1
|
Valenza M, Birolini G, Cattaneo E. The translational potential of cholesterol-based therapies for neurological disease. Nat Rev Neurol 2023; 19:583-598. [PMID: 37644213 DOI: 10.1038/s41582-023-00864-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Cholesterol is an important metabolite and membrane component and is enriched in the brain owing to its role in neuronal maturation and function. In the adult brain, cholesterol is produced locally, predominantly by astrocytes. When cholesterol has been used, recycled and catabolized, the derivatives are excreted across the blood-brain barrier. Abnormalities in any of these steps can lead to neurological dysfunction. Here, we examine how precise interactions between cholesterol production and its use and catabolism in neurons ensures cholesterol homeostasis to support brain function. As an example of a neurological disease associated with cholesterol dyshomeostasis, we summarize evidence from animal models of Huntington disease (HD), which demonstrate a marked reduction in cholesterol biosynthesis with clinically relevant consequences for synaptic activity and cognition. In addition, we examine the relationship between cholesterol loss in the brain and cognitive decline in ageing. We then present emerging therapeutic strategies to restore cholesterol homeostasis, focusing on evidence from HD mouse models.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| | - Giulia Birolini
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| |
Collapse
|
2
|
Bruno F, Camuso S, Capuozzo E, Canterini S. The Antifungal Antibiotic Filipin as a Diagnostic Tool of Cholesterol Alterations in Lysosomal Storage Diseases and Neurodegenerative Disorders. Antibiotics (Basel) 2023; 12:antibiotics12010122. [PMID: 36671323 PMCID: PMC9855188 DOI: 10.3390/antibiotics12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Cholesterol is the most considerable member of a family of polycyclic compounds understood as sterols, and represents an amphipathic molecule, such as phospholipids, with the polar hydroxyl group located in position 3 and the rest of the molecule is completely hydrophobic. In cells, it is usually present as free, unesterified cholesterol, or as esterified cholesterol, in which the hydroxyl group binds to a carboxylic acid and thus generates an apolar molecule. Filipin is a naturally fluorescent antibiotic that exerts a primary antifungal effect with low antibacterial activity, interfering with the sterol stabilization of the phospholipid layers and favoring membrane leakage. This polyene macrolide antibiotic does not bind to esterified sterols, but only to non-esterified cholesterol, and it is commonly used as a marker to label and quantify free cholesterol in cells and tissues. Several lines of evidence have indicated that filipin staining could be a good diagnostic tool for the cholesterol alterations present in neurodegenerative (e.g., Alzheimer's Disease and Huntington Disease) and lysosomal storage diseases (e.g., Niemann Pick type C Disease and GM1 gangliosidosis). Here, we have discussed the uses and applications of this fluorescent molecule in lipid storage diseases and neurodegenerative disorders, exploring not only the diagnostic strength of filipin staining, but also its limitations, which over the years have led to the development of new diagnostic tools to combine with filipin approach.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | - Serena Camuso
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Capuozzo
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.C.); (S.C.)
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.C.); (S.C.)
