1
|
Segervald J, Malyshev D, Öberg R, Zäll E, Jia X, Wågberg T, Andersson M. Ultra-Sensitive Detection of Bacterial Spores via SERS. ACS Sens 2025; 10:1237-1248. [PMID: 39847439 DOI: 10.1021/acssensors.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Bacterial spores are highly resilient and capable of surviving extreme conditions, making them a persistent threat in contexts such as disease transmission, food safety, and bioterrorism. Their ability to withstand conventional sterilization methods necessitates rapid and accurate detection techniques to effectively mitigate the risks they present. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) approach for detecting Bacillus thuringiensis spores by targeting calcium dipicolinate acid (CaDPA), a biomarker uniquely associated with bacterial spores. Our method uses probe sonication to disrupt spores, releasing their CaDPA, which is then detected by SERS on drop-dried supernatant mixed with gold nanorods. This simple approach enables the selective detection of CaDPA, distinguishing it from other spore components and background noise. We demonstrate detection of biogenic CaDPA from concentrations as low as 103 spores/mL, with sensitivity reaching beyond CaDPA levels of a single spore. Finally, we show the method's robustness by detecting CaDPA from a realistic sample of fresh milk mixed with spores. These findings highlight the potential of SERS as a sensitive and specific technique for bacterial spore detection, with implications for fields requiring rapid and reliable spore identification.
Collapse
Affiliation(s)
- Jonas Segervald
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Dmitry Malyshev
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Erik Zäll
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Xueen Jia
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | | |
Collapse
|
2
|
Sil TB, Malyshev D, Aspholm M, Andersson M. Boosting hypochlorite's disinfection power through pH modulation. BMC Microbiol 2025; 25:101. [PMID: 40021972 PMCID: PMC11869716 DOI: 10.1186/s12866-025-03831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
PURPOSE Hypochlorite-based formulations are widely used for surface disinfection. However, the efficacy of hypochlorite against spore-forming bacteria varies significantly in the literature. Although neutral or low pH hypochlorite solutions are effective sporicides due to the formation of hypochlorous acid (HOCl), their optimal conditions and the specific role of pH in disinfection remain unclear. These conditions also increase the solution's corrosiveness and compromise its shelf life. Therefore, further research is needed to identify the pH conditions that balance solution stability and effective hypochlorite-based spore disinfection. RESULTS This study investigates the impact of neutral to alkaline pH on the sporicidal efficiency of hypochlorite against a pathogenic Bacillus cereus strain. We apply a 5,000 ppm hypochlorite formulation for 10-min across a pH range of 7.0-12.0, simulating common surface decontamination practices. Our results demonstrate that hypochlorite is largely ineffective at pH levels above 11.0, showing less than 1-log reduction in spore viability. However, there is a significant increase in sporicidal efficiency between pH 11.0 and 9.5, with a 4-log reduction in viability. This pH level corresponds to 2 - 55 ppm of the HOCl ionic form of hypochlorite. Further reduction in pH slightly improves the disinfection efficacy. However, the shelf life of hypochlorite solution decreases exponentially below pH 8.5. To explore the pH-dependent efficacy of hypochlorite, Raman spectroscopy and fluorescence imaging were used to investigate the biochemical mechanisms of spore decontamination. Results showed that lower pH enhances spore permeability and promotes calcium dipicolinic acid (CaDPA) release from the core. CONCLUSION Our results highlight the complex relationship between pH, sporicidal efficacy of hypochlorite, and its shelf life. While lower pH enhances the sporicidal efficiency, it compromises the solution's shelf life. A pH of 9.5 offers a balance, significantly improving shelf life compared to previously suggested pH ranges 7.0-8.0 while maintaining effective spore inactivation. Our findings challenge the common practice of diluting sodium hypochlorite with water to a 5,000 ppm solution, as this highly alkaline solution (pH of 11.9), is insufficient for eliminating B. cereus spores, even after a 10-min exposure. These findings are critical for improving disinfection practices, highlighting the importance of optimizing sodium hypochlorite effectiveness through pH adjustments before application.
