1
|
Stepula E, Walther AR, Jensen M, Mehrotra DR, Yuan MH, Pedersen SV, Kumar V, Gentleman E, Albro MB, Hedegaard MAB, Bergholt MS. Label-free 3D molecular imaging of living tissues using Raman spectral projection tomography. Nat Commun 2024; 15:7717. [PMID: 39251593 PMCID: PMC11384735 DOI: 10.1038/s41467-024-51616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The ability to image tissues in three dimensions (3D) with label-free molecular contrast at the mesoscale would be a valuable capability in biology and biomedicine. Here, we introduce Raman spectral projection tomography (RSPT) for volumetric molecular imaging with optical sub-millimeter spatial resolution. We have developed a RSPT imaging instrument capable of providing 3D molecular contrast in transparent and semi-transparent samples. We also created a computational pipeline for multivariate reconstruction to extract label-free spatial molecular information from Raman projection data. Using these tools, we demonstrate imaging and visualization of phantoms of various complex shapes with label-free molecular contrast. Finally, we apply RSPT as a tool for imaging of molecular gradients and extracellular matrix heterogeneities in fixed and living tissue-engineered constructs and explanted native cartilage tissues. We show that there exists a favorable balance wherein employing Raman spectroscopy, with its advantages in live cell imaging and label-free molecular contrast, outweighs the reduction in imaging resolution and blurring caused by diffuse photon propagation. Thus, RSPT imaging opens new possibilities for label-free molecular monitoring of tissues.
Collapse
Affiliation(s)
- Elzbieta Stepula
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
| | - Anders R Walther
- SDU Chemical Engineering, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| | - Magnus Jensen
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
| | - Dev R Mehrotra
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Mu H Yuan
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
| | - Simon V Pedersen
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| | - Vishal Kumar
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
| | - Eileen Gentleman
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Michael B Albro
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Martin A B Hedegaard
- SDU Chemical Engineering, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.
| | - Mads S Bergholt
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK.
| |
Collapse
|
2
|
Munck S, Cawthorne C, Escamilla‐Ayala A, Kerstens A, Gabarre S, Wesencraft K, Battistella E, Craig R, Reynaud EG, Swoger J, McConnell G. Challenges and advances in optical 3D mesoscale imaging. J Microsc 2022; 286:201-219. [PMID: 35460574 PMCID: PMC9325079 DOI: 10.1111/jmi.13109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Optical mesoscale imaging is a rapidly developing field that allows the visualisation of larger samples than is possible with standard light microscopy, and fills a gap between cell and organism resolution. It spans from advanced fluorescence imaging of micrometric cell clusters to centimetre-size complete organisms. However, with larger volume specimens, new problems arise. Imaging deeper into tissues at high resolution poses challenges ranging from optical distortions to shadowing from opaque structures. This manuscript discusses the latest developments in mesoscale imaging and highlights limitations, namely labelling, clearing, absorption, scattering, and also sample handling. We then focus on approaches that seek to turn mesoscale imaging into a more quantitative technique, analogous to quantitative tomography in medical imaging, highlighting a future role for digital and physical phantoms as well as artificial intelligence.
Collapse
Affiliation(s)
- Sebastian Munck
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | | | - Abril Escamilla‐Ayala
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | - Axelle Kerstens
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | - Sergio Gabarre
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | | | | | - Rebecca Craig
- Department of Physics, SUPAUniversity of StrathclydeGlasgowUK
| | - Emmanuel G. Reynaud
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinBelfieldIreland
| | - Jim Swoger
- European Molecular Biology Laboratory (EMBL) BarcelonaBarcelonaSpain
| | - Gail McConnell
- Department of Physics, SUPAUniversity of StrathclydeGlasgowUK
| |
Collapse
|
3
|
Munck S, Swoger J, Coll-Lladó M, Gritti N, Vande Velde G. Maximizing content across scales: Moving multimodal microscopy and mesoscopy toward molecular imaging. Curr Opin Chem Biol 2021; 63:188-199. [PMID: 34198170 DOI: 10.1016/j.cbpa.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Molecular imaging aims to depict the molecules in living patients. However, because this aim is still far beyond reach, patchworks of different solutions need to be used to tackle this overarching goal. From the vast toolbox of imaging techniques, we focus on those recent advances in optical microscopy that image molecules and cells at the submicron to centimeter scale. Mesoscopic imaging covers the "imaging gap" between techniques such as confocal microscopy and magnetic resonance imagingthat image entire live samples but with limited resolution. Microscopy focuses on the cellular level; mesoscopy visualizes the organization of molecules and cells into tissues and organs. The correlation between these techniques allows us to combine disciplines ranging from whole body imaging to basic research of model systems. We review current developments focused on improving microscopic and mesoscopic imaging technologies and on hardware and software that push the current sensitivity and resolution boundaries.
