1
|
Krupinski-Ptaszek A, Makowski A, Mielnicka A, Pawłowska M, Tenne R, Lapkiewicz R. Super-resolution microscopy based on the inherent fluctuations of dye molecules. BIOMEDICAL OPTICS EXPRESS 2025; 16:910-921. [PMID: 40109524 PMCID: PMC11919343 DOI: 10.1364/boe.533263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 03/22/2025]
Abstract
Fluorescence microscopy is a critical tool across various disciplines, from materials science to biomedical research, yet it is limited by the diffraction limit of resolution. Advanced super-resolution techniques such as localization microscopy and stimulated-emission-depletion microscopy often demand considerable resources. These methods depend heavily on elaborate sample-staining, complex optical systems, or prolonged acquisition periods, and their application in 3D and multicolor imaging presents significant experimental challenges. In the current work, we provide a complete demonstration of a widely accessible super-resolution imaging approach capable of 3D and multicolor imaging based on super-resolution optical fluctuation imaging (SOFI). We replace the confocal pinhole with an array of single-photon avalanche diodes and use the microsecond-scale fluctuations of dye molecules as a contrast mechanism. This contrast is transformed into a super-resolved image using a robust and deterministic algorithm. Our technique utilizes natural fluctuations inherent to organic dyes, thereby it does not require engineering of the blinking statistics. Our robust, versatile super-resolution method opens the way to next-generation multimodal imaging and facilitates on-demand super-resolution within a confocal architecture.
Collapse
Affiliation(s)
| | - Adrian Makowski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Laboratoire Kastler Brossel, ENS-PSL Université, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, Paris 75005, France
| | | | - Monika Pawłowska
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Ron Tenne
- Department of Physics, University of Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Radek Lapkiewicz
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Chavez L, Gao S, Pandey V, Yuan N, Ragab S, Li J, Hepburn MS, Smith P, Edelheit C, Corr DT, Kennedy BF, Intes X. Design and characterization of an optical phantom for mesoscopic multimodal fluorescence lifetime imaging and optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2025; 16:1006-1024. [PMID: 40109538 PMCID: PMC11919344 DOI: 10.1364/boe.549695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
We developed a novel methodology for manufacturing multimodal, tissue-mimicking phantoms that exhibit both molecular and biomechanical contrast. This methodology leverages the immiscibility of silicone and hydrogels to create solid mesoscale phantoms with localized regions of precisely controlled fluorescence, including fluorescence lifetime properties, and adjustable stiffness, without requiring physical barriers. Mechanical, fluorescent, and optical characterization confirmed the tunability of the phantoms across a range of values relevant to biomedical applications. A macroscale 3D phantom was fabricated, and its properties were validated through fluorescence lifetime imaging (FLI) and optical coherence elastography (OCE). Validation demonstrated the successful tuning of both mechanical and fluorescence lifetime contrasts within a 3D structure, highlighting the feasibility of multimodal FLI-OCE. This new phantom manufacturing process is expected to support the development and validation of new multimodal imaging approaches to study molecular and biomechanical properties of the tumor microenvironment (TME), as well as their impact on therapeutic efficacy, and to enhance targeted therapies.
Collapse
Affiliation(s)
- Luis Chavez
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Shan Gao
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Vikas Pandey
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Nanxue Yuan
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Saif Ragab
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Percy Smith
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Caroline Edelheit
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - David T Corr
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 5 Grudziądzka St., 87-100 Toruń, Poland
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
3
|
Ochoa MI, Petusseau AF, Reed MS, Brůža P, Pogue BW. Enhanced porphyrin-based hypoxia imaging by temporal oversampling of delayed fluorescence signal. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:S23903. [PMID: 39881944 PMCID: PMC11774257 DOI: 10.1117/1.jbo.30.s2.s23903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Significance Protoporphyrin IX (PpIX) delayed fluorescence (DF) is inversely related to the oxygen present in tissues and has potential as a novel biomarker for surgical guidance and real-time tissue metabolism assessment. Despite the unique promise of this technique, its successful clinical translation is limited by the low intensity emitted. Aim We developed a systematic study of ways to increase the PpIX DF signal through acquisition sampling changes, allowing optimized imaging at video rates. Approach To accomplish signal increase, time-gating signal compression was achieved through changes in pulse frequency and power density, using sampling rates that are faster than the decay rate of the signal. The increased signal yield was tested and validated in vitro and then demonstrated in vivo, with comparison to settings that sample the full lifetime emission decay. Results Results in vitro and in vivo demonstrated that optimized timing could increase the detected intensity by a factor of 7. The images showed results that were superior than when sampling the full DF lifetime decay. Conclusions The proposed timing optimization enhances PpIX-based DF real-time imaging of tissue hypoxia. By increasing sampling frequency and adjusting the acquisition gate and pulse width, the collected signal intensity improved sevenfold, demonstrated both in vitro and in vivo. The technique was shown to enable better visualization of small and anatomically challenging hypoxic structures. The improved target-to-background ratio and compatibility with pressure-enhanced sensing of tissue oxygen technique were demonstrated.
