1
|
Mazumder D, Aparanji S, Kholiqov O, Hamilton D, Samanta R, Srinivasan VJ. 1060 nm interferometric near-infrared spectroscopy. OPTICS LETTERS 2025; 50:2382-2385. [PMID: 40167726 DOI: 10.1364/ol.558899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Recently, interferometric near-infrared spectroscopy (iNIRS) has emerged to measure diffuse light field fluctuations with time-of-flight (TOF) resolution. Yet, current iNIRS implementations suffer from low signal-to-noise ratio (SNR). Longer wavelengths, with lower photon energy, lower reduced scattering in biological tissues, and higher permissible exposures, have the potential to increase SNR. Here, we investigate iNIRS at 1060 nm. Across various forehead locations, we find that the autocorrelation SNR is improved 3.7-9.3 times compared to 855 nm and 6.0-33.5 times compared to 773 nm at TOFs of 800-1000 ps. Physical system parameters account for much of this improvement, but the tissue response may also play a role. We conclude that wavelengths near 1060 nm can potentially improve iNIRS measurements of TOF-resolved speckle fluctuations.
Collapse
|
2
|
Wang Q, Pan M, Kreiss L, Samaei S, Carp SA, Johansson JD, Zhang Y, Wu M, Horstmeyer R, Diop M, Li DDU. A comprehensive overview of diffuse correlation spectroscopy: Theoretical framework, recent advances in hardware, analysis, and applications. Neuroimage 2024; 298:120793. [PMID: 39153520 DOI: 10.1016/j.neuroimage.2024.120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Mingliang Pan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Lucas Kreiss
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Saeed Samaei
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Stefan A Carp
- Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States
| | | | - Yuanzhe Zhang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Melissa Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Mamadou Diop
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - David Day-Uei Li
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
3
|
Mazumder D, Kholiqov O, Srinivasan VJ. Interferometric near-infrared spectroscopy (iNIRS) reveals that blood flow index depends on wavelength. BIOMEDICAL OPTICS EXPRESS 2024; 15:2152-2174. [PMID: 38633063 PMCID: PMC11019706 DOI: 10.1364/boe.507373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/19/2024]
Abstract
Blood flow index (BFI) is an optically accessible parameter, with unit distance-squared-over-time, that is widely used as a proxy for tissue perfusion. BFI is defined as the dynamic scattering probability (i.e. the ratio of dynamic to overall reduced scattering coefficients) times an effective Brownian diffusion coefficient that describes red blood cell (RBC) motion. Here, using a wavelength division multiplexed, time-of-flight- (TOF) - resolved iNIRS system, we obtain TOF-resolved field autocorrelations at 773 nm and 855 nm via the same source and collector. We measure the human forearm, comprising biological tissues with mixed static and dynamic scattering, as well as a purely dynamic scattering phantom. Our primary finding is that forearm BFI increases from 773 nm to 855 nm, though the magnitude of this increase varies across subjects (23% ± 19% for N = 3). However, BFI is wavelength-independent in the purely dynamic scattering phantom. From these data, we infer that the wavelength-dependence of BFI arises from the wavelength-dependence of the dynamic scattering probability. This inference is further supported by RBC scattering literature. Our secondary finding is that the higher-order cumulant terms of the mean squared displacement (MSD) of RBCs are significant, but decrease with wavelength. Thus, laser speckle and related modalities should exercise caution when interpreting field autocorrelations.
Collapse
Affiliation(s)
- Dibbyan Mazumder
- Department of Radiology, New York University Langone Health, New York, NY 10016, USA
- Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA
| | - Oybek Kholiqov
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Vivek J. Srinivasan
- Department of Radiology, New York University Langone Health, New York, NY 10016, USA
- Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
4
|
Huang YX, Mahler S, Mertz J, Yang C. Interferometric speckle visibility spectroscopy (iSVS) for measuring decorrelation time and dynamics of moving samples with enhanced signal-to-noise ratio and relaxed reference requirements. OPTICS EXPRESS 2023; 31:31253-31266. [PMID: 37710649 PMCID: PMC10544958 DOI: 10.1364/oe.499473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
Diffusing wave spectroscopy (DWS) is a group of techniques used to measure the dynamics of a scattering medium in a non-invasive manner. DWS methods rely on detecting the speckle light field from the moving scattering medium and measuring the speckle decorrelation time to quantify the scattering medium's dynamics. For DWS, the signal-to-noise (SNR) is determined by the ratio between measured decorrelation time to the standard error of the measurement. This SNR is often low in certain applications because of high noise variances and low signal intensity, especially in biological applications with restricted exposure and emission levels. To address this photon-limited signal-to-noise ratio problem, we investigated, theoretically and experimentally, the SNR of an interferometric speckle visibility spectroscopy (iSVS) compared to more traditional DWS methods. We found that iSVS can provide excellent SNR performance through its ability to overcome camera noise. We also proved an iSVS system has more relaxed constraints on the reference beam properties. For an iSVS system to function properly, we only require the reference beam to exhibit local temporal stability, while incident angle, reference phase and intensity uniformity do not need to be constrained. This flexibility can potentially enable more unconventional iSVS implementation schemes.