| |
Collapse
|
3
|
Kacher R, Mounier C, Caboche J, Betuing S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front Aging Neurosci 2022; 14:797220. [PMID: 35517051 PMCID: PMC9063567 DOI: 10.3389/fnagi.2022.797220] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant genetic disorder caused by an expansion of the CAG repeat in the first exon of Huntingtin’s gene. The associated neurodegeneration mainly affects the striatum and the cortex at early stages and progressively spreads to other brain structures. Targeting HD at its earlier stages is under intense investigation. Numerous drugs were tested, with a rate of success of only 3.5% approved molecules used as symptomatic treatment. The restoration of cholesterol metabolism, which is central to the brain homeostasis and strongly altered in HD, could be an interesting disease-modifying strategy. Cholesterol is an essential membrane component in the central nervous system (CNS); alterations of its homeostasis have deleterious consequences on neuronal functions. The levels of several sterols, upstream of cholesterol, are markedly decreased within the striatum of HD mouse model. Transcription of cholesterol biosynthetic genes is reduced in HD cell and mouse models as well as post-mortem striatal and cortical tissues from HD patients. Since the dynamic of brain cholesterol metabolism is complex, it is essential to establish the best method to target it in HD. Cholesterol, which does not cross the blood-brain-barrier, is locally synthesized and renewed within the brain. All cell types in the CNS synthesize cholesterol during development but as they progress through adulthood, neurons down-regulate their cholesterol synthesis and turn to astrocytes for their full supply. Cellular levels of cholesterol reflect the dynamic balance between synthesis, uptake and export, all integrated into the context of the cross talk between neurons and glial cells. In this review, we describe the latest advances regarding the role of cholesterol deregulation in neuronal functions and how this could be a determinant factor in neuronal degeneration and HD progression. The pathways and major mechanisms by which cholesterol and sterols are regulated in the CNS will be described. From this overview, we discuss the main clinical strategies for manipulating cholesterol metabolism in the CNS, and how to reinstate a proper balance in HD.
Collapse
Affiliation(s)
- Radhia Kacher
- Institut du Cerveau - Paris Brain Institute (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM, U1216, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Coline Mounier
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Sandrine Betuing
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
- *Correspondence: Sandrine Betuing,
| |
Collapse
|
4
|
Ngowi EE, Wang YZ, Qian L, Helmy YASH, Anyomi B, Li T, Zheng M, Jiang ES, Duan SF, Wei JS, Wu DD, Ji XY. The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders. Front Bioeng Biotechnol 2021; 9:629832. [PMID: 33738278 PMCID: PMC7960921 DOI: 10.3389/fbioe.2021.629832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Brain is by far the most complex organ in the body. It is involved in the regulation of cognitive, behavioral, and emotional activities. The organ is also a target for many diseases and disorders ranging from injuries to cancers and neurodegenerative diseases. Brain diseases are the main causes of disability and one of the leading causes of deaths. Several drugs that have shown potential in improving brain structure and functioning in animal models face many challenges including the delivery, specificity, and toxicity. For many years, researchers have been facing challenge of developing drugs that can cross the physical (blood–brain barrier), electrical, and chemical barriers of the brain and target the desired region with few adverse events. In recent years, nanotechnology emerged as an important technique for modifying and manipulating different objects at the molecular level to obtain desired features. The technique has proven to be useful in diagnosis as well as treatments of brain diseases and disorders by facilitating the delivery of drugs and improving their efficacy. As the subject is still hot, and new research findings are emerging, it is clear that nanotechnology could upgrade health care systems by providing easy and highly efficient diagnostic and treatment methods. In this review, we will focus on the application of nanotechnology in the diagnosis and treatment of brain diseases and disorders by illuminating the potential of nanoparticles.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China.,Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yasmeen Ahmed Saleheldin Hassan Helmy
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Bright Anyomi
- Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - En-She Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Nursing and Health, Institutes of Nursing and Health, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jian-She Wei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Oxysterol research: a brief review. Biochem Soc Trans 2019; 47:517-526. [PMID: 30936243 PMCID: PMC6490702 DOI: 10.1042/bst20180135] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
In the present study, we discuss the recent developments in oxysterol research. Exciting results have been reported relating to the involvement of oxysterols in the fields of neurodegenerative disease, especially in Huntington's disease, Parkinson's disease and Alzheimer's disease; in signalling and development, in particular, in relation to Hedgehog signalling; and in cancer, with a special focus on (25R)26-hydroxycholesterol. Methods for the measurement of oxysterols, essential for understanding their mechanism of action in vivo, and valuable for diagnosing rare diseases of cholesterol biosynthesis and metabolism are briefly considered.