Collapse
Affiliation(s)
| | | | - Marina Aspholm
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, 90187, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden.
| |
Collapse
|
3
|
Jonsmoen UL, Malyshev D, Sleutel M, Kristensen EE, Zegeye ED, Remaut H, Andersson M, Aspholm ME. The role of endospore appendages in spore-spore interactions in the pathogenic Bacillus cereus group. Environ Microbiol 2024; 26:e16678. [PMID: 39228067 DOI: 10.1111/1462-2920.16678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/06/2024] [Indexed: 09/05/2024]
Abstract
Species within the Bacillus cereus sensu lato group, known for their spore-forming ability, are recognized for their significant role in food spoilage and food poisoning. The spores of B. cereus are adorned with numerous pilus-like appendages, referred to as S-ENAs and L-ENAs. These appendages are thought to play vital roles in self-aggregation, adhesion, and biofilm formation. Our study investigates the role of S-ENAs and L-ENAs, as well as the impact of various environmental factors on spore-to-spore contacts and the interaction between spores and vegetative cells, using both bulk and single-cell approaches. Our findings indicate that ENAs, especially their tip fibrillae, play a crucial role in spore self-aggregation, but not in the adhesion of spores to vegetative cells. The absence of L-BclA, which forms the L-ENA tip fibrillum, reduced spore aggregation mediated by both S-ENAs and L-ENAs, highlighting the interconnected roles of S-ENAs and L-ENAs. We also found that increased salt concentrations in the liquid environment significantly reduced spore aggregation, suggesting a charge dependency of spore-spore interactions. By shedding light on these complex interactions, our study offers valuable insights into spore dynamics. This knowledge can inform future studies on spore behaviour in environmental settings and assist in developing strategies to manage bacterial aggregation for beneficial purposes, such as controlling biofilms in food production equipment.
Collapse
Affiliation(s)
- Unni Lise Jonsmoen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, Brussels, VIB, Belgium
| | - Elise Egeli Kristensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ephrem Debebe Zegeye
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, Brussels, VIB, Belgium
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden
| | - Marina Elisabeth Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
4
|
Pascar L, Xu DX, Grinberg Y, Sajjanam Morrison S, Vachon M, Liboiron-Ladouceur O. Ultra-short and highly efficient metamaterial Fresnel lens-assisted taper. OPTICS EXPRESS 2024; 32:28522-28535. [PMID: 39538667 DOI: 10.1364/oe.531098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/14/2024] [Indexed: 11/16/2024]
Abstract
This paper demonstrates the benefits of leveraging free-space optics concepts in the design of certain integrated photonic components, leading to a footprint reduction without compromising on performance. Specifically, we present ultra-short, highly efficient and fabrication-friendly mode-size converters based on metamaterial Fresnel lens-assisted tapers. This is achieved using a parameterized inverse-design approach, where the metamaterial phase shifters are realized using fabrication-friendly Manhattan geometries, by optimizing the width, length, and position of the phase shifters. This approach overcomes the limitations of the conventional method that uses local periodic approximation, which is not suitable for lenses with a short focal length and high numerical aperture. We also extend the free-space concept of compound lenses and demonstrate a doublet-based taper to further reduce the footprint. The devices are fabricated and experimentally characterized in terms of insertion loss and signal integrity at high data transmission rates, exhibiting high performance. For the singlet, it effectively achieves mode-size conversion from 15 μm to 0.5 μm within a 15 μm distance, leading to ×10 length reduction compared to a linear taper. The insertion loss is under 1 dB over the entire C-band. The doublet achieves the same mode-size reduction within a 10 μm distance, leading to ×15 length reduction compared to a linear taper. The insertion loss is near 1 dB over most of the C-band. In both cases, the signal integrity is maintained for up to 50 Gbit/s.
Collapse
|
5
|
Öberg R, Sil TB, Ohlin A, Andersson M, Malyshev D. Assessing CaDPA levels, metabolic activity, and spore detection through deuterium labeling. Analyst 2024; 149:1861-1871. [PMID: 38348676 DOI: 10.1039/d3an02162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Many strains among spore-forming bacteria species are associated with food spoilage, foodborne disease, and hospital-acquired infections. Understanding the impact of environmental conditions and decontamination techniques on the metabolic activity, viability, and biomarkers of these spores is crucial for combatting them. To distinguish and track spores and to understand metabolic mechanisms, spores must be labeled. Staining or genetic modification are current methods for this, however, these methods can be time-consuming, and affect the viability and function of spore samples. In this work, we investigate the use of heavy water for permanent isotope labeling of spores and Raman spectroscopy for tracking sporulation/germination mechanisms. We also discuss the potential of this method in observing decontamination. We find that steady-state deuterium levels in the spore are achieved after only ∼48 h of incubation with 30% D2O-infused broth and sporulation, generating Raman peaks at cell silent region of 2200 and 2300 cm-1. These deuterium levels then decrease rapidly upon spore germination in non-deuterated media. We further find that unlike live spores, spores inactivated using various methods do not lose these Raman peaks upon incubation in growth media, suggesting these peaks may be used to indicate the viability of a spore sample. We further observe several Raman peaks exclusive to deuterated DPA, a spore-specific chemical biomarker, at e.g. 988 and 2300 cm-1, which can be used to track underlying changes in spores involving DPA. In conclusion, permanent spore labeling using deuterium offers a robust and non-invasive way of labeling bacterial spores for marking, viability determination, and characterising spore activity.
