient initial dip in cerebral microvessels starting as early as 0.13 s after the onset of the stimulus. The initial dip and the subsequent overshoot manifested a wave pattern propagating across different microvascular compartments. CONCLUSIONS We quantified both spatially and temporally the single-impulse-stimulated microvascular hemodynamics in mouse brains at single-vessel resolution. Fast label-free imaging of single-impulse response holds promise for real-time brain-computer interfaces.
Collapse
Affiliation(s)
- Yun He
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Junhui Shi
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Konstantin I. Maslov
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Rui Cao
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
- Address all correspondence to Lihong V. Wang, E-mail:
| |
Collapse
|
31
|
Li D, Liu C, Yang Y, Wang L, Shen Y. Micro-rocket robot with all-optic actuating and tracking in blood. LIGHT, SCIENCE & APPLICATIONS 2020; 9:84. [PMID: 32411369 PMCID: PMC7214411 DOI: 10.1038/s41377-020-0323-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 05/10/2023]
Abstract
Micro/nanorobots have long been expected to reach all parts of the human body through blood vessels for medical treatment or surgery. However, in the current stage, it is still challenging to drive a microrobot in viscous media at high speed and difficult to observe the shape and position of a single microrobot once it enters the bloodstream. Here, we propose a new micro-rocket robot and an all-optic driving and imaging system that can actuate and track it in blood with microscale resolution. To achieve a high driving force, we engineer the microrobot to have a rocket-like triple-tube structure. Owing to the interface design, the 3D-printed micro-rocket can reach a moving speed of 2.8 mm/s (62 body lengths per second) under near-infrared light actuation in a blood-mimicking viscous glycerol solution. We also show that the micro-rocket robot is successfully tracked at a 3.2-µm resolution with an optical-resolution photoacoustic microscope in blood. This work paves the way for microrobot design, actuation, and tracking in the blood environment, which may broaden the scope of microrobotic applications in the biomedical field.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
| | - Chao Liu
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
| | - Yuanyuan Yang
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| | - Yajing Shen
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| |
Collapse
|
32
|
Zhou Y, Cao F, Li H, Huang X, Wei D, Wang L, Lai P. Photoacoustic imaging of microenvironmental changes in facial cupping therapy. BIOMEDICAL OPTICS EXPRESS 2020; 11:2394-2401. [PMID: 32499932 PMCID: PMC7249831 DOI: 10.1364/boe.387985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 05/21/2023]
Abstract
As a traditional medicine practice, cupping therapy has been widely used to relieve symptoms like fatigue, tension, and muscle pain. During the therapy, negative pressure is applied to the skin for a while with an intention to enhance blood circulation or induce micro-bleeding. The therapeutic effect, however, is not clear due to the lack of direct quantification. Aiming at a quantitative assessment of the treatment effect, we explore optical-resolution photoacoustic microscopy (OR-PAM) in monitoring the structural and functional changes after cupping. We find that, after 5-minutes of ∼ 20 kPa negative pressure cupping, more capillaries appear in the focus, and micro-blooding is observed from the capillaries. We quantify the images and find the blood vessel density is increased by 64%, and the total hemoglobin concentration in both the veins and the arteries exhibits 62% and 40% elevation, respectively. Oxygen saturation in the vein and artery decreased by 17% and 3% right after cupping, respectively. After two hours of recovery, the three blood-related parameters return to their original levels, indicating that the effects in the tissue last only a short period after cupping at the given pressure and time duration. Note that no significant cupping marks are induced with the treatment parameters in this study. This work proposes OR-PAM to quantitatively monitor and evaluate the effect of cupping therapy from the perspective of imaging. The method is also useful for accurate control of the therapeutic outcome.