Collapse
Affiliation(s)
- Marien I. Ochoa
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Arthur F. Petusseau
- Dartmouth College, Thayer School of Engineering, Center for Imaging Medicine, Hanover, New Hampshire, United States
| | - Matthew S. Reed
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Petr Brůža
- Dartmouth College, Thayer School of Engineering, Center for Imaging Medicine, Hanover, New Hampshire, United States
| | - Brian W. Pogue
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| |
Collapse
|
4
|
Verma A, Pandey V, Sherry C, Humphrey T, James C, Matteson K, Smith JT, Rudkouskaya A, Intes X, Barroso M. Fluorescence Lifetime Imaging for Quantification of Targeted Drug Delivery in Varying Tumor Microenvironments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403253. [PMID: 39600235 PMCID: PMC11744649 DOI: 10.1002/advs.202403253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/13/2024] [Indexed: 11/29/2024]
Abstract
Trastuzumab (TZM) is a monoclonal antibody that targets the human epidermal growth factor receptor 2 (HER2) and is clinically used for the treatment of HER2-positive breast tumors. However, the tumor microenvironment can limit the access of TZM to the HER2 targets across the whole tumor and thereby compromising TZM's therapeutic efficacy. An imaging methodology that can non-invasively quantify the binding of TZM-HER2, which is required for therapeutic action, and distribution within tumors with varying tumor microenvironments is much needed. Near-infrared (NIR) fluorescence lifetime (FLI) Forster Resonance Energy Transfer (FRET) is performed to measure TZM-HER2 binding, using in vitro microscopy and in vivo widefield macroscopy, in HER2 overexpressing breast and ovarian cancer cells and tumor xenografts, respectively. Immunohistochemistry is used to validate in vivo imaging results. NIR FLI FRET in vitro microscopy data show variations in intracellular distribution of bound TZM in HER2-positive breast AU565 and AU565 tumor-passaged XTM cell lines in comparison to SKOV-3 ovarian cancer cells. Macroscopy FLI (MFLI) FRET in vivo imaging data show that SKOV-3 tumors display reduced TZM binding compared to AU565 and XTM tumors, as validated by ex vivo immunohistochemistry. Moreover, AU565/XTM and SKOV-3 tumor xenografts display different amounts and distributions of TME components, such as collagen and vascularity. Therefore, these results suggest that SKOV-3 tumors are refractory to TZM delivery due to their disrupted vasculature and increased collagen content. The study demonstrates that FLI is a powerful analytical tool to monitor the delivery of antibodydrugs both in cell cultures and in vivo live systems. Especially, MFLI FRET is a unique imaging modality that can directly quantify target engagement with the potential to elucidate the role of the TME in drug delivery efficacy in intact live tumor xenografts.
Collapse
Affiliation(s)
- Amit Verma
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| | - Vikas Pandey
- Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyNY12180USA
| | - Catherine Sherry
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| | - Taylor Humphrey
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| | - Christopher James
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| | - Kailie Matteson
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
- Present address:
Division of Hematology and OncologyDepartment of MedicineIcahn School of Medicine at Mount SinaiTisch Cancer InstituteNew YorkNY10029USA
| | - Jason T. Smith
- Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyNY12180USA
- Present address:
Booz Allen HamiltonMcLeanVA22102USA
| | - Alena Rudkouskaya
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| | - Xavier Intes
- Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyNY12180USA
| | - Margarida Barroso
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| |
Collapse
|
5
|
Roy D, Michalet X, Miller EW, Bharadwaj K, Weiss S. Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598880. [PMID: 38915670 PMCID: PMC11195253 DOI: 10.1101/2024.06.13.598880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells. While optical measurement based on Nernstian indicators have been successfully used, they do not provide absolute or precise quantification of MP or its changes. We present a novel, calibrated MP recording approach to address this gap. In this study, we used a fluorescence lifetime-based approach to obtain a single-cell resolved distribution of the membrane potential and its changes upon extracellular chemical perturbation in a population of bacterial cells for the first time. Our method is based on (i) a unique VoltageFluor (VF) optical transducer, whose fluorescence lifetime varies as a function of MP via photoinduced electron transfer (PeT) and (ii) a quantitative phasor-FLIM analysis for high-throughput readout. This method allows MP changes to be easily visualized, recorded and quantified. By artificially modulating potassium concentration gradients across the membrane using an ionophore, we have obtained a Bacillus subtilis-specific MP versus VF lifetime calibration and estimated the MP for unperturbed B. subtilis cells to be -65 mV (in MSgg), 127 mV (in M9) and that for chemically depolarized cells as -14 mV (in MSgg). We observed a population level MP heterogeneity of ~6-10 mV indicating a considerable degree of diversity of physiological and metabolic states among individual cells. Our work paves the way for deeper insights into bacterial electrophysiology and bioelectricity research.