Collapse
|
6
|
Sung EA, Yu KR, Shin JH, Seo Y, Kim HS, Koog MG, Kang I, Kim JJ, Lee BC, Shin TH, Lee JY, Lee S, Kang TW, Choi SW, Kang KS. Generation of patient specific human neural stem cells from Niemann-Pick disease type C patient-derived fibroblasts. Oncotarget 2017; 8:85428-85441. [PMID: 29156730 PMCID: PMC5689620 DOI: 10.18632/oncotarget.19976] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a neurodegenerative and lysosomal lipid storage disorder, characterized by the abnormal accumulation of unesterified cholesterol and glycolipids, which is caused by mutations in the NPC1 genes. Here, we report the generation of human induced neural stem cells from NPC patient-derived fibroblasts (NPC-iNSCs) using only two reprogramming factors SOX2 and HMGA2 without going through the pluripotent state. NPC-iNSCs were stably expandable and differentiated into neurons, astrocytes, and oligodendrocytes. However, NPC-iNSCs displayed defects in self-renewal and neuronal differentiation accompanied by cholesterol accumulation, suggesting that NPC-iNSCs retain the main features of NPC. This study revealed that the cholesterol accumulation and the impairments in self-renewal and neuronal differentiation in NPC-iNSCs were significantly improved by valproic acid. Additionally, we demonstrated that the inhibition of cholesterol transportation by U18666A in WT-iNSCs mimicked the impaired self-renewal and neuronal differentiation of NPC-iNSCs, indicating that the regulation of cholesterol homeostasis is a crucial determinant for the neurodegenerative features of NPC. Taken together, these findings suggest that NPC-iNSCs can serve as an unlimited source of neural cells for pathological study or drug screening in a patient specific manner. Furthermore, this direct conversion technology might be extensively applicable for other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun-Ah Sung
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Rok Yu
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Current/Present address: Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji-Hee Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Current/Present address: Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea.,Current/Present address: Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Hyung-Sik Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Current/Present address: Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea.,Current/Present address: Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Myung Guen Koog
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Insung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Chul Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Hoon Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Young Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Seunghee Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Institute for Stem Cell and Regenerative Medicine in Kangstem Biotech, Biomedical Science Building, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Wook Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Institute for Stem Cell and Regenerative Medicine in Kangstem Biotech, Biomedical Science Building, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Chen JY, Tran C, Hwang L, Deng G, Jung ME, Faull KF, Levine MS, Cepeda C. Partial Amelioration of Peripheral and Central Symptoms of Huntington's Disease via Modulation of Lipid Metabolism. J Huntingtons Dis 2016; 5:65-81. [PMID: 27031732 DOI: 10.3233/jhd-150181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder characterized by uncontrollable dance-like movements, as well as cognitive deficits and mood changes. A feature of HD is a metabolic disturbance that precedes neurological symptoms. In addition, brain cholesterol synthesis is significantly reduced, which could hamper synaptic transmission. OBJECTIVE Alterations in lipid metabolism as a potential target for therapeutic intervention in the R6/2 mouse model of HD were examined. METHODS Electrophysiological recordings in vitro examined the acute effects of cholesterol-modifying drugs. In addition, behavioral testing, effects on synaptic activity, and measurements of circulating and brain tissue concentrations of cholesterol and the ketone β-hydroxybutyrate (BHB), were examined in symptomatic R6/2 mice and littermate controls raised on normal chow or a ketogenic diet (KD). RESULTS Whole-cell voltage clamp recordings of striatal medium-sized spiny neurons (MSNs) from symptomatic R6/2 mice showed increased frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) compared with littermate controls. Incubation of slices in cholesterol reduced the frequency of large-amplitude sIPSCs. Addition of BHB or the Liver X Receptor (LXR) agonist T0901317 reduced the frequency and amplitude of sIPSCs. Surprisingly, incubation in simvastatin to reduce cholesterol levels also decreased the frequency of sIPSCs. HD mice fed the KD lost weight more gradually, performed better in an open field, had fewer stereotypies and lower brain levels of cholesterol than mice fed a regular diet. CONCLUSIONS Lipid metabolism represents a potential target for therapeutic intervention in HD. Modifying cholesterol or ketone levels acutely in the brain can partially rescue synaptic alterations, and the KD can prevent weight loss and improve some behavioral abnormalities.