Collapse
Affiliation(s)
- Yingying Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- These authors contributed equally to this work
| | - Fei Cao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- These authors contributed equally to this work
| | - Huanhao Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Xiazi Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Dongshan Wei
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
33
|
Zhao Y, Wang K, Li W, Zhang H, Qian Z, Liu Y. Laser speckle contrast imaging system using nanosecond pulse laser source. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-10. [PMID: 32452171 PMCID: PMC7247735 DOI: 10.1117/1.jbo.25.5.056005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Nanosecond-pulsed laser has proven to be used to obtain the velocity of blood using the speckle contrast method. Without the scanning time, it has potential for achieving fast two-dimensional blood flow images in a photoacoustic imaging system with the same pulsed laser. AIM Our study aimed to evaluate the qualities of regional cerebral blood flow (rCBF) obtained in a laser speckle contrast imaging (LSCI) system using continuous wave (cw) and nanosecond pulse laser sources. APPROACH First, a LSCI system consisting of a cw laser with a wavelength of 632.8 nm and a cw laser/nanosecond pulse laser with a wavelength of 532 nm was developed. This system was used to obtain rCBF images of mouse in vivo with two different laser sources. RESULTS Continuous wave lasers (532 and 632.8 nm) show different imaging characteristics for rCBF imaging. The rCBF images obtained using 532-nm nanosecond pulse laser showed higher resolution than those using 532-nm cw laser. There was no significant difference in the results using nanosecond pulse laser among various pulse widths or repetition rates. CONCLUSIONS It is proved that a nanosecond pulse laser could be used for LSCI.
Collapse
Affiliation(s)
- Yuemei Zhao
- Nanjing University of Aeronautics and Astronautics, Department of Biomedical Engineering, Nanjing, China
| | - Kang Wang
- Nanjing University of Aeronautics and Astronautics, Department of Biomedical Engineering, Nanjing, China
| | - Weitao Li
- Nanjing University of Aeronautics and Astronautics, Department of Biomedical Engineering, Nanjing, China
| | - Huan Zhang
- Nanjing University of Aeronautics and Astronautics, Department of Biomedical Engineering, Nanjing, China
| | - Zhiyu Qian
- Nanjing University of Aeronautics and Astronautics, Department of Biomedical Engineering, Nanjing, China
| | | |
Collapse
|
34
|
Liang Y, Liu H, Li Q, Jin L, Guan BO, Wang L. Acoustic-spectrum-compensated photoacoustic microscopy. OPTICS LETTERS 2020; 45:1850-1853. [PMID: 32236015 DOI: 10.1364/ol.387087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Photoacoustic microscopy (PAM) can label-free image oxy- and deoxy-hemoglobin (${{\rm HbO}_2}$HbO2 and Hb) concentrations in vivo, providing useful information for metabolic researches and diagnostic applications. Conventional PAM assumes a linear relationship between the photoacoustic amplitude and the absorption coefficient. However, many factors, including absorber size, laser pulse width, and frequency response of the ultrasound transducer, may affect the measured acoustic spectrum and the shape of the temporal photoacoustic signal. The ultrasound transducer may weigh the blood vessels differently according to their diameters. In addition, the pulse width also affects the photoacoustic signal amplitude. These factors may cause inaccurate measurement of Hb and ${{\rm HbO}_2}$HbO2 concentrations. To address this issue, we develop an acoustic-spectrum-compensated optical-resolution PAM (OR-PAM) that corrects the nonuniform acoustic spectrum and makes the quantitative results to be independent of the vessel diameter and pulse width. In dual-wavelength OR-PAM, we demonstrate that the acoustic spectrum compensation can improve the accuracy of oxygen saturation imaging by $\sim{15}\% $∼15%.
Collapse
|
35
|
Liu C, Liang Y, Wang L. Single-shot photoacoustic microscopy of hemoglobin concentration, oxygen saturation, and blood flow in sub-microseconds. PHOTOACOUSTICS 2020; 17:100156. [PMID: 31956486 PMCID: PMC6957791 DOI: 10.1016/j.pacs.2019.100156] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 05/04/2023]
Abstract
We present fast functional optical-resolution photoacoustic microscopy (OR-PAM) that can simultaneously image hemoglobin concentration, blood flow speed, and oxygen saturation with three-pulse excitation. To instantaneously determine the blood flow speed, dual-pulse photoacoustic flowmetry is developed to determine the blood flow speed from photoacoustic signal decay in sub-microseconds. Grueneisen relaxation effect is compensated for in the oxygen saturation calculation. The blood flow imaging is validated in phantom and in vivo experiments. The results show that the flow speed can be measured accurately in sub-microseconds by comparing the dual-pulse flowmetric method with photoacoustic Doppler flowmetry. Wide-field OR-PAM of hemoglobin concentration, blood flow speed, and oxygen saturation are demonstrated in the mouse ear. This technical advance enables more biomedical applications for fast functional OR-PAM.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave., Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, Shenzhen, Guang Dong, 518057, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- Corresponding author.