Collapse
Affiliation(s)
- Rasmus Öberg
- Department of Physics, Umeå University, 901 87, Umeå, Sweden.
- Swedish Defence Research Agency (FOI), Cementvägen 20, 906 21 Umeå, Sweden
| | - Timir Baran Sil
- Department of Physics, Umeå University, 901 87, Umeå, Sweden.
| | - André Ohlin
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | | | - Dmitry Malyshev
- Department of Physics, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
6
|
Öberg R, Sil TB, Johansson AC, Malyshev D, Landström L, Johansson S, Andersson M, Andersson PO. UV-Induced Spectral and Morphological Changes in Bacterial Spores for Inactivation Assessment. J Phys Chem B 2024; 128:1638-1646. [PMID: 38326108 PMCID: PMC10895659 DOI: 10.1021/acs.jpcb.3c07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The ability to detect and inactivate spore-forming bacteria is of significance within, for example, industrial, healthcare, and defense sectors. Not only are stringent protocols necessary for the inactivation of spores but robust procedures are also required to detect viable spores after an inactivation assay to evaluate the procedure's success. UV radiation is a standard procedure to inactivate spores. However, there is limited understanding regarding its impact on spores' spectral and morphological characteristics. A further insight into these UV-induced changes can significantly improve the design of spore decontamination procedures and verification assays. This work investigates the spectral and morphological changes to Bacillus thuringiensis spores after UV exposure. Using absorbance and fluorescence spectroscopy, we observe an exponential decay in the spectral intensity of amino acids and protein structures, as well as a logistic increase in dimerized DPA with increased UV exposure on bulk spore suspensions. Additionally, using micro-Raman spectroscopy, we observe DPA release and protein degradation with increased UV exposure. More specifically, the protein backbone's 1600-1700 cm-1 amide I band decays slower than other amino acid-based structures. Last, using electron microscopy and light scattering measurements, we observe shriveling of the spore bodies with increased UV radiation, alongside the leaking of core content and disruption of proteinaceous coat and exosporium layers. Overall, this work utilized spectroscopy and electron microscopy techniques to gain new understanding of UV-induced spore inactivation relating to spore degradation and CaDPA release. The study also identified spectroscopic indicators that can be used to determine spore viability after inactivation. These findings have practical applications in the development of new spore decontamination and inactivation validation methods.
Collapse
Affiliation(s)
- Rasmus Öberg
- Swedish
Defence Research Agency (FOI), Umeå 90621, Sweden
- Department
of Physics, Umeå University, Umeå 90736, Sweden
| | - Timir B. Sil
- Department
of Physics, Umeå University, Umeå 90736, Sweden
| | | | | | - Lars Landström
- Swedish
Defence Research Agency (FOI), Norra Sorunda 13794, Sweden
| | | | - Magnus Andersson
- Department
of Physics, Umeå University, Umeå 90736, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå 90736, Sweden
| | | |
Collapse
|
7
|
Jonsmoen UL, Malyshev D, Öberg R, Dahlberg T, Aspholm ME, Andersson M. Endospore pili: Flexible, stiff, and sticky nanofibers. Biophys J 2023; 122:2696-2706. [PMID: 37218131 PMCID: PMC10397575 DOI: 10.1016/j.bpj.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Species belonging to the Bacillus cereus group form endospores (spores) whose surface is decorated with micrometers-long and nanometers-wide endospore appendages (Enas). The Enas have recently been shown to represent a completely novel class of Gram-positive pili. They exhibit remarkable structural properties making them extremely resilient to proteolytic digestion and solubilization. However, little is known about their functional and biophysical properties. In this work, we apply optical tweezers to manipulate and assess how wild-type and Ena-depleted mutant spores immobilize on a glass surface. Furthermore, we utilize optical tweezers to extend S-Ena fibers to measure their flexibility and tensile stiffness. Finally, by oscillating single spores, we examine how the exosporium and Enas affect spores' hydrodynamic properties. Our results show that S-Enas (μm-long pili) are not as effective as L-Enas in immobilizing spores to glass surfaces but are involved in forming spore-to-spore connections, holding the spores together in a gel-like state. The measurements also show that S-Enas are flexible but tensile stiff fibers, which support structural data suggesting that the quaternary structure is composed of subunits arranged in a complex to produce a bendable fiber (helical turns can tilt against each other) with limited axial fiber extensibility. Finally, the results show that the hydrodynamic drag is 1.5 times higher for wild-type spores expressing S- and L-Enas compared with mutant spores expressing only L-Enas or "bald spores" lacking Ena, and 2 times higher compared with spores of the exosporium-deficient strain. This study unveils novel findings on the biophysics of S- and L-Enas, their role in spore aggregation, binding of spores to glass, and their mechanical behavior upon exposure to drag forces.
