1
|
Zhou R, Chen X, Huang M, Chen H, Zhang L, Xu D, Wang D, Gao P, Wang B, Dai X. ATR-FTIR spectroscopy combined with chemometrics to assess the spectral markers of irradiated baijius and their potential application in irradiation dose control. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123162. [PMID: 37478760 DOI: 10.1016/j.saa.2023.123162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Although some methods have been proposed for the identification of irradiated baijius, they are often costly, time-consuming, and destructive. It is also unclear what instrumentation can be used to fully characterize the quality changes in irradiated baijius. To address this issue, this study pioneers the use of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy in combination with chemometrics to open up new avenues for characterizing irradiated baijius and their quality control. Principal component analysis, five spectral pre-processing methods (Savitzky-Golay smoothing (S-G), second-order derivative (SD), multiple scattering correction (MSC), S-G + SD and S-G + MSC), five wavelength selection methods (random forest variable importance (RFVI), two-dimensional correlation spectroscopy (2D-COS), variable importance in projection (VIP), ReliefF, and Venn), and three classification models (partial least squares-discriminant analysis (PLS-DA), random forest (RF), and grasshopper optimization algorithm-based support vector machine (GOA-SVM)) were integrated into the analytical framework of ATR-FTIR spectroscopy, aiming to accurately identify baijiu samples according to different irradiation doses and to search for irradiation-induced spectral difference characteristics (spectral markers). The results showed that SD was the best spectral pre-processing method, and RF models constructed using the 20 most competitive and discriminative spectral markers (selected by Venn) could achieve accurate identification of baijiu samples based on irradiation dose (0, 4, 6, and 8 kGy). After Pearson correlation analysis, the five significantly (P<0.05) changed spectral markers (1596, 2025, 2309, 2329, and 2380 cm-1) were attributed to changes in the content of total acids, alcohols, and aromatic compounds. These findings demonstrate for the first time the potential of ATR-FTIR spectroscopy as a fast, low-cost, and non-destructive tool for the characterization and identification of irradiated baijiu samples. This approach may also offer a promising solution for labeling management of irradiated foods, vintage identification of baijius, and brand protection.
Collapse
Affiliation(s)
- Rui Zhou
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Xiaoming Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China.
| | - Min Huang
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Hao Chen
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Lili Zhang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Defu Xu
- Luzhou Laojiao Co., Ltd, Luzhou 646699, Sichuan, PR China
| | - Dan Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Peng Gao
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Bensheng Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Xiaoxue Dai
- Luzhou Laojiao Co., Ltd, Luzhou 646699, Sichuan, PR China
| |
Collapse
|
4
|
Miao L, Liu Y, Li H, Qi Y, Lu F. Two-dimensional correlation infrared spectroscopy applied to the identification of ephedrine and pseudoephedrine in illegally adulterated slimming herbal products. Drug Test Anal 2016; 9:221-229. [DOI: 10.1002/dta.1963] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Li Miao
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai 200433 China
| | - Yan Liu
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai 200433 China
| | - Hao Li
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai 200433 China
| | - Yunpeng Qi
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai 200433 China
| | - Feng Lu
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai 200433 China
| |
Collapse
|