1
|
Han M, Lee YJ, Ahn J, Nam S, Kim M, Park J, Ahn J, Ryu H, Seo Y, Park B, Kim D, Kim C. A clinical feasibility study of a photoacoustic finder for sentinel lymph node biopsy in breast cancer patients: A prospective cross-sectional study. PHOTOACOUSTICS 2025; 43:100716. [PMID: 40236678 PMCID: PMC11999587 DOI: 10.1016/j.pacs.2025.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
The sentinel lymph node (SLNb) is generally performed using radioisotopes, blue dyes, or both to improve false negative rate. However, ionizing radiation is involved in a gamma probe with radioisotopes and the blue dye detection relies on native visual inspection by an operator. To overcome these limitations, we developed the photoacoustic finder (PAF), a highly sensitive, non-radioactive detector that uses only blue dye and a photoacoustic signal to detect SLNs. A total of 121 patients with breast cancer were enrolled, and 375 lymph nodes were excised using conventional SLNb. The PAF was used to measure the signal from the excised lymph nodes. We compared the SLN detection rates of each method (gamma probe, visual inspection, and PAF) and conducted a non-inferiority test. The PAF detected 87 % of SLNs, comparable to the gamma probe (85 %) and superior to visual inspection (73 %). Non-inferiority tests confirmed PAF's performance was not inferior to visual inspection (p < 0.001) or the gamma probe (p < 0.015). Using the dual-modal method (gamma probe + visual inspection) as the gold standard, PAF showed a sensitivity of 0.81 and specificity of 0.63. This study demonstrates that PAF, using only blue dye, offers a non-inferior alternative to the standard dual-modal SLN detection method with radioactive materials, opening new avenues for radiation-free SLNb in the future.
Collapse
Affiliation(s)
- Moongyu Han
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Young Joo Lee
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Junho Ahn
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sunghun Nam
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Minseong Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Jeongwoo Park
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joongho Ahn
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Hanyoung Ryu
- R&D Center, WONTECH Co. Ltd., Techno 8-ro, Yuseong-gu, Daejeon 34028, Republic of Korea
| | - Youngseok Seo
- R&D Center, WONTECH Co. Ltd., Techno 8-ro, Yuseong-gu, Daejeon 34028, Republic of Korea
| | - Byullee Park
- Departments of Biophysics, Institute of Quantum Biophysics, Metabiohealth, Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dooreh Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Chulhong Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Ahn J, Choi H, Lim S, Kim JY, Park J. Wide-Field High-Speed Scanning Acoustic/Photoacoustic Microscopy for Whole-Body Imaging of Small Animals. BIOSENSORS 2025; 15:200. [PMID: 40277516 PMCID: PMC12024576 DOI: 10.3390/bios15040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025]
Abstract
Photoacoustic (PA) imaging combines optical contrast with ultrasound (US) detection, enabling high-resolution imaging of biological tissues with greater penetration depth than conventional optical techniques. Among its various implementations, photoacoustic microscopy (PAM) achieves micrometer-scale resolution by focusing laser excitation and detecting ultrasonic signals, allowing for the detailed visualization of microvascular structures and fine tissue morphology. Over the last decade, PAM imaging speed has significantly increased by adopting PA scanners that steer optical and acoustic waves. However, these scanners must be placed after focusing optics to co-align the waves on a spot, which creates bent focal lines along the scanning direction and limits the scanning range. To achieve wide-field imaging, various image mosaic algorithms have been applied, but these methods require multiple manual operations, which take more time than the imaging itself. In this study, we developed a wide-field, high-speed scanning acoustic/photoacoustic microscopy (SA/PAM) system equipped with a transparent ultrasound transducer and a moving magnet linear stage, which eliminates the need for complex mosaic algorithms. This system enables wide-field imaging up to 50 × 50 mm2 while maintaining high lateral resolution, achieving an imaging speed of 50 Hz in a B-scan image. Through in vivo mouse US/PA imaging, the system demonstrated its capability to visualize blood vessels and organs across the whole body of small animals. These findings suggest that the SA/PAM system is a practical tool for biomedical research, allowing for efficient visualization of vascular networks and anatomical structures in various preclinical studies.
Collapse
Affiliation(s)
- Joongho Ahn
- Departments of Electrical Engineering and Convergence IT Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (J.A.); (H.C.)
- Opticho Inc., Pohang 37673, Republic of Korea
| | - Hyoseok Choi
- Departments of Electrical Engineering and Convergence IT Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (J.A.); (H.C.)
- Opticho Inc., Pohang 37673, Republic of Korea
| | - Seongjun Lim
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Jin Young Kim
- Departments of Electrical Engineering and Convergence IT Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (J.A.); (H.C.)