Collapse
Affiliation(s)
- Unni Lise Jonsmoen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | - Marina E Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
8
|
Patkowski JB, Dahlberg T, Amin H, Gahlot DK, Vijayrajratnam S, Vogel JP, Francis MS, Baker JL, Andersson M, Costa TRD. The F-pilus biomechanical adaptability accelerates conjugative dissemination of antimicrobial resistance and biofilm formation. Nat Commun 2023; 14:1879. [PMID: 37019921 PMCID: PMC10076315 DOI: 10.1038/s41467-023-37600-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Conjugation is used by bacteria to propagate antimicrobial resistance (AMR) in the environment. Central to this process are widespread conjugative F-pili that establish the connection between donor and recipient cells, thereby facilitating the spread of IncF plasmids among enteropathogenic bacteria. Here, we show that the F-pilus is highly flexible but robust at the same time, properties that increase its resistance to thermochemical and mechanical stresses. By a combination of biophysical and molecular dynamics methods, we establish that the presence of phosphatidylglycerol molecules in the F-pilus contributes to the structural stability of the polymer. Moreover, this structural stability is important for successful delivery of DNA during conjugation and facilitates rapid formation of biofilms in harsh environmental conditions. Thus, our work highlights the importance of F-pilus structural adaptations for the efficient spread of AMR genes in a bacterial population and for the formation of biofilms that protect against the action of antibiotics.
Collapse
Affiliation(s)
- Jonasz B Patkowski
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tobias Dahlberg
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | - Sukhithasri Vijayrajratnam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph P Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA.
| | | | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Malyshev D, Jones IA, McKracken M, Öberg R, Harper GM, Joshi LT, Andersson M. Hypervirulent R20291 Clostridioides difficile spores show disinfection resilience to sodium hypochlorite despite structural changes. BMC Microbiol 2023; 23:59. [PMID: 36879193 PMCID: PMC9986864 DOI: 10.1186/s12866-023-02787-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Clostridioides difficile is a spore forming bacterial species and the major causative agent of nosocomial gastrointestinal infections. C. difficile spores are highly resilient to disinfection methods and to prevent infection, common cleaning protocols use sodium hypochlorite solutions to decontaminate hospital surfaces and equipment. However, there is a balance between minimising the use of harmful chemicals to the environment and patients as well as the need to eliminate spores, which can have varying resistance properties between strains. In this work, we employ TEM imaging and Raman spectroscopy to analyse changes in spore physiology in response to sodium hypochlorite. We characterize different C. difficile clinical isolates and assess the chemical's impact on spores' biochemical composition. Changes in the biochemical composition can, in turn, change spores' vibrational spectroscopic fingerprints, which can impact the possibility of detecting spores in a hospital using Raman based methods. RESULTS We found that the isolates show significantly different susceptibility to hypochlorite, with the R20291 strain, in particular, showing less than 1 log reduction in viability for a 0.5% hypochlorite treatment, far below typically reported values for C. difficile. While TEM and Raman spectra analysis of hypochlorite-treated spores revealed that some hypochlorite-exposed spores remained intact and not distinguishable from controls, most spores showed structural changes. These changes were prominent in B. thuringiensis spores than C. difficile spores. CONCLUSION This study highlights the ability of certain C. difficile spores to survive practical disinfection exposure and the related changes in spore Raman spectra that can be seen after exposure. These findings are important to consider when designing practical disinfection protocols and vibrational-based detection methods to avoid a false-positive response when screening decontaminated areas.