Collapse
Affiliation(s)
- Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Conny Tran
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Lin Hwang
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Gang Deng
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, CA, USA.,Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA.,Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| |
Collapse
|
8
|
Valenza M, Chen JY, Di Paolo E, Ruozi B, Belletti D, Ferrari Bardile C, Leoni V, Caccia C, Brilli E, Di Donato S, Boido MM, Vercelli A, Vandelli MA, Forni F, Cepeda C, Levine MS, Tosi G, Cattaneo E. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington's disease mice. EMBO Mol Med 2016; 7:1547-64. [PMID: 26589247 PMCID: PMC4693506 DOI: 10.15252/emmm.201505413] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Brain cholesterol biosynthesis and cholesterol levels are reduced in mouse models of Huntington's disease (HD), suggesting that locally synthesized, newly formed cholesterol is less available to neurons. This may be detrimental for neuronal function, especially given that locally synthesized cholesterol is implicated in synapse integrity and remodeling. Here, we used biodegradable and biocompatible polymeric nanoparticles (NPs) modified with glycopeptides (g7) and loaded with cholesterol (g7‐NPs‐Chol), which per se is not blood–brain barrier (BBB) permeable, to obtain high‐rate cholesterol delivery into the brain after intraperitoneal injection in HD mice. We report that g7‐NPs, in contrast to unmodified NPs, efficiently crossed the BBB and localized in glial and neuronal cells in different brain regions. We also found that repeated systemic delivery of g7‐NPs‐Chol rescued synaptic and cognitive dysfunction and partially improved global activity in HD mice. These results demonstrate that cholesterol supplementation to the HD brain reverses functional alterations associated with HD and highlight the potential of this new drug‐administration route to the diseased brain.
Collapse
Affiliation(s)
- Marta Valenza
- Department of BioSciences, Centre for Stem Cell Research Università degli Studi di Milano, Milan, Italy
| | - Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience Brain Research Institute David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, USA
| | - Eleonora Di Paolo
- Department of BioSciences, Centre for Stem Cell Research Università degli Studi di Milano, Milan, Italy
| | - Barbara Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Belletti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Costanza Ferrari Bardile
- Department of BioSciences, Centre for Stem Cell Research Università degli Studi di Milano, Milan, Italy
| | - Valerio Leoni
- Neurological Institute C. Besta, Milan, Italy Laboratory of Clinical Chemistry, Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | | | - Elisa Brilli
- Department of BioSciences, Centre for Stem Cell Research Università degli Studi di Milano, Milan, Italy
| | | | - Marina M Boido
- Neuroscience Institute Cavalieri Ottolenghi Neuroscience Institute of Turin, Orbassano Turin, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi Neuroscience Institute of Turin, Orbassano Turin, Italy
| | - Maria A Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Flavio Forni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience Brain Research Institute David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience Brain Research Institute David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, USA
| | - Giovanni Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Cattaneo
- Department of BioSciences, Centre for Stem Cell Research Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Boussicault L, Alves S, Lamazière A, Planques A, Heck N, Moumné L, Despres G, Bolte S, Hu A, Pagès C, Galvan L, Piguet F, Aubourg P, Cartier N, Caboche J, Betuing S. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease. Brain 2016; 139:953-70. [PMID: 26912634 PMCID: PMC4766376 DOI: 10.1093/brain/awv384] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/04/2015] [Indexed: 11/22/2022] Open
Abstract
Huntington’s disease is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (Exp-HTT) leading to degeneration of striatal neurons. Altered brain cholesterol homeostasis has been implicated in Huntington’s disease, with increased accumulation of cholesterol in striatal neurons yet reduced levels of cholesterol metabolic precursors. To elucidate these two seemingly opposing dysregulations, we investigated the expression of cholesterol 24-hydroxylase (CYP46A1), the neuronal-specific and rate-limiting enzyme for cholesterol conversion to 24S-hydroxycholesterol (24S-OHC). CYP46A1 protein levels were decreased in the putamen, but not cerebral cortex samples, of post-mortem Huntington’s disease patients when compared to controls.