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave., Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, Shenzhen, Guang Dong, 518057, China
- Corresponding author at: Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave., Kowloon, Hong Kong, China.
| |
Collapse
|
36
|
Li Y, Li L, Zhu L, Maslov K, Shi J, Hu P, Bo E, Yao J, Liang J, Wang L, Wang LV. Snapshot Photoacoustic Topography Through an Ergodic Relay for High-throughput Imaging of Optical Absorption. NATURE PHOTONICS 2020; 14:164-170. [PMID: 34178097 PMCID: PMC8223468 DOI: 10.1038/s41566-019-0576-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Current embodiments of photoacoustic imaging require either serial detection with a single-element ultrasonic transducer or parallel detection with an ultrasonic array, necessitating a trade-off between cost and throughput. Here, we present photoacoustic topography through an ergodic relay (PATER) for low-cost high-throughput snapshot widefield imaging. Encoding spatial information with randomized temporal signatures through ergodicity, PATER requires only a single-element ultrasonic transducer to capture a widefield image with a single laser shot. We applied PATER to demonstrate both functional imaging of hemodynamic responses and high-speed imaging of blood pulse wave propagation in mice in vivo. Leveraging the high frame rate of 2 kHz, PATER tracked and localized moving melanoma tumor cells in the mouse brain in vivo, which enabled flow velocity quantification and super-resolution imaging. Among the potential biomedical applications of PATER, wearable monitoring of human vital signs in particular is envisaged.
Collapse
Affiliation(s)
- Yang Li
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Liren Zhu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Junhui Shi
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Peng Hu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - En Bo
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
| | - Jinyang Liang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Lidai Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Correspondence should be addressed to L.V.W. ()
| |
Collapse
|
37
|
Li M, Chen J, Wang L. High acoustic numerical aperture photoacoustic microscopy with improved sensitivity. OPTICS LETTERS 2020; 45:628-631. [PMID: 32004269 DOI: 10.1364/ol.384691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 05/18/2023]
Abstract
Limited by the numerical aperture of ultrasonic detection, optical resolution photoacoustic microscopy (OR-PAM) has not achieved optimal sensitivity. To address this problem, we have developed a high acoustic numerical aperture ($ {\sim} 0.74 $∼0.74) OR-PAM (HNA-OR-PAM). Via engineering the acoustic lens, we implement the highest acoustic numerical aperture that a spherical concave lens can achieve. The sensitivity of HNA-OR-PAM is improved to around 160%-the state-of-the-art OR-PAM. Without averaging, the new system can image oxygen saturation in vivo with only 10-nJ pulse energy. The improved sensitivity allows us to image weaker absorbers, penetrate deeper, and reduce nonlinear effects induced by high pulse energy. Moreover, the photoacoustic view angle is augmented to 51.8 deg and makes tilted features more visible. We validate the improved view angle in both a phantom study and brain imaging.
Collapse
|
38
|
Zhou Y, Chen J, Liu C, Liu C, Lai P, Wang L. Single-shot linear dichroism optical-resolution photoacoustic microscopy. PHOTOACOUSTICS 2019; 16:100148. [PMID: 31871890 PMCID: PMC6909087 DOI: 10.1016/j.pacs.2019.100148] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Dichroism is a material property that causes anisotropic light-matter interactions for different optical polarizations. Dichroism relates to molecular types and material morphology and thus can be used to distinguish different dichroic tissues. In this paper, we present single-shot dichroism photoacoustic microscopy that can image tissue structure, linear dichroism, and polarization angle with a single raster scanning. We develop a fiber-based laser system to split one laser pulse into three with different polarization angles, sub-microseconds time delay, and identical pulse energy. A dual-fiber optical-resolution photoacoustic microscopy system is developed to acquire three A-lines per scanning step. In such a way, dichroism imaging can achieve the same speed as single-wavelength photoacoustic microscopy. Moreover, the three polarized pulses originate from one laser pulse, which decreases pulse energy fluctuations and reduces dichroism measurement noise by ∼35 %. The new dichroism photoacoustic imaging technique can be used to image endogenous or exogenous polarization-dependent absorption contrasts, such as dichroic tumor or molecule-labeled tissue.