Collapse
Affiliation(s)
- Debjit Roy
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Evan W. Miller
- Departments of Chemistry, Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California at Berkeley, CA 94720, USA
| | - Kiran Bharadwaj
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
6
|
PANDEY VIKAS, ERBAS ISMAIL, VERMA AMIT, MICHALET XAVIER, YOUNG TYNAN, ULKU ARIN, BRUSCHINI CLAUDIO, CHARBON EDOARDO, WILLIAMS JOHNC, BARROSO MARGARIDA, INTES XAVIER. Deep learning-based temporal deconvolution for photon time-of-flight distribution retrieval. OPTICS LETTERS 2024; 49:6457-6460. [PMID: 39546693 PMCID: PMC12013804 DOI: 10.1364/ol.533923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/12/2024] [Indexed: 11/17/2024]
Abstract
The acquisition of the time of flight (ToF) of photons has found numerous applications in the biomedical field. Over the last decades, a few strategies have been proposed to deconvolve the temporal instrument response function (IRF) that distorts the experimental time-resolved data. However, these methods require burdensome computational strategies and regularization terms to mitigate noise contributions. Herein, we propose a deep learning model specifically to perform the deconvolution task in fluorescence lifetime imaging (FLI). The model is trained and validated with representative simulated FLI data with the goal of retrieving the true photon ToF distribution. Its performance and robustness are validated with well-controlled in vitro experiments using three time-resolved imaging modalities with markedly different temporal IRFs. The model aptitude is further established with in vivo preclinical investigation. Overall, these in vitro and in vivo validations demonstrate the flexibility and accuracy of deep learning model-based deconvolution in time-resolved FLI and diffuse optical imaging.
Collapse
Affiliation(s)
- VIKAS PANDEY
- Centre for Modeling, Simulation, and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - ISMAIL ERBAS
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - AMIT VERMA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - XAVIER MICHALET
- Department of Chemistry & Biochemistry, University of California at Los Angeles (UCLA), Los Angeles, California, CA 90095, USA
| | - TYNAN YOUNG
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA 91010 USA
| | - ARIN ULKU
- AQUA Lab, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - CLAUDIO BRUSCHINI
- AQUA Lab, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - EDOARDO CHARBON
- AQUA Lab, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - JOHN C WILLIAMS
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA 91010 USA
| | - MARGARIDA BARROSO
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - XAVIER INTES
- Centre for Modeling, Simulation, and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
7
|
Nizam NI, Pandey V, Erbas I, Smith JT, Intes X. A Novel Technique for Fluorescence Lifetime Tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613888. [PMID: 39345436 PMCID: PMC11430024 DOI: 10.1101/2024.09.19.613888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fluorescence lifetime has emerged as a unique imaging modality for quantitatively assessing in vivo the molecular environment of diseased tissues. Although fluorescence lifetime microscopy (in 2D) is a mature field, 3D imaging in deep tissues remains elusive and challenging owing to scattering. Herein, we report on a deep neural network (coined AUTO-FLI) that performs both 3D intensity and quantitative lifetime reconstructions in deep tissues. The proposed Deep Learning (DL)-based approach involves an in silico scheme to generate fluorescence lifetime data accurately. The developed DL model is validated both in silico and on experimental phantoms. Overall, AUTO-FLI provides accurate 3D quantitative estimates of both intensity and lifetime distributions in highly scattering media, demonstrating its unique potential for fluorescence lifetime-based molecular imaging at the mesoscopic and macroscopic scale.
Collapse
Affiliation(s)
- Navid Ibtehaj Nizam
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vikas Pandey
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ismail Erbas
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jason T Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
8
|
Moreno S, Moro V, Canals J, Diéguez A. Area-Efficient Mixed-Signal Time-to-Digital Converter Integration for Time-Resolved Photon Counting. SENSORS (BASEL, SWITZERLAND) 2024; 24:5763. [PMID: 39275674 PMCID: PMC11398150 DOI: 10.3390/s24175763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
Digital histogram generation for time-resolved measurements with single-photon avalanche diode (SPAD) sensors requires the storage of many timestamp signals. This work presents a mixed-signal time-to-digital converter (TDC) that uses analog storage to achieve an area-efficient design that can be integrated in large SPAD arrays. Fabricated using a 150 nm CMOS process, the prototype occupies an area of only 18.3 µm × 36.5 µm, a notable size reduction compared to conventional designs. The experimental results demonstrated high performance, with an integral nonlinearity (INL) of 0.35/0.14 least significant bit (LSB) and a differential nonlinearity (DNL) of 0.14/-0.12 LSB. In addition, the proposed TDC can support the construction of histograms comprising up to 512 bins, making it an effective solution to accommodate a wide range of resolution requirements. Validated in a point-of-care (PoC) device for fluorescence lifetime measurements, it distinguished between lifetimes of approximately 4.1 ns, 3.6 ns and 80 ns with the Alexa Fluor (AF) 546 and 568 dyes and Quantum Dot (QD) 705, respectively. The analog storage design and area-efficient architecture offer a novel approach to integrating TDCs in SPAD-based systems, with potential applications in medical diagnostics and beyond.
