1
|
McQueen E, Yang B, Wittkopp PJ. Epistatic impacts of cis- and trans-regulatory mutations on the distribution of mutational effects for gene expression in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645465. [PMID: 40196697 PMCID: PMC11974906 DOI: 10.1101/2025.03.26.645465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Epistasis can influence evolution by causing the distribution of phenotypic effects for new mutations to vary among genotypes. Here, we investigate how epistatic interactions between new mutations and an existing regulatory mutation might impact the evolution of gene expression using Saccharomyces cerevisiae. We do so by estimating the distribution of mutational effects for expression of a fluorescent reporter protein driven by the S. cerevisiae TDH3 promoter in a reference strain as well as in eight mutant strains. Each of the mutant strains differed from the reference strain by a single mutation affecting expression of the focal gene. We found that half of these regulatory mutations changed the variance and/or skewness of the distribution of mutational effects. A change in variance indicates a change in mutational robustness, and we found that one initial regulatory mutation increased mutational robustness while another decreased it. A change in skewness indicates a change in the relative frequency and/or effect size of mutations increasing or decreasing expression, and we found that the initial regulatory mutation in four strains had such an effect. Strikingly, in all four of these cases, the change in skewness increased the likelihood that new mutations would at least partially compensate for the effects of the initial regulatory mutation. If this form of epistatic impact on the distribution of mutational effects is common, it could provide a neutral mechanism reducing the divergence of gene expression and help explain the prevalence of alleles with compensatory effects in natural populations of S. cerevisiae.
Collapse
Affiliation(s)
- Eden McQueen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Bing Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
2
|
Räsänen N, Tiihonen J, Koskuvi M, Trontti K, Cheng L, Hill AF, Lehtonen Š, Vaurio O, Ojansuu I, Lähteenvuo M, Pietiläinen O, Koistinaho J. miRNA profiling of hiPSC-derived neurons from monozygotic twins discordant for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:21. [PMID: 39966401 PMCID: PMC11836399 DOI: 10.1038/s41537-025-00573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
Schizophrenia is a complex developmental disorder whose molecular mechanisms are not fully understood. The developmental course of schizophrenia can be modeled with human induced pluripotent stem cell (hiPSC) -derived brain cells that carry patient-specific genetic risk factors for the disorder. Although transcriptomic characterization of the patient-derived cells is a standard procedure, microRNA (miRNA) profiling is less frequently performed. To investigate the role of miRNAs in transcriptomic regulation in schizophrenia, we performed miRNA sequencing for hiPSC-derived neurons from five monozygotic twin pairs discordant for schizophrenia and six controls (CTR). We compared the miRNA expression to differentially expressed genes (DEGs) reported for the same cells in our earlier work. We found 21 DEmiRNAs between the affected twins (AT) and CTR with implications for the regulation of neuronal function. In addition, a separate analysis of three AT with treatment-resistant schizophrenia (TRS), their unaffected twins (UT), and CTR revealed an upregulation of four miRNAs in the UT compared to both AT and CTR. The DEmiRNAs found between the UT and CTR were associated with increased cAMP/PKA signaling and synaptogenesis signaling in the UT. We hypothesize that the upregulation of these processes in the UT could be linked to compensatory features against schizophrenia.
Collapse
Affiliation(s)
- Noora Räsänen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jari Tiihonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatric Research, Stockholm City Council, Stockholm, Sweden
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Marja Koskuvi
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kalevi Trontti
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Lesley Cheng
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Andrew F Hill
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Vaurio
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Ilkka Ojansuu
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | | | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI, Helsinki, Finland.
| |
Collapse
|
3
|
Natalino M, Fumasoni M. Compensatory Evolution to DNA Replication Stress is Robust to Nutrient Availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620637. [PMID: 39553989 PMCID: PMC11565888 DOI: 10.1101/2024.10.29.620637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Evolutionary repair refers to the compensatory evolution that follows perturbations in cellular processes. While evolutionary trajectories are often reproducible, other studies suggest they are shaped by genotype-by-environment (GxE) interactions. Here, we test the predictability of evolutionary repair in response to DNA replication stress-a severe perturbation impairing the conserved mechanisms of DNA synthesis, resulting in genetic instability. We conducted high-throughput experimental evolution on Saccharomyces cerevisiae experiencing constitutive replication stress, grown under different glucose availabilities. We found that glucose levels impact the physiology and adaptation rate of replication stress mutants. However, the genetics of adaptation show remarkable robustness across environments. Recurrent mutations collectively recapitulated the fitness of evolved lines and are advantageous across macronutrient availability. We also identified a novel role of the mediator complex of RNA polymerase II in adaptation to replicative stress. Our results highlight the robustness and predictability of evolutionary repair mechanisms to DNA replication stress and provide new insights into the evolutionary aspects of genome stability, with potential implications for understanding cancer development.