Collapse
Affiliation(s)
- Yingying Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Chao Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
39
|
Liu C, Liang Y, Wang L. Optical-resolution photoacoustic microscopy of oxygen saturation with nonlinear compensation. BIOMEDICAL OPTICS EXPRESS 2019; 10:3061-3069. [PMID: 31259074 PMCID: PMC6583336 DOI: 10.1364/boe.10.003061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 05/02/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) of oxygen saturation (sO2) offers high-resolution functional information on living tissue. Limited by the availability of high-speed multi-wavelength lasers, most OR-PAM systems use wavelengths around 532nm. Blood has high absorption coefficients in this spectrum, which may cause absorption saturation and induce systematic errors in sO2 imaging. Here, we present nonlinear OR-PAM that compensates for the absorption saturation in sO2 imaging. We model the absorption saturation at different absorption coefficients and ultrasonic bandwidths. To compensate for the absorption saturation, we develop an OR-PAM system with three optical wavelengths and implement a nonlinear algorithm to compute sO2. Phantom experiments on bovine blood validate that the nonlinear OR-PAM can improve the sO2 accuracy by up to 0.13 for fully oxygenated blood. In vivo sO2 imaging has been conducted in the mouse ear. The nonlinear sO2 results agree with the normal physiological values. These results show that the absorption saturation effect can be compensated for in nonlinear OR-PAM, which improves the accuracy of functional photoacoustic imaging.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, China
| |
Collapse
|
40
|
Upputuri PK, Pramanik M. Photoacoustic imaging in the second near-infrared window: a review. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-20. [PMID: 30968648 PMCID: PMC6990072 DOI: 10.1117/1.jbo.24.4.040901] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/18/2019] [Indexed: 05/04/2023]
Abstract
Photoacoustic (PA) imaging is an emerging medical imaging modality that combines optical excitation and ultrasound detection. Because ultrasound scatters much less than light in biological tissues, PA generates high-resolution images at centimeters depth. In recent years, wavelengths in the second near-infrared (NIR-II) window (1000 to 1700 nm) have been increasingly explored due to its potential for preclinical and clinical applications. In contrast to the conventional PA imaging in the visible (400 to 700 nm) and the first NIR-I (700 to 1000 nm) window, PA imaging in the NIR-II window offers numerous advantages, including high spatial resolution, deeper penetration depth, reduced optical absorption, and tissue scattering. Moreover, the second window allows a fivefold higher light excitation energy density compared to the visible window for enhancing the imaging depth significantly. We highlight the importance of the second window for PA imaging and discuss the various NIR-II PA imaging systems and contrast agents with strong absorption in the NIR-II spectral region. Numerous applications of NIR-II PA imaging, including whole-body animal imaging and human imaging, are also discussed.
Collapse
Affiliation(s)
- Paul Kumar Upputuri
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
41
|
Kim J, Kim JY, Jeon S, BAIK JW, Cho SH, Kim C. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. LIGHT, SCIENCE & APPLICATIONS 2019; 8:103. [PMID: 31798842 PMCID: PMC6868204 DOI: 10.1038/s41377-019-0220-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 05/03/2023]
Abstract
Photoacoustic microscopy (PAM) has become a premier microscopy tool that can provide the anatomical, functional, and molecular information of animals and humans in vivo. However, conventional PAM systems suffer from limited temporal and/or spatial resolution. Here, we present a fast PAM system and an agent-free localization method based on a stable and commercial galvanometer scanner with a custom-made scanning mirror (L-PAM-GS). This novel hardware implementation enhances the temporal resolution significantly while maintaining a high signal-to-noise ratio (SNR). These improvements allow us to photoacoustically and noninvasively observe the microvasculatures of small animals and humans in vivo. Furthermore, the functional hemodynamics, namely, the blood flow rate in the microvasculature, is successfully monitored and quantified in vivo. More importantly, thanks to the high SNR and fast B-mode rate (500 Hz), by localizing photoacoustic signals from captured red blood cells without any contrast agent, unresolved microvessels are clearly distinguished, and the spatial resolution is improved by a factor of 2.5 in vivo. L-PAM-GS has great potential in various fields, such as neurology, oncology, and pathology.