Collapse
Affiliation(s)
- Sergio Moreno
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Victor Moro
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Canals
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Angel Diéguez
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Li M, Guo X, Verma A, Rudkouskaya A, McKenna AM, Intes X, Wang G, Barroso M. Contrast-enhanced photon-counting micro-CT of tumor xenograft models. Phys Med Biol 2024; 69:155011. [PMID: 38670143 PMCID: PMC11258216 DOI: 10.1088/1361-6560/ad4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Objective. Photon-counting micro-computed tomography (micro-CT) is a major advance in small animal preclinical imaging. Small molecule- and nanoparticle-based contrast agents have been widely used to enable the differentiation of liver tumors from surrounding tissues using photon-counting micro-CT. However, there is a notable gap in the application of these market-available agents to the imaging of breast and ovarian tumors using photon-counting micro-CT. Herein, we have used photon-counting micro-CT to determine the effectiveness of these contrast agents in differentiating ovarian and breast tumor xenografts in live, intact mice.Approach. Nude mice carrying different types of breast and ovarian tumor xenografts (AU565, MDA-MB-231 and SKOV-3 human cancer cells) were injected with ISOVUE-370 (a small molecule-based agent) or Exitron Nano 12000 (a nanoparticle-based agent) and subjected to photon-counting micro-CT. To improve tumor visualization using photon-counting micro-CT, we developed a novel color visualization method, which changes color tones to highlight contrast media distribution, offering a robust alternative to traditional material decomposition methods with less computational demand.Main results. Ourin vivoexperiments confirm the effectiveness of this color visualization approach, showing distinct enhancement characteristics for each contrast agent. Qualitative and quantitative analyses suggest that Exitron Nano 12000 provides superior vasculature enhancement and better quantitative consistency across scans, while ISOVUE-370 delivers a more comprehensive tumor enhancement but with significant variance between scans due to its short blood half-time. Further, a paired t-test on mean and standard deviation values within tumor volumes showed significant differences between the AU565 and SKOV-3 tumor models with the nanoparticle-based contrast agent (p-values < 0.02), attributable to their distinct vascularity, as confirmed by immunohistochemical analysis.Significance. These findings underscore the utility of photon-counting micro-CT in non-invasively assessing the morphology and anatomy of different tumor xenografts, which is crucial for tumor characterization and longitudinal monitoring of tumor progression and response to treatments.
Collapse
Affiliation(s)
- Mengzhou Li
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Xiaodong Guo
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Amit Verma
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, United States of America
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, United States of America
| | - Antigone M McKenna
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Ge Wang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, United States of America
| |
Collapse
|
10
|
Smith JT, Liu CJ, Degnan J, Ouellette JN, Conklin MW, Kellner AV, Scribano CM, Hrycyniak L, Oliner JD, Zahm C, Wait E, Eliceiri KW, Rafter J. Label-free fluorescence lifetime imaging for the assessment of cell viability in living tumor fragments. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22709. [PMID: 38881557 PMCID: PMC11177118 DOI: 10.1117/1.jbo.29.s2.s22709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Significance To enable non-destructive longitudinal assessment of drug agents in intact tumor tissue without the use of disruptive probes, we have designed a label-free method to quantify the health of individual tumor cells in excised tumor tissue using multiphoton fluorescence lifetime imaging microscopy (MP-FLIM). Aim Using murine tumor fragments which preserve the native tumor microenvironment, we seek to demonstrate signals generated by the intrinsically fluorescent metabolic co-factors nicotinamide adenine dinucleotide phosphate [NAD(P)H] and flavin adenine dinucleotide (FAD) correlate with irreversible cascades leading to cell death. Approach We use MP-FLIM of NAD(P)H and FAD on tissues and confirm viability using standard apoptosis and live/dead (Caspase 3/7 and propidium iodide, respectively) assays. Results Through a statistical approach, reproducible shifts in FLIM data, determined through phasor analysis, are shown to correlate with loss of cell viability. With this, we demonstrate that cell death achieved through either apoptosis/necrosis or necroptosis can be discriminated. In addition, specific responses to common chemotherapeutic treatment inducing cell death were detected. Conclusions These data demonstrate that MP-FLIM can detect and quantify cell viability without the use of potentially toxic dyes, thus enabling longitudinal multi-day studies assessing the effects of therapeutic agents on tumor fragments.