Collapse
Affiliation(s)
- Mariana Natalino
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| | - Marco Fumasoni
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| |
Collapse
|
4
|
Tamisier L, Fabre F, Szadkowski M, Chateau L, Nemouchi G, Girardot G, Millot P, Palloix A, Moury B. Within-plant genetic drift to control virus adaptation to host resistance genes. PLoS Pathog 2024; 20:e1012424. [PMID: 39102439 PMCID: PMC11326801 DOI: 10.1371/journal.ppat.1012424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/15/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Manipulating evolutionary forces imposed by hosts on pathogens like genetic drift and selection could avoid the emergence of virulent pathogens. For instance, increasing genetic drift could decrease the risk of pathogen adaptation through the random fixation of deleterious mutations or the elimination of favorable ones in the pathogen population. However, no experimental proof of this approach is available for a plant-pathogen system. We studied the impact of pepper (Capsicum annuum) lines carrying the same major resistance gene but contrasted genetic backgrounds on the evolution of Potato virus Y (PVY). The pepper lines were chosen for the contrasted levels of genetic drift (inversely related to Ne, the effective population size) they exert on PVY populations, as well as for their contrasted resistance efficiency (inversely related to the initial replicative fitness, Wi, of PVY in these lines). Experimental evolution was performed by serially passaging 64 PVY populations every month on six contrasted pepper lines during seven months. These PVY populations exhibited highly divergent evolutionary trajectories, ranging from viral extinctions to replicative fitness gains. The sequencing of the PVY VPg cistron, where adaptive mutations are likely to occur, allowed linking these replicative fitness gains to parallel adaptive nonsynonymous mutations. Evolutionary trajectories were well explained by the genetic drift imposed by the host. More specifically, Ne, Wi and their synergistic interaction played a major role in the fate of PVY populations. When Ne was low (i.e. strong genetic drift), the final PVY replicative fitness remained close to the initial replicative fitness, whereas when Ne was high (i.e. low genetic drift), the final PVY replicative fitness was high independently of the replicative fitness of the initially inoculated virus. We show that combining a high resistance efficiency (low Wi) and a strong genetic drift (low Ne) is the best solution to increase resistance durability, that is, to avoid virus adaptation on the long term.
Collapse
Affiliation(s)
- Lucie Tamisier
- INRAE, Pathologie Végétale, F-84140 Montfavet, France
- INRAE, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France
| | | | - Marion Szadkowski
- INRAE, Pathologie Végétale, F-84140 Montfavet, France
- INRAE, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France
| | - Lola Chateau
- INRAE, Pathologie Végétale, F-84140 Montfavet, France
| | - Ghislaine Nemouchi
- INRAE, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France
| | | | | | - Alain Palloix
- INRAE, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France
| | - Benoît Moury
- INRAE, Pathologie Végétale, F-84140 Montfavet, France
| |
Collapse
|
5
|
Quevarec L, Morran LT, Dufourcq-Sekatcheff E, Armant O, Adam-Guillermin C, Bonzom JM, Réale D. Host defense alteration in Caenorhabditis elegans after evolution under ionizing radiation. BMC Ecol Evol 2024; 24:95. [PMID: 38982371 PMCID: PMC11234525 DOI: 10.1186/s12862-024-02282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Adaptation to a stressor can lead to costs on other traits. These costs play an unavoidable role on fitness and influence the evolutionary trajectory of a population. Host defense seems highly subject to these costs, possibly because its maintenance is energetically costly but essential to the survival. When assessing the ecological risk related to pollution, it is therefore relevant to consider these costs to evaluate the evolutionary consequences of stressors on populations. However, to the best of our knowledge, the effects of evolution in irradiate environment on host defense have never been studied. Using an experimental evolution approach, we analyzed fitness across 20 transfers (about 20 generations) in Caenorhabditis elegans populations exposed to 0, 1.4, and 50.0 mGy.h- 1 of 137Cs gamma radiation. Then, populations from transfer 17 were placed in the same environmental conditions without irradiation (i.e., common garden) for about 10 generations before being exposed to the bacterial parasite Serratia marcescens and their survival was estimated to study host defense. Finally, we studied the presence of an evolutionary trade-off between fitness of irradiated populations and host defense. RESULTS We found a lower fitness in both irradiated treatments compared to the control ones, but fitness increased over time in the 50.0 mGy.h- 1, suggesting a local adaptation of the populations. Then, the survival rate of C. elegans to S. marcescens was lower for common garden populations that had previously evolved under both irradiation treatments, indicating that evolution in gamma-irradiated environment had a cost on host defense of C. elegans. Furthermore, we showed a trade-off between standardized fitness at the end of the multigenerational experiment and survival of C. elegans to S. marcescens in the control treatment, but a positive correlation between the two traits for the two irradiated treatments. These results indicate that among irradiated populations, those most sensitive to ionizing radiation are also the most susceptible to the pathogen. On the other hand, other irradiated populations appear to have evolved cross-resistance to both stress factors. CONCLUSIONS Our study shows that adaptation to an environmental stressor can be associated with an evolutionary cost when a new stressor appears, even several generations after the end of the first stressor. Among irradiated populations, we observed an evolution of resistance to ionizing radiation, which also appeared to provide an advantage against the pathogen. On the other hand, some of the irradiated populations seemed to accumulate sensitivities to stressors. This work provides a new argument to show the importance of considering evolutionary changes in ecotoxicology and for ecological risk assessment.