Collapse
Affiliation(s)
| | | | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | | | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden. .,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
10
|
Valijam S, Nilsson DP, Öberg R, Albertsdóttir Jonsmoen UL, Porch A, Andersson M, Malyshev D. A lab-on-a-chip utilizing microwaves for bacterial spore disruption and detection. Biosens Bioelectron 2023; 231:115284. [PMID: 37031508 DOI: 10.1016/j.bios.2023.115284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Bacterial spores are problematic in agriculture, the food industry, and healthcare, with the fallout costs from spore-related contamination being very high. Spores are difficult to detect since they are resistant to many of the bacterial disruption techniques used to bring out the biomarkers necessary for detection. Because of this, effective and practical spore disruption methods are desirable. In this study, we demonstrate the efficiency of a compact microfluidic lab-on-chip built around a coplanar waveguide (CPW) operating at 2.45 GHz. We show that the CPW generates an electric field hotspot of ∼10 kV/m, comparable to that of a commercial microwave oven, while using only 1.2 W of input power and thus resulting in negligible sample heating. Spores passing through the microfluidic channel are disrupted by the electric field and release calcium dipicolinic acid (CaDPA), a biomarker molecule present alongside DNA in the spore core. We show that it is possible to detect this disruption in a bulk spore suspension using fluorescence spectroscopy. We then use laser tweezers Raman spectroscopy (LTRS) to show the loss of CaDPA on an individual spore level and that the loss increases with irradiation power. Only 22% of the spores contain CaDPA after exposure to 1.2 W input power, compared to 71% of the untreated control spores. Additionally, spores exposed to microwaves appear visibly disrupted when imaged using scanning electron microscopy (SEM). Overall, this study shows the advantages of using a CPW for disrupting spores for biomarker release and detection.
Collapse
|
11
|
Pakharukova N, Malmi H, Tuittila M, Dahlberg T, Ghosal D, Chang YW, Myint SL, Paavilainen S, Knight SD, Lamminmäki U, Uhlin BE, Andersson M, Jensen G, Zavialov AV. Archaic chaperone-usher pili self-secrete into superelastic zigzag springs. Nature 2022; 609:335-340. [PMID: 35853476 PMCID: PMC9452303 DOI: 10.1038/s41586-022-05095-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/08/2022] [Indexed: 11/23/2022]
Abstract
Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria1-3. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens1,4,5. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Henri Malmi
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Minna Tuittila
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Tobias Dahlberg
- Department of Physics, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Si Lhyam Myint
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Sari Paavilainen
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Stefan David Knight
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Bernt Eric Uhlin
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Magnus Andersson
- Department of Physics, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Grant Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anton V Zavialov
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland.
| |
Collapse
|
12
|
Malyshev D, Robinson NF, Öberg R, Dahlberg T, Andersson M. Reactive oxygen species generated by infrared laser light in optical tweezers inhibits the germination of bacterial spores. JOURNAL OF BIOPHOTONICS 2022; 15:e202200081. [PMID: 35538633 DOI: 10.1002/jbio.202200081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 06/14/2023]
Abstract
Bacterial spores are highly resistant to heat, radiation and various disinfection chemicals. The impact of these on the biophysical and physicochemical properties of spores can be studied on the single-cell level using optical tweezers. However, the effect of the trapping laser on spores' germination rate is not fully understood. In this work, we assess the impact of 1064 nm laser light on the germination of Bacillus thuringiensis spores. The results show that the germination rate of spores after laser exposure follows a sigmoid dose-response relationship, with only 15% of spores germinating after 20 J of laser light. Under anaerobic growth conditions, the percentage of germinating spores at 20 J increased to 65%. The results thereby indicate that molecular oxygen is a major contributor to the germination-inhibiting effect observed. Thus, our study highlights the risk for optical trapping of spores and ways to mitigate it.
