1
|
Alexeeva N, Bogomolova E, Tamberg Y. Excretory glands of sea spiders (Pycnogonida, Nymphonidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 83:101403. [PMID: 39632238 DOI: 10.1016/j.asd.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
All major arthropod taxa possess excretory glands - a type of filtration nephridium considered ancestral for this group. Pycnogonids form a basal branch of the arthropod phylogenetic tree and are ancient aquatic chelicerates, but they were believed to lack specialised excretory organs, except for Nymphopsis spinosissimum (Ammotheidae). Whether this condition is unique or common remained unknown due to lack of anatomical data for many species. Here we examined four nymphonids: Nymphon brevirostre, Nymphon grossipes, Nymphon serratum and Pentanymphon antarcticum using scanning and transmission electron microscopy, as well as light microscopy. In adults of all four species, we found excretory organs and describe ultrastructural details of all their parts: sacculus, reabsorption channel, excretory channel and the pore. In addition to the definitive (adult) excretory organs, we also detected some larval and juvenile transitory ones and were able to trace the origin of the sacculus podocytes from the non-epithelial mesoderm of the horizontal septum. All excretory organs are located in the appendages of the first three postocular segments of the cephalosoma (although not necessarily in all of them at once) because these areas can maintain the high hemolymph pressure necessary for ultrafiltration. The ultrastructure and development of the sacculus point toward the secondary nature of this cavity, although the coelomic status of the sacculi in sea spiders and other arthropods is still unclear.
Collapse
Affiliation(s)
- Nina Alexeeva
- White Sea Biological Station, Zoological Institute, Russian Academy of Sciences, Saint-Petersburg, Universitetskaya quay 1, 190121, Russian Federation.
| | | | - Yuta Tamberg
- Te Whatu Ora, National Public Health Service, 369 Taieri Road, 9010, Dunedin, New Zealand.
| |
Collapse
|
2
|
Kruangkum T, Jaiboon K, Pakawanit P, Saetan J, Pudgerd A, Wannapaiboon S, Chotwiwatthanakun C, Cummins SF, Sobhon P, Vanichviriyakit R. Anatomical and molecular insights into the antennal gland of the giant freshwater prawn Macrobrachium rosenbergii. Cell Tissue Res 2024; 397:125-146. [PMID: 38878176 PMCID: PMC11291661 DOI: 10.1007/s00441-024-03898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/07/2024] [Indexed: 08/03/2024]
Abstract
In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.
Collapse
Affiliation(s)
- Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Kornchanok Jaiboon
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Phakkhananan Pakawanit
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Arnon Pudgerd
- Division of Anatomy, School of Medical Science, University of Phayao, Muang, Phayao, 56000, Thailand
| | - Suttipong Wannapaiboon
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand
| | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, Sippy Downs, QLD, 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Sippy Downs, QLD, 4558, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Rapeepun Vanichviriyakit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Popp TE, Hermet S, Fredette-Roman J, McKeel E, Zozaya W, Baumlin C, Charmantier G, Lee CE, Lorin-Nebel C. Evolution of ion transporter Na +/K +-ATPase expression in the osmoregulatory maxillary glands of an invasive copepod. iScience 2024; 27:110278. [PMID: 39055944 PMCID: PMC11269808 DOI: 10.1016/j.isci.2024.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
While many freshwater invaders originate from saline habitats, the physiological mechanisms involved are poorly understood. We investigated the evolution of ion transporter Na+/K+-ATPase (NKA) protein expression between ancestral saline and freshwater invading populations of the copepod Eurytemora carolleae (Atlantic clade of the E. affinis complex). We compared in situ NKA expression between populations under common-garden conditions at three salinities in the maxillary glands. We found the evolution of reduced NKA expression in the freshwater population under freshwater conditions and reduced plasticity (canalization) across salinities, relative to the saline population. Our results support the hypothesis that maxillary glands are involved in ion reabsorption from excretory fluids at low-salinity conditions in the saline population. However, mechanisms of freshwater adaptation, such as increased ion uptake from the environment, might reduce the need for ion reabsorption in the freshwater population. These patterns of ion transporter expression contribute insights into the evolution of ionic regulation during habitat change.