Collapse
Affiliation(s)
- Jason T Smith
- Elephas, Madison, Wisconsin, United States
- Booz Allen Hamilton, McLean, Virginia, United States
| | - Chao J Liu
- Elephas, Madison, Wisconsin, United States
| | | | | | | | | | | | | | | | - Chris Zahm
- Elephas, Madison, Wisconsin, United States
| | - Eric Wait
- Elephas, Madison, Wisconsin, United States
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
| | | |
Collapse
|
11
|
Verma A, Pandey V, Sherry C, James C, Matteson K, Smith JT, Rudkouskaya A, Intes X, Barroso M. Fluorescence Lifetime Imaging for Quantification of Targeted Drug Delivery in Varying Tumor Microenvironments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575453. [PMID: 38293105 PMCID: PMC10827127 DOI: 10.1101/2024.01.12.575453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Rationale Trastuzumab (TZM) is a monoclonal antibody that targets the human epidermal growth factor receptor (HER2) and is clinically used for the treatment of HER2-positive breast tumors. However, the tumor microenvironment can limit the access of TZM to the HER2 targets across the whole tumor and thereby compromise TZM's therapeutic efficacy. An imaging methodology that can non-invasively quantify the binding of TZM-HER2, which is required for therapeutic action, and distribution within tumors with varying tumor microenvironments is much needed. Methods We performed near-infrared (NIR) fluorescence lifetime (FLI) Forster Resonance Energy Transfer (FRET) to measure TZM-HER2 binding, using in vitro microscopy and in vivo widefield macroscopy, in HER2 overexpressing breast and ovarian cancer cells and tumor xenografts, respectively. Immunohistochemistry was used to validate in vivo imaging results. Results NIR FLI FRET in vitro microscopy data show variations in intracellular distribution of bound TZM in HER2-positive breast AU565 and AU565 tumor-passaged XTM cell lines in comparison to SKOV-3 ovarian cancer cells. Macroscopy FLI (MFLI) FRET in vivo imaging data show that SKOV-3 tumors display reduced TZM binding compared to AU565 and XTM tumors, as validated by ex vivo immunohistochemistry. Moreover, AU565/XTM and SKOV-3 tumor xenografts display different amounts and distributions of TME components, such as collagen and vascularity. Therefore, these results suggest that SKOV-3 tumors are refractory to TZM delivery due to their disrupted vasculature and increased collagen content. Conclusion Our study demonstrates that FLI is a powerful analytical tool to monitor the delivery of antibody drug tumor both in cell cultures and in vivo live systems. Especially, MFLI FRET is a unique imaging modality that can directly quantify target engagement with potential to elucidate the role of the TME in drug delivery efficacy in intact live tumor xenografts.
Collapse
Affiliation(s)
- Amit Verma
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Vikas Pandey
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Catherine Sherry
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Christopher James
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Kailie Matteson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
- Current address: Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jason T. Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Current address: Booz Allen Hamilton, McLean, VA, 22102, USA
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
12
|
Harel M, Arbiv U, Ankri R. Multiplexed near infrared fluorescence lifetime imaging in turbid media. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:026004. [PMID: 38425720 PMCID: PMC10902792 DOI: 10.1117/1.jbo.29.2.026004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Significance Fluorescence lifetime imaging (FLI) plays a pivotal role in enhancing our understanding of biological systems, providing a valuable tool for non-invasive exploration of biomolecular and cellular dynamics, both in vitro and in vivo. Its ability to selectively target and multiplex various entities, alongside heightened sensitivity and specificity, offers rapid and cost-effective insights. Aim Our aim is to investigate the multiplexing capabilities of near-infrared (NIR) FLI within a scattering medium that mimics biological tissues. We strive to develop a comprehensive understanding of FLI's potential for multiplexing diverse targets within a complex, tissue-like environment. Approach We introduce an innovative Monte Carlo (MC) simulation approach that accurately describes the scattering behavior of fluorescent photons within turbid media. Applying phasor analyses, we enable the multiplexing of distinct targets within a single FLI image. Leveraging the state-of-the-art single-photon avalanche diode (SPAD) time-gated camera, SPAD512S, we conduct experimental wide-field FLI in the NIR regime. Results Our study demonstrates the successful multiplexing of dual targets within a single FLI image, reaching a depth of 1 cm within tissue-like phantoms. Through our novel MC simulation approach and phasor analyses, we showcase the effectiveness of our methodology in overcoming the challenges posed by scattering media. Conclusions This research underscores the potential of NIR FLI for multiplexing applications in complex biological environments. By combining advanced simulation techniques with cutting-edge experimental tools, we introduce significant results in the non-invasive exploration of biomolecular dynamics, to advance the field of FLI research.