Collapse
Affiliation(s)
| | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Dahlberg T, Baker JL, Bullitt E, Andersson M. Unveiling molecular interactions that stabilize bacterial adhesion pili. Biophys J 2022; 121:2096-2106. [PMID: 35491503 PMCID: PMC9247471 DOI: 10.1016/j.bpj.2022.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Adhesion pili assembled by the chaperone-usher pathway are superelastic helical filaments on the surface of bacteria, optimized for attachment to target cells. Here, we investigate the biophysical function and structural interactions that stabilize P pili from uropathogenic bacteria. Using optical tweezers, we measure P pilus subunit-subunit interaction dynamics and show that pilus compliance is contour-length dependent. Atomic details of subunit-subunit interactions of pili under tension are shown using steered molecular dynamics (sMD) simulations. sMD results also indicate that the N-terminal "staple" region of P pili, which provides interactions with pilins that are four and five subunits away, significantly stabilizes the helical filament structure. These data are consistent with previous structural data, and suggest that more layer-to-layer interactions could compensate for the lack of a staple in type 1 pili. This study informs our understanding of essential structural and dynamic features of adhesion pili, supporting the hypothesis that the function of pili is critically dependent on their structure and biophysical properties.
Collapse
Affiliation(s)
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
14
|
Malyshev D, Öberg R, Landström L, Andersson PO, Dahlberg T, Andersson M. pH-induced changes in Raman, UV-vis absorbance, and fluorescence spectra of dipicolinic acid (DPA). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120869. [PMID: 35065519 DOI: 10.1016/j.saa.2022.120869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Dipicolinic acid (DPA) is an essential component for the protection of DNA in bacterial endospores and is often used as a biomarker for spore detection. Depending upon the pH of the solution, DPA exists in different ionic forms. Therefore, it is important to understand how these ionic forms influence spectroscopic response. In this work, we characterize Raman and absorption spectra of DPA in a pH range of 2.0-10.5. We show that the ring breathing mode Raman peak of DPA shifts from 1003 cm-1 to 1017 cm-1 and then to 1000 cm-1 as pH increases from 2 to 5. The relative peak intensities related to the different ionic forms of DPA are used to experimentally derive the pKa values (2.3 and 4.8). We observe using UV-vis spectroscopy that the changes in the absorption spectrum of DPA as a function of pH correlate with the changes observed in Raman spectroscopy, and the same pKa values are verified. Lastly, using fluorescence spectroscopy and exciting a DPA solution at between 210-330 nm, we observe a shift in fluorescence emission from 375 nm to 425 nm between pH 2 and pH 6 when exciting at 320 nm. Our work shows that the different spectral responses from the three ionic forms of DPA may have to be taken into account in, e.g., spectral analysis and for detection applications.
Collapse
Affiliation(s)
| | - Rasmus Öberg
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden
| | | | - Per Ola Andersson
- Swedish Defence Research Agency (FOI), Umeå, Sweden; Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | | | - Magnus Andersson
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
15
|
Fontbonne A, Sauer H, Goudail F. Comparison of methods for end-to-end co-optimization of optical systems and image processing with commercial lens design software. OPTICS EXPRESS 2022; 30:13556-13571. [PMID: 35472965 DOI: 10.1364/oe.455669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
We compare three different methods to co-optimize hybrid optical/digital imaging systems with a commercial lens design software: conventional optimization based on spot diagram minimization, optimization of a surrogate criterion based on a priori equalization of modulation transfer functions (MTFs), and minimization of the mean square error (MSE) between the ideal sharp image and the image restored by a unique deconvolution filter. To implement the latter method, we integrate - for the first time to our knowledge - MSE optimization to the software Synopsys CodeV. Taking as an application example the design of a Cooke triplet having good image quality everywhere in the field of view (FoV), we show that it is possible, by leveraging deconvolution during the optimization process, to adapt the spatial distribution of imaging performance to a prescribed goal. We also demonstrate the superiority of MSE co-optimization over the other methods, both in terms of quantitative and visual image quality.
Collapse
|
16
|
Malyshev D, Öberg R, Dahlberg T, Wiklund K, Landström L, Andersson PO, Andersson M. Laser induced degradation of bacterial spores during micro-Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120381. [PMID: 34562861 DOI: 10.1016/j.saa.2021.120381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Micro-Raman spectroscopy combined with optical tweezers is a powerful method to analyze how the biochemical composition and molecular structures of individual biological objects change with time. In this work we investigate laser induced effects in the trapped object. Bacillus thuringiensis spores, which are robust organisms known for their resilience to light, heat, and chemicals are used for this study. We trap spores and monitor the Raman peak from CaDPA (calcium dipicolinic acid), which is a chemical protecting the spore core. We see a correlation between the amount of laser power used in the trap and the release of CaDPA from the spore. At a laser power of 5 mW, the CaDPA from spores in water suspension remain intact over the 90 min experiment, however, at higher laser powers an induced effect could be observed. SEM images of laser exposed spores (after loss of CaDPA Raman peak was confirmed) show a notable alteration of the spores' structure. Our Raman data indicates that the median dose exposure to lose the CaDPA peak was ∼60 J at 808 nm. For decontaminated/deactivated spores, i.e., treated in sodium hypochlorite or peracetic acid solutions, the sensitivity on laser power is even more pronounced and different behavior could be observed on spores treated by the two chemicals. Importantly, the observed effect is most likely photochemical since the increase of the spore temperature is in the order of 0.1 K as suggested by our numerical multiphysics model. Our results show that care must be taken when using micro-Raman spectroscopy on biological objects since photoinduced effects may substantially affect the results.