Collapse
Affiliation(s)
- Jongbeom Kim
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jin Young Kim
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Seungwan Jeon
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jin Woo BAIK
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Seong Hee Cho
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Chulhong Kim
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
42
|
Qu Y, Li C, Shi J, Chen R, Xu S, Rafsanjani H, Maslov K, Krigman H, Garvey L, Hu P, Zhao P, Meyers K, Diveley E, Pizzella S, Muench L, Punyamurthy N, Goldstein N, Onwumere O, Alisio M, Meyenburg K, Maynard J, Helm K, Slaughter J, Barber S, Burger T, Kramer C, Chubiz J, Anderson M, McCarthy R, England SK, Macones GA, Zhou Q, Shung KK, Zou J, Stout MJ, Tuuli M, Wang LV. Transvaginal fast-scanning optical-resolution photoacoustic endoscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-4. [PMID: 30520276 PMCID: PMC6279961 DOI: 10.1117/1.jbo.23.12.121617] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/05/2018] [Indexed: 05/07/2023]
Abstract
Photoacoustic endoscopy offers in vivo examination of the visceral tissue using endogenous contrast, but its typical B-scan rate is ∼10 Hz, restricted by the speed of the scanning unit and the laser pulse repetition rate. Here, we present a transvaginal fast-scanning optical-resolution photoacoustic endoscope with a 250-Hz B-scan rate over a 3-mm scanning range. Using this modality, we not only illustrated the morphological differences of vasculatures among the human ectocervix, uterine body, and sublingual mucosa but also showed the longitudinal and cross-sectional differences of cervical vasculatures in pregnant women. This technology is promising for screening the visceral pathological changes associated with angiogenesis.
Collapse
Affiliation(s)
- Yuan Qu
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Chiye Li
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Junhui Shi
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, Pasadena, California, United States
| | - Ruimin Chen
- University of Southern California, NIH Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, Los Angeles, California, United States
| | - Song Xu
- Texas A&M University, Department of Electrical and Computer Engineering, College Station, Texas, United States
| | - Hasan Rafsanjani
- Texas A&M University, Department of Electrical and Computer Engineering, College Station, Texas, United States
| | - Konstantin Maslov
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, Pasadena, California, United States
| | - Hannah Krigman
- Washington University in St. Louis, Department of Pathology and Immunology, St. Louis, Missouri, United States
| | - Laura Garvey
- Washington University in St. Louis, Department of Pathology and Immunology, St. Louis, Missouri, United States
| | - Peng Hu
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Peinan Zhao
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Karen Meyers
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Emily Diveley
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Stephanie Pizzella
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Lisa Muench
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Nina Punyamurthy
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Naomi Goldstein
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Oji Onwumere
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Mariana Alisio
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Kaytelyn Meyenburg
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Jennifer Maynard
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Kristi Helm
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Janessia Slaughter
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Sabrina Barber
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Tracy Burger
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Christine Kramer
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Jessica Chubiz
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Monica Anderson
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Ronald McCarthy
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Sarah K. England
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - George A. Macones
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Qifa Zhou
- University of Southern California, NIH Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, Los Angeles, California, United States
| | - K. Kirk Shung
- University of Southern California, NIH Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, Los Angeles, California, United States
| | - Jun Zou
- Texas A&M University, Department of Electrical and Computer Engineering, College Station, Texas, United States
| | - Molly J. Stout
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
- Address all correspondence to: Molly J. Stout, E-mail: ; Methodius Tuuli, E-mail: ; Lihong V. Wang, E-mail:
| | - Methodius Tuuli
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