Collapse
Affiliation(s)
- Meital Harel
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| | - Uri Arbiv
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| | - Rinat Ankri
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| |
Collapse
|
13
|
Li M, Guo X, Verma A, Rudkouskaya A, McKenna AM, Intes X, Wang G, Barroso M. Contrast-enhanced photon-counting micro-CT of tumor xenograft models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574097. [PMID: 38260707 PMCID: PMC10802390 DOI: 10.1101/2024.01.03.574097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Photon-counting micro computed tomography (micro-CT) offers new potential in preclinical imaging, particularly in distinguishing materials. It becomes especially helpful when combined with contrast agents, enabling the differentiation of tumors from surrounding tissues. There are mainly two types of contrast agents in the market for micro-CT: small molecule-based and nanoparticle-based. However, despite their widespread use in liver tumor studies, there is a notable gap in research on the application of these commercially available agents for photon-counting micro-CT in breast and ovarian tumors. Herein, we explored the effectiveness of these agents in differentiating tumor xenografts from various origins (AU565, MDA-MB-231, and SKOV-3) in nude mice, using photon-counting micro-CT. Specifically, ISOVUE-370 (a small molecule-based agent) and Exitrone Nano 12000 (a nanoparticle-based agent) were investigated in this context. To improve tumor visualization, we proposed a novel color visualization method for photon-counting micro-CT, which changes color tones to highlight contrast media distribution, offering a robust alternative to traditional material decomposition methods with less computational demand. Our in vivo experiments confirm its effectiveness, showing distinct enhancement characteristics for each contrast agent. Qualitative and quantitative analyses suggested that Exitrone Nano 12000 provides superior vasculature enhancement and better quantitative consistency across scans, while ISOVUE-370 gives more comprehensive tumor enhancement but with a significant variance between scans due to its short blood half-time. This variability leads to high sensitivity to timing and individual differences among mice. Further, a paired t-test on mean and standard deviation values within tumor volumes showed significant differences between the AU565 and SKOV-3 tumor models with the nanoparticle-based (p-values < 0.02), attributable to their distinct vascularity, as confirmed by immunohistochemistry. These findings underscore the utility of photon-counting micro-CT in non-invasively assessing the morphology and anatomy of different tumor xenografts, which is crucial for tumor characterization and longitudinal monitoring of tumor development and response to treatments.
Collapse
Affiliation(s)
- Mengzhou Li
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xiaodong Guo
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Amit Verma
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Antigone M. McKenna
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ge Wang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
14
|
Gottlieb D, Asadipour B, Kostina P, Ung TPL, Stringari C. FLUTE: A Python GUI for interactive phasor analysis of FLIM data. BIOLOGICAL IMAGING 2023; 3:e21. [PMID: 38487690 PMCID: PMC10936343 DOI: 10.1017/s2633903x23000211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/16/2023] [Accepted: 10/25/2023] [Indexed: 03/17/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique used to probe the local environment of fluorophores. The fit-free phasor approach to FLIM data is increasingly being used due to its ease of interpretation. To date, no open-source graphical user interface (GUI) for phasor analysis of FLIM data is available in Python, thus limiting the widespread use of phasor analysis in biomedical research. Here, we present Fluorescence Lifetime Ultimate Explorer (FLUTE), a Python GUI that is designed to fill this gap. FLUTE simplifies and automates many aspects of the analysis of FLIM data acquired in the time domain, such as calibrating the FLIM data, performing interactive exploration of the phasor plot, displaying phasor plots and FLIM images with different lifetime contrasts simultaneously, and calculating the distance from known molecular species. After applying desired filters and thresholds, the final edited datasets can be exported for further user-specific analysis. FLUTE has been tested using several FLIM datasets including autofluorescence of zebrafish embryos and in vitro cells. In summary, our user-friendly GUI extends the advantages of phasor plotting by making the data visualization and analysis easy and interactive, allows for analysis of large FLIM datasets, and accelerates FLIM analysis for non-specialized labs.
Collapse
Affiliation(s)
- Dale Gottlieb
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Bahar Asadipour
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Polina Kostina
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
15
|
Barroso M, Monaghan MG, Niesner R, Dmitriev RI. Probing organoid metabolism using fluorescence lifetime imaging microscopy (FLIM): The next frontier of drug discovery and disease understanding. Adv Drug Deliv Rev 2023; 201:115081. [PMID: 37647987 PMCID: PMC10543546 DOI: 10.1016/j.addr.2023.115081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Organoid models have been used to address important questions in developmental and cancer biology, tissue repair, advanced modelling of disease and therapies, among other bioengineering applications. Such 3D microenvironmental models can investigate the regulation of cell metabolism, and provide key insights into the mechanisms at the basis of cell growth, differentiation, communication, interactions with the environment and cell death. Their accessibility and complexity, based on 3D spatial and temporal heterogeneity, make organoids suitable for the application of novel, dynamic imaging microscopy methods, such as fluorescence lifetime imaging microscopy (FLIM) and related decay time-assessing readouts. Several biomarkers and assays have been proposed to study cell metabolism by FLIM in various organoid models. Herein, we present an expert-opinion discussion on the principles of FLIM and PLIM, instrumentation and data collection and analysis protocols, and general and emerging biosensor-based approaches, to highlight the pioneering work being performed in this field.