Collapse
Affiliation(s)
| | - Rasmus Öberg
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | - Per Ola Andersson
- Swedish Defence Research Agency (FOI), Umeå, Sweden; Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Magnus Andersson
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
17
|
Dahlberg T, Andersson M. Optical design for laser tweezers Raman spectroscopy setups for increased sensitivity and flexible spatial detection. APPLIED OPTICS 2021; 60:4519-4523. [PMID: 34143005 DOI: 10.1364/ao.424595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate a method to double the collection efficiency in laser tweezers Raman spectroscopy (LTRS) by collecting both the forward-scattered and backscattered light in a single-shot multitrack measurement. Our method can collect signals at different sample volumes, granting both the pinpoint spatial selectivity of confocal Raman spectroscopy and the bulk sensitivity of non-confocal Raman spectroscopy simultaneously. Further, we display that our approach allows for reduced detector integration time and laser power. To show this, we measure the Raman spectra of both polystyrene beads and bacterial spores. For spores, we can trap them at 2.5 mW laser power and acquire a high signal-to-noise ratio power spectrum of the calcium-dipicolinic acid peaks using an integration time of ${2} \times {30}\;{\rm s}$. Thus, our method will enable the monitoring of biological samples sensitive to high intensities for longer times. Additionally, we demonstrate that by a simple modification, we can add polarization sensitivity and retrieve extra biochemical information.
Collapse
|
18
|
Baker JL, Dahlberg T, Bullitt E, Andersson M. Impact of an alpha helix and a cysteine-cysteine disulfide bond on the resistance of bacterial adhesion pili to stress. Proc Natl Acad Sci U S A 2021; 118:e2023595118. [PMID: 34011607 PMCID: PMC8166124 DOI: 10.1073/pnas.2023595118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli express adhesion pili that mediate attachment to host cell surfaces and are exposed to body fluids in the urinary and gastrointestinal tracts. Pilin subunits are organized into helical polymers, with a tip adhesin for specific host binding. Pili can elastically unwind when exposed to fluid flow forces, reducing the adhesin load, thereby facilitating sustained attachment. Here we investigate biophysical and structural differences of pili commonly expressed on bacteria that inhabit the urinary and intestinal tracts. Optical tweezers measurements reveal that class 1a pili of uropathogenic E. coli (UPEC), as well as class 1b of enterotoxigenic E. coli (ETEC), undergo an additional conformational change beyond pilus unwinding, providing significantly more elasticity to their structure than ETEC class 5 pili. Examining structural and steered molecular dynamics simulation data, we find that this difference in class 1 pili subunit behavior originates from an α-helical motif that can unfold when exposed to force. A disulfide bond cross-linking β-strands in class 1 pili stabilizes subunits, allowing them to tolerate higher forces than class 5 pili that lack this covalent bond. We suggest that these extra contributions to pilus resiliency are relevant for the UPEC niche, since resident bacteria are exposed to stronger, more transient drag forces compared to those experienced by ETEC bacteria in the mucosa of the intestinal tract. Interestingly, class 1b ETEC pili include the same structural features seen in UPEC pili, while requiring lower unwinding forces that are more similar to those of class 5 ETEC pili.