Collapse
Affiliation(s)
- Teresa E. Popp
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
- Department of Integrative Biology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Sophie Hermet
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - Jacob Fredette-Roman
- Department of Integrative Biology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Emma McKeel
- Department of Integrative Biology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - William Zozaya
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - Corentin Baumlin
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - Carol Eunmi Lee
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
- Department of Integrative Biology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | | |
Collapse
|
4
|
Shao S, Mo N, Yang Y, Cui Z, Bao C. Identifying sex-differential gene expression in the antennal gland of the swimming crab by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101087. [PMID: 37178607 DOI: 10.1016/j.cbd.2023.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The antennal glands (AnGs) are recognized as an important organ that functions in ion regulation and excretion in decapods. Previously, many studies had explored this organ at the biochemical, physiological, and ultrastructural levels but had few molecular resources. In this study, the transcriptomes of the male and female AnGs of Portunus trituberculatus were sequenced using RNA sequencing (RNA-Seq) technology. Genes involved in osmoregulation and organic/inorganic solute transport were identified. This suggests that AnGs might be involved in these physiological functions as versatile organs. A total of 469 differentially expressed genes (DEGs) were further identified between male and female transcriptomes and found to be male-biased. Enrichment analysis showed that females were enriched in amino acid metabolism and males were enriched in nucleic acid metabolism. These results suggested differences in possible metabolic patterns between males and females. Furthermore, two transcription factors related to reproduction, namely AF4/FMR2 family members Lilli (Lilli) and Virilizer (Vir), were identified in DEGs. Lilli was found to be specifically expressed in the male AnGs, whereas Vir showed high expression levels in the female AnGs. The expression of up-regulated metabolism and sexual development-related genes in three males and six females was verified by qRT-PCR and the pattern was found to be consistent with the transcriptome expression pattern. Our results suggest that although the AnG is a unified somatic tissue composed of individual cells, it still demonstrates distinct sex-specific expression patterns. These results provide foundational knowledge of the function and differences between male and female AnGs in P. trituberculatus.
Collapse
Affiliation(s)
- Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China..
| |
Collapse
|
5
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
6
|
Fan Y, Feng J, Xie N, Ling F, Wang Z, Ma K, Hua X, Li J. RNA-seq Provides Novel Insights into Response to Acute Salinity Stress in Oriental River Prawn Macrobrachium nipponense. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:820-829. [PMID: 35915287 DOI: 10.1007/s10126-022-10151-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The oriental river prawn Macrobrachium nipponense is an important aquaculture species in China, Vietnam, and Japan. This species could survive in the salinity ranging from 7 to 20 ppt and accelerate growth in the salinity of 7 ppt. To identify the genes and pathways in response to acute high salinity stress, M. nipponense was exposed to the acute high salinity of 25 ppt. Total RNA from hepatopancreas, gills, and muscle tissues was isolated and then sequenced using high-throughput sequencing method. Differentially expressed genes (DGEs) were identified, and a total of 632, 836, and 1246 DEGs with a cutoff of significant twofold change were differentially expressed in the hepatopancreas, gills, and muscle tissues, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses were conducted. These DEGs were involved in the GO terms of cellular process, metabolic process, membrane, organelle, binding, and catalytic activity. The DEGs of hepatopancreas and gill tissues were mainly enriched in PPAR signaling pathway, longevity regulating pathway, protein digestion and absorption, and the DEGs of muscle tissue in arginine biosynthesis, adrenergic signaling in cardiomyocytes, cardiac muscle contraction, and cGMP-PKG signaling pathway. Real-time PCR conducted with fifteen selected DEGs indicated high reliability of digital analysis using RNA-Seq. The results indicated that the M. nipponense may regulate essential mechanisms such as metabolism, oxidative stress, and ion exchange to adapt the alternation of environment, when exposed to acute high salinity stress. This work reveals the numbers of genes modified by salinity stress and some important pathways, which could provide a comprehensive insight into the molecular responses to high salinity stress in M. nipponense and further boost the understanding of the potential molecular mechanisms of adaptation to salinity stress for euryhaline crustaceans.