Collapse
Affiliation(s)
- Sebastian Munck
- VIB-KU Leuven Center for Brain & Disease Research, Light Microscopy Expertise Unit & VIB BioImaging Core, O&N4 Herestraat 49 box 602, Leuven, 3000, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N4 Herestraat 49 box 602, Leuven, 3000, Belgium
| | - Jim Swoger
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, 08003, Spain
| | | | - Nicola Gritti
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, 08003, Spain
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Torres VC, Li C, He Y, Sinha L, Papavasiliou G, Sattar HA, Brankov JG, Tichauer KM. Angular restriction fluorescence optical projection tomography to localize micrometastases in lymph nodes. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-4. [PMID: 31705637 PMCID: PMC6839382 DOI: 10.1117/1.jbo.24.11.110501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Lymph node biopsy is a primary means of staging breast cancer, yet standard pathological techniques are time-consuming and typically sample less than 1% of the total node volume. A low-cost fluorescence optical projection tomography (OPT) protocol is demonstrated for rapid imaging of whole lymph nodes in three dimensions. The relatively low scattering properties of lymph node tissue can be leveraged to significantly improve spatial resolution of lymph node OPT by employing angular restriction of photon detection. It is demonstrated through porcine lymph node metastases models that simple filtered-backprojection reconstruction is sufficient to detect and localize 200-μm-diameter metastases (the smallest clinically significant) in 1-cm-diameter lymph nodes.
Collapse
Affiliation(s)
- Veronica C. Torres
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Chengyue Li
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Yusheng He
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Lagnojita Sinha
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Georgia Papavasiliou
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Husain A. Sattar
- University of Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Jovan G. Brankov
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
- Illinois Institute of Technology, Department of Electrical and Computer Engineering, Chicago, Illinois, United States
| | - Kenneth M. Tichauer
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| |
Collapse
|
5
|
Wang N, Cao H, Wang L, Ren F, Zeng Q, Xu X, Liang J, Zhan Y, Chen X. Recent Advances in Spontaneous Raman Spectroscopic Imaging: Instrumentation and Applications. Curr Med Chem 2019; 27:6188-6207. [PMID: 31237196 DOI: 10.2174/0929867326666190619114431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Spectroscopic imaging based on the spontaneous Raman scattering effects can provide unique fingerprint information in relation to the vibration bands of molecules. Due to its advantages of high chemical specificity, non-invasive detection capability, low sensitivity to water, and no special sample pretreatment, Raman Spectroscopic Imaging (RSI) has become an invaluable tool in the field of biomedicine and medicinal chemistry. METHODS There are three methods to implement RSI, including point scanning, line scanning and wide-field RSI. Point-scanning can achieve two-and three-dimensional imaging of target samples. High spectral resolution, full spectral range and confocal features render this technique highly attractive. However, point scanning based RSI is a time-consuming process that can take several hours to map a small area. Line scanning RSI is an extension of point scanning method, with an imaging speed being 300-600 times faster. In the wide-field RSI, the laser illuminates the entire region of interest directly and all the images then collected for analysis. In general, it enables more accurate chemical imaging at faster speeds. RESULTS This review focuses on the recent advances in RSI, with particular emphasis on the latest developments on instrumentation and the related applications in biomedicine and medicinal chemistry. Finally, we prospect the development trend of RSI as well as its potential to translation from bench to bedside. CONCLUSION RSI is a powerful technique that provides unique chemical information, with a great potential in the fields of biomedicine and medicinal chemistry.
Collapse
Affiliation(s)
- Nan Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Honghao Cao
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Lin Wang
- School of Information Sciences and Techonlogy, Northwest University, Xi’an, Shaanxi 710127, China
| | - Feng Ren
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Xinyi Xu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, Xi’an, Shaanxi 710126, China,School of Life Science and Technology, Xidian University, P.O. Box: 0528, Xi’an, Shaanxi 710126, China
| |
Collapse
|