Collapse
Affiliation(s)
- Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, NJ 08628;
| | | | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118
| | | |
Collapse
|
19
|
Nilsson DPG, Dahlberg T, Andersson M. Step-by-step guide to 3D print motorized rotation mounts for optical applications. APPLIED OPTICS 2021; 60:3764-3771. [PMID: 33983309 DOI: 10.1364/ao.422695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Motorized rotation mounts and stages are versatile instruments that introduce computer control to optical systems, enabling automation and scanning actions. They can be used for intensity control, position adjustments, etc. However, these rotation mounts come with a hefty price tag, and this limits their use. This work shows how to build two different types of motorized rotation mounts for $1^{\prime \prime}$ optics, using a 3D printer and off-the-shelf components. The first is intended for reflective elements, such as mirrors and gratings, and the second for transmissive elements, such as polarizers and retarders. We evaluate and compare their performance to commercial systems based on velocity, resolution, precision, backlash, and axis wobble. Also, we investigate the angular stability using Allan variance analysis. The results show that our mounts perform similarly to systems costing as much as $\$ 2500\,\rm USD $, while also being quick to build and costing less than $\$ 220\,\rm USD$. As a proof of concept, we show how to control lasers used in an optical tweezers and Raman spectroscopy setup. When used for this, the 3D printed motorized rotational mounts provide intensity control with a resolution of 0.03 percentage points or better.
Collapse
|
20
|
Malyshev D, Dahlberg T, Wiklund K, Andersson PO, Henriksson S, Andersson M. Mode of Action of Disinfection Chemicals on the Bacterial Spore Structure and Their Raman Spectra. Anal Chem 2021; 93:3146-3153. [PMID: 33523636 PMCID: PMC7893628 DOI: 10.1021/acs.analchem.0c04519] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Contamination of
toxic spore-forming bacteria is problematic since
spores can survive a plethora of disinfection chemicals and it is
hard to rapidly detect if the disinfection chemical has inactivated
the spores. Thus, robust decontamination strategies and reliable detection
methods to identify dead from viable spores are critical. In this
work, we investigate the chemical changes of Bacillus
thuringiensis spores treated with sporicidal agents
such as chlorine dioxide, peracetic acid, and sodium hypochlorite
using laser tweezers Raman spectroscopy. We also image treated spores
using SEM and TEM to verify if we can correlate structural changes
in the spores with changes to their Raman spectra. We found that over
30 min, chlorine dioxide did not change the Raman spectrum or the
spore structure, peracetic acid showed a time-dependent decrease in
the characteristic DNA/DPA peaks and ∼20% of the spores were
degraded and collapsed, and spores treated with sodium hypochlorite
showed an abrupt drop in DNA and DPA peaks within 20 min and some
structural damage to the exosporium. Structural changes appeared in
spores after 10 min, compared to the inactivation time of the spores,
which is less than a minute. We conclude that vibrational spectroscopy
provides powerful means to detect changes in spores but it might be
problematic to identify if spores are live or dead after a decontamination
procedure.
Collapse
Affiliation(s)
| | | | | | - Per Ola Andersson
- Swedish Defence Research Agency (FOI), Umeå, 906 21 Sweden.,Department of Engineering Sciences, Uppsala University, Box 35 751 03, Uppsala, Sweden
| | - Sara Henriksson
- Umeå Core Facility for Electron Microscopy, Umeå University, Umeå, 901 87 Sweden
| | | |
Collapse
|
21
|
Escamez S, André D, Sztojka B, Bollhöner B, Hall H, Berthet B, Voß U, Lers A, Maizel A, Andersson M, Bennett M, Tuominen H. Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis. Curr Biol 2020; 30:455-464.e7. [PMID: 31956028 DOI: 10.1016/j.cub.2019.11.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Plant organ growth is widely accepted to be determined by cell division and cell expansion, but, unlike that in animals, the contribution of cell elimination has rarely been recognized. We investigated this paradigm during Arabidopsis lateral root formation, when the lateral root primordia (LRP) must traverse three overlying cell layers within the parent root. A subset of LRP-overlying cells displayed the induction of marker genes for cell types undergoing developmental cell death, and their cell death was detected by electron, confocal, and light sheet microscopy techniques. LRP growth was delayed in cell-death-deficient mutants lacking the positive cell death regulator ORESARA1/ANAC092 (ORE1). LRP growth was restored in ore1-2 knockout plants by genetically inducing cell elimination in cells overlying the LRP or by physically killing LRP-overlying cells by ablation with optical tweezers. Our results support that, in addition to previously discovered mechanisms, cell elimination contributes to regulating lateral root emergence.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Domenique André
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Bernadette Sztojka
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Benjamin Bollhöner
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Hardy Hall
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Béatrice Berthet
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ute Voß
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 SRD, UK
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7528809, Israel
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | - Malcolm Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 SRD, UK
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|