Collapse
Affiliation(s)
- Yaoran Fan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Nan Xie
- Hangzhou Fishery Research Institute, Hangzhou, China
| | - Feiyue Ling
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zefei Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Keyi Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xueming Hua
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
7
|
Comparative transcriptome analysis of the gills of Cardisoma armatum provides novel insights into the terrestrial adaptive related mechanism of air exposure stress. Genomics 2021; 113:1193-1202. [PMID: 33711456 DOI: 10.1016/j.ygeno.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
Cardisoma armatum is a typical member of the Gecarcinidae which show significant behavioral, morphological, physiological, and/or biochemical adaptations permitting extended activities on the land. The special gills (branchiostegal lung) of C. armatum play an important role in maintaining osmotic pressure balance and obtaining oxygen to adapt to the terrestrial environment. However, adaptive molecular mechanisms responding to air exposure in C. armatum are still poorly understood. In this study, transcriptomic analysis and histological analysis were conducted on the gills to test adaptive capabilities over 8 h between the aerial exposure (AE) and the water immersion (WI) group. Differentially expressed genes (DEGs) related to terrestrial adaptation were categorized into four broad categories: ion transport, acid-base balance, energy metabolism and immune response. This is the first research to reveal the molecular mechanism of terrestrial adaptation in C. armatum, and will provide new insight into the molecular genetic basis of terrestrial adaptation in crabs.
Collapse
|
8
|
Wang H, Wei H, Tang L, Lu J, Mu C, Wang C. A proteomics of gills approach to understanding salinity adaptation of Scylla paramamosain. Gene 2018; 677:119-131. [DOI: 10.1016/j.gene.2018.07.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023]
|
9
|
Wang H, Tang L, Wei H, Lu J, Mu C, Wang C. Transcriptomic analysis of adaptive mechanisms in response to sudden salinity drop in the mud crab, Scylla paramamosain. BMC Genomics 2018; 19:421. [PMID: 29855258 PMCID: PMC5984308 DOI: 10.1186/s12864-018-4803-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Background Scylla paramamosain (Crustacea: Decapoda: Portunidae: Syclla De Hann) is a commercially important mud crab distributed along the coast of southern China and other Indo-Pacific countries (Lin Z, Hao M, Zhu D, et al, Comp Biochem Physiol B Biochem Mol Biol 208-209:29–37, 2017; Walton ME, Vay LL, Lebata JH, et al, Estuar Coast Shelf Sci 66(3–4):493–500, 2006; Wang Z, Sun B, Zhu F, Fish Shellfish Immunol 67:612–9, 2017). While S. paramamosain is a euryhaline species, a sudden drop in salinity induces a negative impact on growth, molting, and reproduction, and may even cause death. The mechanism of osmotic regulation of marine crustaceans has been recently under investigation. However, the mechanism of adapting to a sudden drop in salinity has not been reported. Methods In this study, transcriptomics analysis was conducted on the gills of S. paramamosain to test its adaptive capabilities over 120 h with a sudden drop in salinity from 23 ‰ to 3 ‰. Results At the level of transcription, 135 DEGs (108 up-regulated and 27 down-regulated) annotated by NCBI non-redundant (nr) protein database were screened. GO analysis showed that the catalytic activity category showed the most participating genes in the 24 s-tier GO terms, indicating that intracellular metabolic activities in S. paramamosain were enhanced. Of the 164 mapped KEGG pathways, seven of the top 20 pathways were closely related to regulation of the Na+ / K+ -ATPase. Seven additional amino acid metabolism-related pathways were also found, along with other important signaling pathways. Conclusion Ion transport and amino acid metabolism were key factors in regulating the salinity adaptation of S. paramamosain in addition to several important signaling pathways. Electronic supplementary material The online version of this article (10.1186/s12864-018-4803-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Lei Tang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Hongling Wei
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Junkai Lu
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China. .,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
10
|