Collapse
Affiliation(s)
- Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 02, Ireland
| | - Raluca Niesner
- Dynamic and Functional In Vivo Imaging, Freie Universität Berlin and Biophysical Analytics, German Rheumatism Research Center, Berlin, Germany
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
16
|
Zhou X, Bec J, Ehrlich K, Garcia AA, Marcu L. Pulse-sampling fluorescence lifetime imaging: evaluation of photon economy. OPTICS LETTERS 2023; 48:4578-4581. [PMID: 37656559 PMCID: PMC10883700 DOI: 10.1364/ol.490096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/26/2023] [Indexed: 09/03/2023]
Abstract
This Letter presents an experimental study comparing the photon rate and photon economy of pulse sampling fluorescence lifetime imaging (PS-FLIm) with the conventional time-correlated single photon counting (TCSPC) technique. We found that PS-FLIm has a significantly higher photon detection rate (200 MHz) compared with TCSPC (2-8 MHz) but lower photon economy (4-5 versus 1-1.3). The main factor contributing to the lower photon economy in PS-FLIm is laser pulse variability. These results demonstrate that PS-FLIm offers 25× faster imaging speed than TCSPC while maintaining room light rejection in clinical settings. This makes PS-FLIm a robust technique for clinical applications.
Collapse
Affiliation(s)
- Xiangnan Zhou
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Julien Bec
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Katjana Ehrlich
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Alba Alfonso Garcia
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| |
Collapse
|
17
|
Smith JT, Sinsuebphon N, Rudkouskaya A, Michalet X, Intes X, Barroso M. In vivo quantitative FRET small animal imaging: Intensity versus lifetime-based FRET. BIOPHYSICAL REPORTS 2023; 3:100110. [PMID: 37251213 PMCID: PMC10209493 DOI: 10.1016/j.bpr.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Förster resonance energy transfer (FRET) microscopy is used in numerous biophysical and biomedical applications to monitor inter- and intramolecular interactions and conformational changes in the 2-10 nm range. FRET is currently being extended to in vivo optical imaging, its main application being in quantifying drug-target engagement or drug release in animal models of cancer using organic dye or nanoparticle-labeled probes. Herein, we compared FRET quantification using intensity-based FRET (sensitized emission FRET analysis with the three-cube approach using an IVIS imager) and macroscopic fluorescence lifetime (MFLI) FRET using a custom system using a time-gated-intensified charge-coupled device, for small animal optical in vivo imaging. The analytical expressions and experimental protocols required to quantify the product f D E of the FRET efficiency E and the fraction of donor molecules involved in FRET, f D , are described in detail for both methodologies. Dynamic in vivo FRET quantification of transferrin receptor-transferrin binding was acquired in live intact nude mice upon intravenous injection of a near-infrared-labeled transferrin FRET pair and benchmarked against in vitro FRET using hybridized oligonucleotides. Even though both in vivo imaging techniques provided similar dynamic trends for receptor-ligand engagement, we demonstrate that MFLI-FRET has significant advantages. Whereas the sensitized emission FRET approach using the IVIS imager required nine measurements (six of which are used for calibration) acquired from three mice, MFLI-FRET needed only one measurement collected from a single mouse, although a control mouse might be needed in a more general situation. Based on our study, MFLI therefore represents the method of choice for longitudinal preclinical FRET studies such as that of targeted drug delivery in intact, live mice.
Collapse
Affiliation(s)
- Jason T. Smith
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
18
|
Smith JT, Sinsuebphon N, Rudkouskaya A, Michalet X, Intes X, Barroso M. in vivo quantitative FRET small animal imaging: intensity versus lifetime-based FRET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525411. [PMID: 36747671 PMCID: PMC9900789 DOI: 10.1101/2023.01.24.525411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Förster Resonance Energy Transfer (FRET) microscopy is used in numerous biophysical and biomedical applications to monitor inter- and intramolecular interactions and conformational changes in the 2-10 nm range. FRET is currently being extended to in vivo optical imaging, its main application being in quantifying drug-target engagement or drug release in animal models of cancer using organic dye or nanoparticle-labeled probes. Herein, we compared FRET quantification using intensity-based FRET (sensitized emission FRET analysis with the 3-cube approach using an IVIS imager) and macroscopic fluorescence lifetime (MFLI) FRET using a custom system using a time-gated ICCD, for small animal optical in vivo imaging. The analytical expressions and experimental protocols required to quantify the product f D E of the FRET efficiency E and the fraction of donor molecules involved in FRET, f D , are described in detail for both methodologies. Dynamic in vivo FRET quantification of transferrin receptor-transferrin binding was acquired in live intact nude mice upon intravenous injection of near infrared-labeled transferrin FRET pair and benchmarked against in vitro FRET using hybridized oligonucleotides. Even though both in vivo imaging techniques provided similar dynamic trends for receptor-ligand engagement, we demonstrate that MFLI FRET has significant advantages. Whereas the sensitized emission FRET approach using the IVIS imager required 9 measurements (6 of which are used for calibration) acquired from three mice, MFLI FRET needed only one measurement collected from a single mouse, although a control mouse might be needed in a more general situation. Based on our study, MFLI therefore represents the method of choice for longitudinal preclinical FRET studies such as that of targeted drug delivery in intact, live mice.