Collapse
Affiliation(s)
- Loïc Quevarec
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France.
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth Dufourcq-Sekatcheff
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Denis Réale
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Sheinman M, Arndt PF, Massip F. Modeling the mosaic structure of bacterial genomes to infer their evolutionary history. Proc Natl Acad Sci U S A 2024; 121:e2313367121. [PMID: 38517978 PMCID: PMC10990148 DOI: 10.1073/pnas.2313367121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/30/2024] [Indexed: 03/24/2024] Open
Abstract
The chronology and phylogeny of bacterial evolution are difficult to reconstruct due to a scarce fossil record. The analysis of bacterial genomes remains challenging because of large sequence divergence, the plasticity of bacterial genomes due to frequent gene loss, horizontal gene transfer, and differences in selective pressure from one locus to another. Therefore, taking advantage of the rich and rapidly accumulating genomic data requires accurate modeling of genome evolution. An important technical consideration is that loci with high effective mutation rates may diverge beyond the detection limit of the alignment algorithms used, biasing the genome-wide divergence estimates toward smaller divergences. In this article, we propose a novel method to gain insight into bacterial evolution based on statistical properties of genome comparisons. We find that the length distribution of sequence matches is shaped by the effective mutation rates of different loci, by the horizontal transfers, and by the aligner sensitivity. Based on these inputs, we build a model and show that it accounts for the empirically observed distributions, taking the Enterobacteriaceae family as an example. Our method allows to distinguish segments of vertical and horizontal origins and to estimate the time divergence and exchange rate between any pair of taxa from genome-wide alignments. Based on the estimated time divergences, we construct a time-calibrated phylogenetic tree to demonstrate the accuracy of the method.
Collapse
Affiliation(s)
- Michael Sheinman
- Institute for Advanced Studies, Sevastopol State University, Sevastopol299053, Crimea
| | - Peter F. Arndt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin12163, Germany
| | - Florian Massip
- Department U900, Centre for Computational Biology, Mines Paris, PSL University, Paris75006, France
- Department U900, Institut Curie, Université Paris Sciences et Lettres, Paris75005, France
- INSERM, U900, Paris75005, France
| |
Collapse
|
7
|
Desbiez-Piat A, Ressayre A, Marchadier E, Noly A, Remoué C, Vitte C, Belcram H, Bourgais A, Galic N, Le Guilloux M, Tenaillon MI, Dillmann C. Pervasive G × E interactions shape adaptive trajectories and the exploration of the phenotypic space in artificial selection experiments. Genetics 2023; 225:iyad186. [PMID: 37824828 DOI: 10.1093/genetics/iyad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Quantitative genetics models have shown that long-term selection responses depend on initial variance and mutational influx. Understanding limits of selection requires quantifying the role of mutational variance. However, correlative responses to selection on nonfocal traits can perturb the selection response on the focal trait; and generations are often confounded with selection environments so that genotype by environment (G×E) interactions are ignored. The Saclay divergent selection experiments (DSEs) on maize flowering time were used to track the fate of individual mutations combining genotyping data and phenotyping data from yearly measurements (DSEYM) and common garden experiments (DSECG) with four objectives: (1) to quantify the relative contribution of standing and mutational variance to the selection response, (2) to estimate genotypic mutation effects, (3) to study the impact of G×E interactions in the selection response, and (4) to analyze how trait correlations modulate the exploration of the phenotypic space. We validated experimentally the expected enrichment of fixed beneficial mutations with an average effect of +0.278 and +0.299 days to flowering, depending on the genetic background. Fixation of unfavorable mutations reached up to 25% of incoming mutations, a genetic load possibly due to antagonistic pleiotropy, whereby mutations fixed in the selection environment (DSEYM) turned to be unfavorable in the evaluation environment (DSECG). Global patterns of trait correlations were conserved across genetic backgrounds but exhibited temporal patterns. Traits weakly or uncorrelated with flowering time triggered stochastic exploration of the phenotypic space, owing to microenvironment-specific fixation of standing variants and pleiotropic mutational input.