- Opticho Inc., Pohang 37673, Republic of Korea
| | - Jeongwoo Park
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Advanced Bioconvergence, Kyungpook National University, Daegu 41566, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Qiu C, Zhang Z, Xu Z, Qiao L, Ning L, Zhang S, Su M, Wu W, Song K, Xu Z, Chen LQ, Zheng H, Liu C, Qiu W, Li F. Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging. Nat Commun 2024; 15:10580. [PMID: 39632872 PMCID: PMC11618688 DOI: 10.1038/s41467-024-55032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Photoacoustic imaging is a promising non-invasive functional imaging modality for fundamental research and clinical diagnosis. However, achieving capillary-level resolution, wide field-of-view, and high frame rates remains challenging. To address this, we propose a transparent ultrasonic transducer design using our developed transparent Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Our fabrication technique incorporates quartz-glass-and-epoxy matching layers with low-resistance indium-tin-oxide electrodes through a brass-ring based structure, enabling a high frequency (28.5 MHz), wide bandwidth (78%), and enhanced pulse-echo sensitivity (2.5 V under 2-μJ pulse excitation). Our Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3-based transparent ultrasonic transducer demonstrates a four-fold enhancement in photoacoustic detection sensitivity when compared to the LiNbO3-based counterpart, leading to a 13 dB improvement of signal-to-noise ratio in microvascular photoacoustic imaging. This enables dynamic monitoring of mouse cerebral cortex microvasculature during seizures at 0.8 Hz frame rates over a 1.5 × 1.5 mm2 field-of-view. Our work paves the way for high-performance and compact photoacoustic imaging systems using advanced piezoelectric materials.
Collapse
Affiliation(s)
- Chaorui Qiu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Zhang
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liao Qiao
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Li Ning
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shujun Zhang
- Institute of Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, Australia
| | - Min Su
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weichang Wu
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kexin Song
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhuo Xu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Long-Qing Chen
- Materials Research Institute, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Hairong Zheng
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Weibao Qiu
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Fei Li
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Zhang J, Long X, Zhang G, Ma Z, Li W, Wang Y, Yang F, Lin R, Li C, Lam KH. Broadband transparent ultrasound transducer with polymethyl methacrylate as matching layer for in vivo photoacoustic microscopy. PHOTOACOUSTICS 2023; 33:100548. [PMID: 38021293 PMCID: PMC10658616 DOI: 10.1016/j.pacs.2023.100548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 12/01/2023]
Abstract
Photoacoustic imaging (PAI) uniquely combines optics and ultrasound, presenting a promising role in biomedical imaging as a non-invasive and label-free imaging technology. As the traditional opaque ultrasound (US) transducers could hinder the transportation of the excitation light and limit the performance of PAI system, piezoelectric transparent ultrasonic transducers (TUTs) with indium tin oxide (ITO) electrodes have been developed to allow light transmission through the transducer and illuminate the sample directly. Nevertheless, without having transparent matching materials with appropriate properties, the bandwidth of those TUTs was generally narrow. In this work, we propose to employ polymethyl methacrylate (PMMA) as the matching layer material to improve the bandwidth of lithium niobate (LN)-based TUTs. The effects of PMMA matching layer on the performance of TUTs have been systematically studied. With the optimized PMMA matching layer, the very wide bandwidth of > 50 % could be achieved for the TUTs even with different transducer frequencies, leading to the great enhancement of axial resolution when compared to the similar reported work. In addition, the imaging performance of the developed TUT prototype has been evaluated in a PAI system and demonstrated by both phantom and in vivo small animal imaging.
Collapse
Affiliation(s)
- Jiaming Zhang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xing Long
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Guangjie Zhang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zhongtian Ma
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Wenzhao Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yibing Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Fan Yang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Riqiang Lin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Changhui Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Kwok-Ho Lam
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
5
|
Park J, Park B, Ahn J, Kim D, Kim JY, Kim HH, Kim C. Opto-ultrasound biosensor for wearable and mobile devices: realization with a transparent ultrasound transducer. BIOMEDICAL OPTICS EXPRESS 2022; 13:4684-4692. [PMID: 36187254 PMCID: PMC9484414 DOI: 10.1364/boe.468969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 05/11/2023]
Abstract
Mobile and wearable healthcare electronics are widely used for measuring bio-signals using various fusion sensors that employ photoplethysmograms, cameras, microphones, ultrasound (US) sensors, and accelerometers. However, the consumer demand for small form factors has significantly increased as the integration of multiple sensors is difficult in small mobile or wearable devices. This study proposes two novel opto-US sensors, namely (1) a wearable photoplethysmography (PPG)-US device and (2) a PPG sensor built-in mobile smartphone with a US sensor, seamlessly integrated using a transparent ultrasound transducer (TUT). The TUT exhibits a center frequency of 6 MHz with a 50% bandwidth and 82% optical transparency in visible and near-infrared regions. We developed an integrated wearable PPG-US device to demonstrate its feasibility and coupled the TUT sensor with a smartphone. We measured the heart rates optically and acoustically in human subjects and quantified the oxygen saturation optically by passing light through the TUT. The proposed proof-of-concept is a novel sensor fusion for mobile and wearable devices that require a small form factor and aim to improve digital healthcare. The results of this study can form the basis for innovative developments in sensor-based high-tech industrial applications, such as automobiles, robots, and drones, in addition to healthcare applications.
Collapse
Affiliation(s)
- Jeongwoo Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- These authors contributed equally to this work
| | - Byullee Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- These authors contributed equally to this work
| | - Joongho Ahn
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Donggyu Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyung Ham Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
6
|
Park J, Park B, Yong U, Ahn J, Kim JY, Kim HH, Jang J, Kim C. Bi-modal near-infrared fluorescence and ultrasound imaging via a transparent ultrasound transducer for sentinel lymph node localization: publisher's note. OPTICS LETTERS 2022; 47:1258. [PMID: 35230341 DOI: 10.1364/ol.454477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 06/14/2023]
Abstract
This publisher's note contains a correction to Opt. Lett.47, 393 (2022)10.1364/OL.446041.
Collapse
|