Van Thuong K, Van Tuan V, Li W, Sorgeloos P, Bossier P, Nauwynck H. Effects of acute change in salinity and moulting on the infection of white leg shrimp (Penaeus vannamei) with white spot syndrome virus upon immersion challenge. JOURNAL OF FISH DISEASES 2016; 39:1403-1412. [PMID: 27135899 DOI: 10.1111/jfd.12471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
In the field, moulting and salinity drop in the water due to excessive rainfall have been mentioned to be risk factors for WSSV outbreaks. Therefore, in this study, the effect of an acute change in environmental salinity and shedding of the old cuticle shell on the susceptibility of Penaeus vannamei to WSSV was evaluated by immersion challenge. For testing the effect of abrupt salinity stress, early premoult shrimp that were acclimated to 35 g L-1 were subjected to salinities of 50 g L-1 , 35 g L-1 , 20 g L-1 , 10 g L-1 and 7 g L-1 or 5 g L-1 and simultaneously exposed to 105.5 SID50 mL-1 of WSSV for 5 h, after which the salinity was brought back to 35 g L-1 . Shrimp that were transferred from 35 g L-1 to 50 g L-1 , 35 g L-1 and 20 g L-1 did not become infected with WSSV. Shrimp became infected with WSSV after an acute salinity drop from 35 g L-1 to 10 g L-1 and lower. The mortality in shrimp, subjected to a salinity change to 10 g L-1 , 7 g L-1 and 5 g L-1 , was 6.7%, 46.7% and 53.3%, respectively (P < 0.05). For testing the effect of moulting, shrimp in early premoult, moulting and post-moult were immersed in sea water containing 105.5 SID50 mL-1 of WSSV. The resulting mortality due to WSSV infection in shrimp inoculated during early premoult (0%), ecdysis (53.3%) and post-moult (26.72%) demonstrated that a significant difference exists in susceptibility of shrimp during the short moulting process (P < 0.05). The findings of this study indicate that during a drop in environmental salinity lower than 10 g L-1 and ecdysis, shrimp are at risk for a WSSV infection. These findings have important implications for WSSV control measures.
Collapse
Affiliation(s)
- K Van Thuong
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium. ,
- Research Institute for Aquaculture Number 1. Dinhbang, Tuson, Bacninh, Vietnam. ,
| | - V Van Tuan
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - W Li
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - P Sorgeloos
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - P Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - H Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
11
|
Weihrauch D, O’Donnell MJ. Links between Osmoregulation and Nitrogen-Excretion in Insects and Crustaceans. Integr Comp Biol 2015; 55:816-29. [DOI: 10.1093/icb/icv013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
12
|
Ontogeny and osmoregulatory function of the urinary system in the Persian sturgeon, Acipenser persicus (Borodin, 1897). Tissue Cell 2014; 46:287-98. [PMID: 25024093 DOI: 10.1016/j.tice.2014.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/27/2014] [Indexed: 11/21/2022]
Abstract
The structure of the kidney and the localization of Na(+), K(+)-ATPase (NKA) immunopositive cells were examined throughout the postembryonic development of the Persian sturgeon, Acipenser persicus, from newly hatched prelarvae (10mm) to 20 days post hatch (20 DPH) larvae (31mm). Investigations were conducted through histology and immunohistochemistry by using the light and immunofluorescence microscopy. The pronephros was observed in newly hatched prelarvae. The cells lining the distal pronephric tubules and their collecting ducts showed laterally expressed NKA immunofluorescence that later extended throughout the whole cytoplasm. Mesonephrogenous placodes and pre-glomeruli were distinguished at 2 DPH along the collecting ducts posteriorly. Their tubules were formed and present in kidney mesenchyma, differentiated into neck, proximal, distal and collecting segments at 7 DPH when NKA immunopositive cells were observed. Their distal and collecting tubules showed an increasing immunofluorescence throughout their cytoplasm while the glomeruli remained unstained. From D 9 to D 17, the epithelial layer of pronephric collecting duct changed along the mesonephros to form ureters. Ureters, possessing isolated strong NKA immunopositive cells, appeared as two sac-like structures hanging under the trunk kidney. Since NKA immunopositive cells were not observed on the tegument or along the digestive tract of newly hatched prelarva, and also the gills are not formed yet, the pronephros is the only osmoregulatory organ until 4 DPH. At the larval stage, the pronephros and mesonephros are functional osmoregulatory organs and actively reabsorb necessary ions from the filtrate.