Collapse
Affiliation(s)
- Arnaud Desbiez-Piat
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
- Université Montpellier, INRAE, Institut Agro Montpellier, LEPSE, Montpellier 34000, France
| | - Adrienne Ressayre
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Elodie Marchadier
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Alicia Noly
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institut of Plants Sciences Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Carine Remoué
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Clémentine Vitte
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Harry Belcram
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Aurélie Bourgais
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Nathalie Galic
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Martine Le Guilloux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Maud I Tenaillon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Christine Dillmann
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| |
Collapse
|
8
|
Chardès V, Mazzolini A, Mora T, Walczak AM. Evolutionary stability of antigenically escaping viruses. Proc Natl Acad Sci U S A 2023; 120:e2307712120. [PMID: 37871216 PMCID: PMC10622963 DOI: 10.1073/pnas.2307712120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/24/2023] [Indexed: 10/25/2023] Open
Abstract
Antigenic variation is the main immune escape mechanism for RNA viruses like influenza or SARS-CoV-2. While high mutation rates promote antigenic escape, they also induce large mutational loads and reduced fitness. It remains unclear how this cost-benefit trade-off selects the mutation rate of viruses. Using a traveling wave model for the coevolution of viruses and host immune systems in a finite population, we investigate how immunity affects the evolution of the mutation rate and other nonantigenic traits, such as virulence. We first show that the nature of the wave depends on how cross-reactive immune systems are, reconciling previous approaches. The immune-virus system behaves like a Fisher wave at low cross-reactivities, and like a fitness wave at high cross-reactivities. These regimes predict different outcomes for the evolution of nonantigenic traits. At low cross-reactivities, the evolutionarily stable strategy is to maximize the speed of the wave, implying a higher mutation rate and increased virulence. At large cross-reactivities, where our estimates place H3N2 influenza, the stable strategy is to increase the basic reproductive number, keeping the mutation rate to a minimum and virulence low.
Collapse
Affiliation(s)
- Victor Chardès
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
- Center for Computational Biology, Flatiron Institute, New York, NY10010
| | - Andrea Mazzolini
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
| | - Thierry Mora
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
| |
Collapse
|
9
|
Miller CL, Sun D, Thornton LH, McGuigan K. The Contribution of Mutation to Variation in Temperature-Dependent Sprint Speed in Zebrafish, Danio rerio. Am Nat 2023; 202:519-533. [PMID: 37792923 DOI: 10.1086/726011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe contribution of new mutations to phenotypic variation and the consequences of this variation for individual fitness are fundamental concepts for understanding genetic variation and adaptation. Here, we investigated how mutation influenced variation in a complex trait in zebrafish, Danio rerio. Typical of many ecologically relevant traits in ectotherms, swimming speed in fish is temperature dependent, with evidence of adaptive evolution of thermal performance. We chemically induced novel germline point mutations in males and measured sprint speed in their sons at six temperatures (between 16°C and 34°C). Heterozygous mutational effects on speed were strongly positively correlated among temperatures, resulting in statistical support for only a single axis of mutational variation, reflecting temperature-independent variation in speed (faster-slower mode). These results suggest pleiotropic effects on speed across different temperatures; however, spurious correlations arise via linkage or heterogeneity in mutation number when mutations have consistent directional effects on each trait. Here, mutation did not change mean speed, indicating no directional bias in mutational effects. The results contribute to emerging evidence that mutations may predominantly have synergistic cross-environment effects, in contrast to conditionally neutral or antagonistic effects that underpin thermal adaptation. We discuss several aspects of experimental design that may affect resolution of mutations with nonsynergistic effects.