- Address all correspondence to: Molly J. Stout, E-mail: ; Methodius Tuuli, E-mail: ; Lihong V. Wang, E-mail:
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, Pasadena, California, United States
- Address all correspondence to: Molly J. Stout, E-mail: ; Methodius Tuuli, E-mail: ; Lihong V. Wang, E-mail:
| |
Collapse
|
43
|
Rebling J, Estrada H, Gottschalk S, Sela G, Zwack M, Wissmeyer G, Ntziachristos V, Razansky D. Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks. JOURNAL OF BIOPHOTONICS 2018; 11:e201800057. [PMID: 29675962 DOI: 10.1002/jbio.201800057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/18/2018] [Indexed: 05/03/2023]
Abstract
A critical link exists between pathological changes of cerebral vasculature and diseases affecting brain function. Microscopic techniques have played an indispensable role in the study of neurovascular anatomy and functions. Yet, investigations are often hindered by suboptimal trade-offs between the spatiotemporal resolution, field-of-view (FOV) and type of contrast offered by the existing optical microscopy techniques. We present a hybrid dual-wavelength optoacoustic (OA) biomicroscope capable of rapid transcranial visualization of large-scale cerebral vascular networks. The system offers 3-dimensional views of the morphology and oxygenation status of the cerebral vasculature with single capillary resolution and a FOV exceeding 6 × 8 mm2 , thus covering the entire cortical vasculature in mice. The large-scale OA imaging capacity is complemented by simultaneously acquired pulse-echo ultrasound (US) biomicroscopy scans of the mouse skull. The new approach holds great potential to provide better insights into cerebrovascular function and facilitate efficient studies into neurological and vascular abnormalities of the brain.
Collapse
Affiliation(s)
- Johannes Rebling
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine and Faculty of Electrical Engineering, Technical University of Munich, München, Germany
| | - Héctor Estrada
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
| | - Sven Gottschalk
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
| | - Gali Sela
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
| | - Michael Zwack
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
| | - Georg Wissmeyer
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine and Faculty of Electrical Engineering, Technical University of Munich, München, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine and Faculty of Electrical Engineering, Technical University of Munich, München, Germany
| | - Daniel Razansky
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine and Faculty of Electrical Engineering, Technical University of Munich, München, Germany
| |
Collapse
|
44
|
Kang H, Lee SW, Park SM, Cho SW, Lee JY, Kim CS, Lee TG. Real-time functional optical-resolution photoacoustic microscopy using high-speed alternating illumination at 532 and 1064 nm. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 28945324 DOI: 10.1002/jbio.201700210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 05/10/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM), which has been widely used and studied as a noninvasive and in vivo imaging technique, can yield high-resolution and absorption contrast images. Recently, metallic nanoparticles and dyes, such as gold nanoparticles, methylene blue, and indocyanine green, have been used as contrast agents of OR-PAM. This study demonstrates real-time functional OR-PAM images with high-speed alternating illumination at 2 wavelengths. To generate 2 wavelengths, second harmonic generation at 532 nm with an LBO crystal and a pump wavelength of 1064 nm is applied at a pulse repetition rate of 300 kHz. For alternating illumination, an electro-optical modulator is used as an optical switch. Therefore, the A-line rate for the functional image is 150 kHz, which is half of the laser repetition rate. To enable fast signal processing and real-time displays, parallel signal processing using a graphics processing unit (GPU) is performed. OR-PAM images of the distribution of blood vessels and gold nanorods in a BALB/c-nude mouse's ear can be simultaneously obtained with 500 × 500 pixels and real-time display at 0.49 fps.
Collapse
Affiliation(s)
- Heesung Kang
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Sang-Won Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science, Daejeon, South Korea
- Department of Nano Science, University of Science and Technology, Daejeon, South Korea
| | - Sang-Min Park
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science, Daejeon, South Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Soon-Woo Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Jae Yong Lee
- Korea Research Institute of Standards and Science, Center for Length, Daejeon, South Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Tae Geol Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science, Daejeon, South Korea
- Department of Nano Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|