Collapse
|
13
|
Tsai JR, Lin HC. Functional anatomy and ion regulatory mechanisms of the antennal gland in a semi-terrestrial crab, Ocypode stimpsoni. Biol Open 2014; 3:409-17. [PMID: 24795144 PMCID: PMC4058075 DOI: 10.1242/bio.20147336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brachyuran crabs from diverse habitats show great differences in their osmoregulatory processes, especially in terms of the structural and physiological characteristics of the osmoregulatory organs. In crustaceans, the antennal glands are known to be important in osmoregulation, and they play a functional role analogous to that of the vertebrate kidney. Nevertheless, the detailed structure and function of the antennal glands in different species have rarely been described. The aim of this study is to investigate the role of the antennal gland in ion regulation by examining the ultrastructure of the cells and the distribution of the ion regulatory proteins in each cell type in the antennal gland of a semi-terrestrial crab. The results showed that Na+, K+-ATPase activity significantly increased in the antennal gland after a 4-day acclimation in dilute seawater and returned to its original (day 0) level after 7 days. Three major types of cells were identified in the antennal gland, including coelomic cells (COEs), labyrinthine cells (LBRs) and end-labyrinthine cells (ELBRs). The proximal tubular region (PT) and distal tubular region (DT) of the antennal gland consist of LBRs and COEs, whereas the end tubular region (ET) consists of all three types of cells, with fewer COEs and more ELBRs. We found a non-uniform distribution of NKA immunoreactivity, with increasing intensity from the proximal to the distal regions of the antennal gland. We summarise our study with a proposed model for the urine reprocessing pathway and the role of each cell type or segment of the antennal gland.
Collapse
Affiliation(s)
- Jyuan-Ru Tsai
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan
| | - Hui-Chen Lin
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
14
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Johnson KE, Perreau L, Charmantier G, Charmantier-Daures M, Lee CE. Without Gills: Localization of Osmoregulatory Function in the CopepodEurytemora affinis. Physiol Biochem Zool 2014; 87:310-24. [DOI: 10.1086/674319] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Øresland V, Horobin RW. Tracking living decapod larvae: mass staining of eggs with neutral red prior to hatching. Biotech Histochem 2011; 87:229-34. [PMID: 22149046 DOI: 10.3109/10520295.2011.639718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mass staining of decapod females carrying eggs, with subsequent identification of hatched larvae in the environment, is a research tool with great potential for field ecologists wishing to track the movements of larvae. For this to be achieved, however, numerous requirements must be met. These include adequate dye solubility, short staining time, dye penetration through different tissues, dye retention within the organism, absence of toxic and behavioral effects, low visibility to predators of stained larvae, no loss of staining owing to preservatives and low cost. The dye, neutral red, appears to meet most of these requirements. This dye was used in aliquots of 0.7 g/770 ml seawater applied to the females of Norway lobster (Nephrops norvegicus) and European lobster (Homarus gammarus) for 10 min. This procedure stained lobster eggs and embryos so that hatched larvae could be distinguished easily by fluorescence microscopy from larvae that hatched from unstained eggs. Stained larvae that were preserved in 4% formaldehyde in seawater were still stained after 1 year. Larvae should not come in contact with ethanol, because it extracts the dye rapidly.