Collapse
Affiliation(s)
- Yu Xi Huang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Simon Mahler
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Neurophotonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
5
|
Zhao M, Zhou W, Aparanji S, Mazumder D, Srinivasan VJ. Interferometric diffusing wave spectroscopy imaging with an electronically variable time-of-flight filter. OPTICA 2023; 10:42-52. [PMID: 37275218 PMCID: PMC10238083 DOI: 10.1364/optica.472471] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/09/2022] [Indexed: 06/07/2023]
Abstract
Diffuse optics (DO) is a light-based technique used to study the human brain, but it suffers from low brain specificity. Interferometric diffuse optics (iDO) promises to improve the quantitative accuracy and depth specificity of DO, and particularly, coherent light fluctuations (CLFs) arising from blood flow. iDO techniques have alternatively achieved either time-of-flight (TOF) discrimination or highly parallel detection, but not both at once. Here, we break this barrier with a single iDO instrument. Specifically, we show that rapid tuning of a temporally coherent laser during the sensor integration time increases the effective linewidth seen by a highly parallel interferometer. Using this concept to create a continuously variable and user-specified TOF filter, we demonstrate a solution to the canonical problem of DO, measuring optical properties. Then, with a deep TOF filter, we reduce scalp sensitivity of CLFs by 2.7 times at 1 cm source-collector separation. With this unique combination of desirable features, i.e., TOF-discrimination, spatial localization, and highly parallel CLF detection, we perform multiparametric imaging of light intensities and CLFs via the human forehead.
Collapse
Affiliation(s)
- Mingjun Zhao
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
- Department of Biomedical Engineering, University of California Davis, 1 Shields Ave, Davis, California 95616, USA
| | - Wenjun Zhou
- Department of Biomedical Engineering, University of California Davis, 1 Shields Ave, Davis, California 95616, USA
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Santosh Aparanji
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
| | - Dibbyan Mazumder
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
| | - Vivek J. Srinivasan
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
- Department of Biomedical Engineering, University of California Davis, 1 Shields Ave, Davis, California 95616, USA
- Department of Ophthalmology, New York University Langone Health, 550 First Avenue, New York, New York 10016, USA
- Tech4Health Institute, New York University Langone Health, 433 1st Avenue, New York, New York 10010, USA
| |
Collapse
|
6
|
Scholkmann F, Vollenweider FX. Psychedelics and fNIRS neuroimaging: exploring new opportunities. NEUROPHOTONICS 2023; 10:013506. [PMID: 36474478 PMCID: PMC9717437 DOI: 10.1117/1.nph.10.1.013506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
In this Outlook paper, we explain to the optical neuroimaging community as well as the psychedelic research community the great potential of using optical neuroimaging with functional near-infrared spectroscopy (fNIRS) to further explore the changes in brain activity induced by psychedelics. We explain why we believe now is the time to exploit the momentum of the current resurgence of research on the effects of psychedelics and the momentum of the increasing progress and popularity of the fNIRS technique to establish fNIRS in psychedelic research. With this article, we hope to contribute to this development.
Collapse
Affiliation(s)
- Felix Scholkmann
- University Hospital Zurich, University of Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Franz X. Vollenweider
- University Hospital of Psychiatry, University of Zurich, Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich, Switzerland
| |
Collapse
|
7
|
Zhou W, Zhao M, Srinivasan VJ. Interferometric diffuse optics: recent advances and future outlook. NEUROPHOTONICS 2023; 10:013502. [PMID: 36284601 PMCID: PMC9587754 DOI: 10.1117/1.nph.10.1.013502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The field of diffuse optics has provided a rich set of neurophotonic tools to measure the human brain noninvasively. Interferometric detection is a recent, exciting methodological development in this field. The approach is especially promising for the measurement of diffuse fluctuation signals related to blood flow. Benefitting from inexpensive sensor arrays, the interferometric approach has already dramatically improved throughput, enabling the measurement of brain blood flow faster and deeper. The interferometric approach can also achieve time-of-flight resolution, improving the accuracy of acquired signals. We provide a historical perspective and summary of recent work in the nascent area of interferometric diffuse optics. We predict that the convergence of interferometric technology with existing economies of scale will propel many advances in the years to come.
Collapse
Affiliation(s)
- Wenjun Zhou
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, China
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
| | - Mingjun Zhao
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- New York University Langone Health, Department of Radiology, New York, New York, United States
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- New York University Langone Health, Department of Radiology, New York, New York, United States
- New York University Langone Health, Department of Ophthalmology, New York, New York, United States
- New York University Langone Health, Tech4Health Institute, New York, New York, United States
| |
Collapse
|
8
|
Paul R, Murali K, Varma HM. High-density diffuse correlation tomography with enhanced depth localization and minimal surface artefacts. BIOMEDICAL OPTICS EXPRESS 2022; 13:6081-6099. [PMID: 36733746 PMCID: PMC9872877 DOI: 10.1364/boe.469405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 05/08/2023]
Abstract
A spatially weighted filter applied to both the measurement and the Jacobian is proposed for high-density diffuse correlation tomography (DCT) to remove unwanted extracerebral interferences and artefacts along with better depth localization in the reconstructed blood flow images. High-density DCT is implemented by appropriate modification of recently introduced Multi-speckle Diffuse Correlation Spectroscopy (M-DCS) system. Additionally, we have used autocorrelation measurements at multiple delay-times in an iterative manner to improve the reconstruction results. The proposed scheme has been validated by simulations, phantom experiments and in-vivo human experiments.
Collapse
Affiliation(s)
- Ria Paul
- Indian Institute of Technology Bombay (IITB), Mumbai-400076, India
| | - K. Murali
- Indian Institute of Technology Bombay (IITB), Mumbai-400076, India
| | - Hari M. Varma
- Indian Institute of Technology Bombay (IITB), Mumbai-400076, India
| |
Collapse
|