Cyp46A1
mRNA and CYP46A1 protein levels were also decreased in the striatum of the R6/2 Huntington’s disease mouse model and in ST
hdh
Q111 cell lines.
In vivo
, in a wild-type context, knocking down CYP46A1 expression in the striatum, via an adeno-associated virus-mediated delivery of selective shCYP46A1, reproduced the Huntington’s disease phenotype, with spontaneous striatal neuron degeneration and motor deficits, as assessed by rotarod.
In vitro
, CYP46A1 restoration protected ST
hdh
Q111 and Exp-HTT-expressing striatal neurons in culture from cell death. In the R6/2 Huntington’s disease mouse model, adeno-associated virus-mediated delivery of CYP46A1 into the striatum decreased neuronal atrophy, decreased the number, intensity level and size of Exp-HTT aggregates and improved motor deficits, as assessed by rotarod and clasping behavioural tests. Adeno-associated virus-CYP46A1 infection in R6/2 mice also restored levels of cholesterol and lanosterol and increased levels of desmosterol.
In vitro
, lanosterol and desmosterol were found to protect striatal neurons expressing Exp-HTT from death. We conclude that restoring CYP46A1 activity in the striatum promises a new therapeutic approach in Huntington’s disease.
Collapse
Affiliation(s)
- Lydie Boussicault
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Sandro Alves
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Antonin Lamazière
- 3 Laboratory of Mass Spectrometry, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités- Université Pierre et Marie Curie-Paris 6, CHU Saint-Antoine, 75012 Paris, France
| | - Anabelle Planques
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France 4 Development and Neuropharmacology, Center for Interdisciplinary Research in Biology, INSERM CNRS 7141. Collège de France
| | - Nicolas Heck
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Lara Moumné
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Gaëtan Despres
- 3 Laboratory of Mass Spectrometry, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités- Université Pierre et Marie Curie-Paris 6, CHU Saint-Antoine, 75012 Paris, France
| | - Susanne Bolte
- 5 Cellular Imaging Facility, Institute of Biology Paris-Seine CNRS FR, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Amélie Hu
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France 6 Laboratory of Experimental Neurology, Université Libre de Bruxelles, Belgium
| | - Christiane Pagès
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Laurie Galvan
- 7 Semel Institute, University California Los Angeles, Los Angeles, USA
| | - Francoise Piguet
- 8 Department of Translational Medicine and Neurogenetics, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), UMR 7104 CNRS/UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, France
| | - Patrick Aubourg
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Nathalie Cartier
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Jocelyne Caboche
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Sandrine Betuing
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| |
Collapse
|
10
|
Gao X, Campbell WA, Chaibva M, Jain P, Leslie AE, Frey SL, Legleiter J. Cholesterol Modifies Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes. Biochemistry 2015; 55:92-102. [PMID: 26652744 DOI: 10.1021/acs.biochem.5b00900] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease caused by abnormally long CAG-repeats in the huntingtin gene that encode an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ domains are directly correlated to disease-related htt aggregation. Htt is found highly associated with a variety of cellular and subcellular membranes that are predominantly comprised of lipids. Since cholesterol homeostasis is altered in HD, we investigated how varying cholesterol content modifies the interactions between htt and lipid membranes. A combination of Langmuir trough monolayer techniques, vesicle permeability and binding assays, and in situ atomic force microscopy were used to directly monitor the interaction of a model, synthetic htt peptide and a full-length htt-exon1 recombinant protein with model membranes comprised of total brain lipid extract (TBLE) and varying amounts of exogenously added cholesterol. As the cholesterol content of the membrane increased, the extent of htt insertion decreased. Vesicles containing extra cholesterol were resistant to htt-induced permeabilization. Morphological and mechanical changes in the bilayer associated with exposure to htt were also drastically altered by the presence of cholesterol. Disrupted regions of pure TBLE bilayers were grainy in appearance and associated with a large number of globular aggregates. In contrast, morphological changes induced by htt in bilayers enriched in cholesterol were plateau-like with a smooth appearance. Collectively, these observations suggest that the presence and amount of cholesterol in lipid membranes play a critical role in htt binding and aggregation on lipid membranes.