Collapse
Affiliation(s)
- V Øresland
- Institute of Marine Research, Department of Aquatic Resources, Swedish University of Agricultural Sciences, Lysekil, Sweden.
| | | |
Collapse
|
17
|
Taghizadeh Rahmat Abadi Z, Khodabandeh S, Abtahi B, Charmantier G, Charmantier-Daures M. Ultrastructure and osmoregulatory function of the kidney in larvae of the Persian sturgeon Acipenser persicus. JOURNAL OF FISH BIOLOGY 2011; 78:1359-1374. [PMID: 21539547 DOI: 10.1111/j.1095-8649.2011.02939.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The localization of Na(+) , K(+) -ATPase (NKA) and the ultrastructural features of kidney were examined in larvae of the Persian sturgeon Acipenser persicus (L 31-41 mm total length and 182·3-417·3 mg). Investigations were conducted through light and electron microscopy and through immunofluorescence for NKA detection. The kidney nephrons consisted of a large glomerulus and tubules (neck, proximal, distal and collecting), which connected to the ureters. Posteriorly, ureters extended and joined together into a thin-walled ureter terminal sac. Ultrastructurally, the glomerular cells (podocytes) possessed distinctive pedicels that extended to the basal membrane. The proximal tubule (PT) showed two different cells. The cells lining the anterior part of PT possessed apical tall microvilli (c. 2·7 µm), a sub-apical tubular system, a basal nucleus and dense granules. Posteriorly in the cells, the sub-apical tubular system and granules were absent and round mitochondria associated with basolateral infoldings were found; the apical microvilli were reduced. Distal and collecting tubular cells showed the typical features of osmoregulatory cells, i.e. well-developed basolateral infoldings associated with numerous mitochondria. No immunofluorescence of NKA was detected in the glomeruli. A weak immunostaining was observed at the basolateral side of the cells lining the neck and PT. A strong immunostaining of NKA was observed in the entire cells of the distal tubules, collecting tubules and in some isolated cells of the ureters. In all immunostained cells, the basolateral region showed a much higher fluorescence and nuclei were immunonegative. In conclusion, the epithelial cells of kidney tubules had morphological and enzymatic features of ionocytes, particularly in the distal and collecting tubules. Thus, the kidney of A. persicus larvae possesses active ion exchange capabilities and, beside its implication in excretion, participates in osmoregulation.
Collapse
|
18
|
Adaptation of the black tiger shrimp, Penaeus monodon, to different salinities through an excretory function of the antennal gland. Cell Tissue Res 2010; 340:481-9. [DOI: 10.1007/s00441-010-0971-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
|
19
|
|
20
|
Freire CA, Onken H, McNamara JC. A structure-function analysis of ion transport in crustacean gills and excretory organs. Comp Biochem Physiol A Mol Integr Physiol 2007; 151:272-304. [PMID: 17604200 DOI: 10.1016/j.cbpa.2007.05.008] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/08/2007] [Accepted: 05/11/2007] [Indexed: 11/29/2022]
Abstract
Osmotic and ionic regulation in the Crustacea is mostly accomplished by the multifunctional gills, together with the excretory organs. In addition to their role in gas exchange, the gills constitute organs of active, transepithelial, ion transport, an activity of major importance that underlies many essential physiological functions like osmoregulation, calcium homeostasis, ammonium excretion and extracellular pH regulation. This review focuses on structure-function relationships in crustacean gills and excretory effectors, from the organ to molecular levels of organization. We address the diversity of structural architectures encountered in different crustacean gill types, and in constituent cell types, before examining the physiological mechanisms of Na(+), Cl(-), Ca(2+) and NH(4)(+) transport, and of acid-base equivalents, based on findings obtained over the last two decades employing advanced techniques. The antennal and maxillary glands constitute the principal crustacean excretory organs, which have received less attention in functional studies. We examine the diversity present in antennal and maxillary gland architecture, highlighting the structural similarities between both organ types, and we analyze the functions ascribed to each glandular segment. Emphasis is given to volume and osmoregulatory functions, capacity to produce dilute urine in freshwater crustaceans, and the effect of acclimation salinity on urine volume and composition. The microanatomy and diversity of function ascribed to gills and excretory organs are appraised from an evolutionary perspective, and suggestions made as to future avenues of investigation that may elucidate evolutionary and adaptive trends underpinning the invasion and exploitation of novel habitats.
Collapse
Affiliation(s)
- Carolina A Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, 81531-990, Brazil.
| | - Horst Onken
- Department of Biological Sciences, Wagner College, Staten Island, NY 10301, USA
| | - John C McNamara
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| |
Collapse
|