1
|
Joseph JP, Malone T, Abraham SR, Dutta A, Gupta S, Kuzmin A, Baev A, Swihart MT, Hendrickson JR, Prasad PN. Plasticizer-Induced Enhancement of Mesoscale Dissymmetry in Thin Films of Chiral Polymers with Variable Chain Length. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305684. [PMID: 37725635 DOI: 10.1002/adma.202305684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/13/2023] [Indexed: 09/21/2023]
Abstract
Conjugated polymers with chiral side chains are of interest in areas including chiral photonics, optoelectronics, and chemical and biological sensing. However, the low dissymmetry factors of most neat polymer thin films have limited their practical application. Here, a robust method to increase the absorption dissymmetry factor in a poly-fluorene-thiophene (PF8TS series) system is demonstrated by varying molecular weight and introducing an achiral plasticizer, polyethylene mono alcohol (PEM-OH). Extending chain length within the optimal range and adding this long-chain alcohol significantly enhance the chiroptical properties of spin-coated and annealed thin films. Mueller matrix spectroscopic ellipsometry (MMSE) analysis shows good agreement with the steady-state transmission measurements confirming a strong chiral response (circular dichroism (CD) and circular birefringence (CB)), ruling out linear dichroism, birefringence, and specific reflection effects. Solid-state NMR studies of annealed hybrid chiral polymer systems show enhancement of signals associated with aromatic π-stacked backbone and the ordered side-chain conformations. Further studies using Raman spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and polarized optical microscopy (POM) indicate that PEM-OH facilitates mesoscopic crystal domain ordering upon annealing. This provides new insights into routes for tuning optical activity in conjugated polymers.
Collapse
Affiliation(s)
- Jojo P Joseph
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Trent Malone
- Department of Electro-Optics and Photonics, University of Dayton, Dayton, OH, 45469, USA
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Shema R Abraham
- Department of Chemical and Biological Engineering, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Avisek Dutta
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Sonal Gupta
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Andrey Kuzmin
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Alexander Baev
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Joshua R Hendrickson
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Paras N Prasad
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| |
Collapse
|