Collapse
Affiliation(s)
- Xiang Gao
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Warren A Campbell
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Maxmore Chaibva
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Pranav Jain
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Ashley E Leslie
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Shelli L Frey
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States.,NanoSAFE, P.O. Box 6223, West Virginia University, Morgantown, West Virginia 26506, United States.,The Center for Neurosciences, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
11
|
Blázquez C, Chiarlone A, Bellocchio L, Resel E, Pruunsild P, García-Rincón D, Sendtner M, Timmusk T, Lutz B, Galve-Roperh I, Guzmán M. The CB₁ cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway. Cell Death Differ 2015; 22:1618-29. [PMID: 25698444 PMCID: PMC4563779 DOI: 10.1038/cdd.2015.11] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/21/2022] Open
Abstract
The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective activity. Here, by using an array of pharmacological, genetic and pharmacogenetic (designer receptor exclusively activated by designer drug) approaches, we show that (1) CB1 receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors. To assess the possible functional impact of the CB1/BDNF axis in a neurodegenerative-disease context in vivo, we conducted experiments in the R6/2 mouse, a well-established model of Huntington's disease, in which the CB1 receptor and BDNF are known to be severely downregulated in the dorsolateral striatum. Adeno-associated viral vector-enforced re-expression of the CB1 receptor in the dorsolateral striatum of R6/2 mice allowed the re-expression of BDNF and the concerted rescue of the neuropathological deficits in these animals. Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival.
Collapse
Affiliation(s)
- C Blázquez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - A Chiarlone
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - L Bellocchio
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - E Resel
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - P Pruunsild
- Institute of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - D García-Rincón
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - M Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - T Timmusk
- Institute of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - B Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - I Galve-Roperh
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - M Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| |
Collapse
|
12
|
Eckmann J, Clemens LE, Eckert SH, Hagl S, Yu-Taeger L, Bordet T, Pruss RM, Muller WE, Leuner K, Nguyen HP, Eckert GP. Mitochondrial membrane fluidity is consistently increased in different models of Huntington disease: restorative effects of olesoxime. Mol Neurobiol 2014; 50:107-18. [PMID: 24633813 DOI: 10.1007/s12035-014-8663-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT). One prominent target of the mutant huntingtin protein (mhtt) is the mitochondrion, affecting its morphology, distribution, and function. Thus, mitochondria have been suggested as potential therapeutic targets for the treatment of HD. Olesoxime, a cholesterol-like compound, promotes motor neuron survival and neurite outgrowth in vitro, and its effects are presumed to occur via a direct interaction with mitochondrial membranes (MMs). We examined the properties of MMs isolated from cell and animal models of HD as well as the effects of olesoxime on MM fluidity and cholesterol levels. MMs isolated from brains of aged Hdh Q111/Q111 knock-in mice showed a significant decrease in 1,6-diphenyl-hexatriene (DPH) anisotropy, which is inversely correlated with membrane fluidity. Similar increases in MM fluidity were observed in striatal STHdh Q111/Q111 cells as well as in MMs isolated from brains of BACHD transgenic rats. Treatment of STHdh cells with olesoxime decreased the fluidity of isolated MMs. Decreased membrane fluidity was also measured in olesoxime-treated MMs isolated from brains of HD knock-in mice. In both models, treatment with olesoxime restored HD-specific changes in MMs. Accordingly, olesoxime significantly counteracted the mhtt-induced increase in MM fluidity of MMs isolated from brains of BACHD rats after 12 months of treatment in vivo, possibly by enhancing MM cholesterol levels. Thus, olesoxime may represent a novel pharmacological tool to treat mitochondrial dysfunction in HD.
Collapse
Affiliation(s)
- Janett Eckmann
- Department of Pharmacology, Biocenter, Goethe-University Campus Riedberg, Biocentre Geb. N260, R.1.09, Max-von-Laue Str. 9, 60438, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|