Collapse
Affiliation(s)
- Jason T. Smith
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Present address: Elephas, 1 Erdman Pl., Madison, WI 53705, USA
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Present address: Assistive Technology and Medical Devices Research Center, National Science and Technology Development Agency, 12120 Pathum Thani, Thailand
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, University of California at Los Angeles, Los Angeles, California, CA 90095, USA
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
19
|
Gili VF, Dupish D, Vega A, Gandola M, Manuzzato E, Perenzoni M, Gasparini L, Pertsch T, Setzpfandt F. Quantum ghost imaging based on a "looking back" 2D SPAD array. APPLIED OPTICS 2023; 62:3093-3099. [PMID: 37133155 DOI: 10.1364/ao.487084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Quantum ghost imaging (QGI) is an intriguing imaging protocol that exploits photon-pair correlations stemming from spontaneous parametric down-conversion (SPDC). QGI retrieves images from two-path joint measurements, where single-path detection does not allow us to reconstruct the target image. Here we report on a QGI implementation exploiting a two-dimensional (2D) single-photon avalanche diode (SPAD) array detector for the spatially resolving path. Moreover, the employment of non-degenerate SPDC allows us to investigate samples at infrared wavelengths without the need for short-wave infrared (SWIR) cameras, while the spatial detection can be still performed in the visible region, where the more advanced silicon-based technology can be exploited. Our findings advance QGI schemes towards practical applications.
Collapse
|
20
|
Michalet X, Ulku AC, Wayne MA, Weiss S, Bruschini C, Charbon E. NIR Fluorescence lifetime macroscopic imaging with a novel time-gated SPAD camera. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12384:1238409. [PMID: 37869412 PMCID: PMC10586139 DOI: 10.1117/12.2649227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
SwissSPAD3 is the latest of a family of widefield time-gated SPAD imagers developed for fluorescence lifetime imaging (FLI) applications. Its distinctive features are (i) the ability to define shorter gates than its predecessors (width W < 1 ns), (ii) support for laser repetition rates up to at least 80 MHz and (iii) a dual-gate architecture providing an effective duty cycle of 100%. We present widefield macroscopic FLI measurements of short lifetime NIR dyes, analyzed using the phasor approach. The results are compared with those previously obtained with SwissSPAD2 and to theoretical predictions.
Collapse
Affiliation(s)
- Xavier Michalet
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, USA 90095
| | - Arin C. Ulku
- AQUA Lab, Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Michael A. Wayne
- AQUA Lab, Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Shimon Weiss
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, USA 90095
| | - Claudio Bruschini
- AQUA Lab, Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Edoardo Charbon
- AQUA Lab, Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| |
Collapse
|
21
|
Gao S, Li M, Smith JT, Intes X. Design and characterization of a time-domain optical tomography platform for mesoscopic lifetime imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:4637-4651. [PMID: 36187247 PMCID: PMC9484415 DOI: 10.1364/boe.460216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
We report on the system design and instrumental characteristics of a novel time-domain mesoscopic fluorescence molecular tomography (TD-MFMT) system for multiplexed molecular imaging in turbid media. The system is equipped with a supercontinuum pulsed laser for broad spectral excitation, based on a high-density descanned raster scanning intensity-based acquisition for 2D and 3D imaging and augmented with a high-dynamical range linear time-resolved single-photon avalanche diode (SPAD) array for lifetime quantification. We report on the system's spatio-temporal and spectral characteristics and its sensitivity and specificity in controlled experimental settings. Also, a phantom study is undertaken to test the performance of the system to image deeply-seated fluorescence inclusions in tissue-like media. In addition, ex vivo tumor xenograft imaging is performed to validate the system's applicability to the biological sample. The characterization results manifest the capability to sense small fluorescence concentrations (on the order of nanomolar) while quantifying fluorescence lifetimes and lifetime-based parameters at high resolution. The phantom results demonstrate the system's potential to perform 3D multiplexed imaging thanks to spectral and lifetime contrast in the mesoscopic range (at millimeters depth). The ex vivo imaging exhibits the prospect of TD-MFMT to resolve intra-tumoral heterogeneity in a depth-dependent manner.
Collapse
Affiliation(s)
- Shan Gao
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mengzhou Li
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jason T. Smith
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|