Collapse
|
10
|
Charmouh AP, Bocedi G, Hartfield M. Inferring the distributions of fitness effects and proportions of strongly deleterious mutations. G3 (BETHESDA, MD.) 2023; 13:jkad140. [PMID: 37337692 PMCID: PMC10468728 DOI: 10.1093/g3journal/jkad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
The distribution of fitness effects is a key property in evolutionary genetics as it has implications for several evolutionary phenomena including the evolution of sex and mating systems, the rate of adaptive evolution, and the prevalence of deleterious mutations. Despite the distribution of fitness effects being extensively studied, the effects of strongly deleterious mutations are difficult to infer since such mutations are unlikely to be present in a sample of haplotypes, so genetic data may contain very little information about them. Recent work has attempted to correct for this issue by expanding the classic gamma-distributed model to explicitly account for strongly deleterious mutations. Here, we use simulations to investigate one such method, adding a parameter (plth) to capture the proportion of strongly deleterious mutations. We show that plth can improve the model fit when applied to individual species but underestimates the true proportion of strongly deleterious mutations. The parameter can also artificially maximize the likelihood when used to jointly infer a distribution of fitness effects from multiple species. As plth and related parameters are used in current inference algorithms, our results are relevant with respect to avoiding model artifacts and improving future tools for inferring the distribution of fitness effects.
Collapse
Affiliation(s)
- Anders P Charmouh
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
- Bioinformatics Research Centre Aarhus University, University City 81, building 1872, 3rd floor. DK-8000 Aarhus C, Denmark
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Matthew Hartfield
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
11
|
Neto C, Hancock A. Genetic Architecture of Flowering Time Differs Between Populations With Contrasting Demographic and Selective Histories. Mol Biol Evol 2023; 40:msad185. [PMID: 37603463 PMCID: PMC10461413 DOI: 10.1093/molbev/msad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Understanding the evolutionary factors that impact the genetic architecture of traits is a central goal of evolutionary genetics. Here, we investigate how quantitative trait variation accumulated over time in populations that colonized a novel environment. We compare the genetic architecture of flowering time in Arabidopsis populations from the drought-prone Cape Verde Islands and their closest outgroup population from North Africa. We find that trait polygenicity is severely reduced in the island populations compared to the continental North African population. Further, trait architectures and reconstructed allelic histories best fit a model of strong directional selection in the islands in accord with a Fisher-Orr adaptive walk. Consistent with this, we find that large-effect variants that disrupt major flowering time genes (FRI and FLC) arose first, followed by smaller effect variants, including ATX2 L125F, which is associated with a 4-day reduction in flowering time. The most recently arising flowering time-associated loci are not known to be directly involved in flowering time, consistent with an omnigenic signature developing as the population approaches its trait optimum. Surprisingly, we find no effect in the natural population of EDI-Cvi-0 (CRY2 V367M), an allele for which an effect was previously validated by introgression into a Eurasian line. Instead, our results suggest the previously observed effect of the EDI-Cvi-0 allele on flowering time likely depends on genetic background, due to an epistatic interaction. Altogether, our results provide an empirical example of the effects demographic history and selection has on trait architecture.
Collapse
Affiliation(s)
- Célia Neto
- Molecular Basis of Adaptation Research Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela Hancock
- Molecular Basis of Adaptation Research Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
12
|
Thorpe HA, Tourrette E, Yahara K, Vale FF, Liu S, Oleastro M, Alarcon T, Perets TT, Latifi-Navid S, Yamaoka Y, Martinez-Gonzalez B, Karayiannis I, Karamitros T, Sgouras DN, Elamin W, Pascoe B, Sheppard SK, Ronkainen J, Aro P, Engstrand L, Agreus L, Suerbaum S, Thorell K, Falush D. Repeated out-of-Africa expansions of Helicobacter pylori driven by replacement of deleterious mutations. Nat Commun 2022; 13:6842. [PMID: 36369175 PMCID: PMC9652371 DOI: 10.1038/s41467-022-34475-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori lives in the human stomach and has a population structure resembling that of its host. However, H. pylori from Europe and the Middle East trace substantially more ancestry from modern African populations than the humans that carry them. Here, we use a collection of Afro-Eurasian H. pylori genomes to show that this African ancestry is due to at least three distinct admixture events. H. pylori from East Asia, which have undergone little admixture, have accumulated many more non-synonymous mutations than African strains. European and Middle Eastern bacteria have elevated African ancestry at the sites of these mutations, implying selection to remove them during admixture. Simulations show that population fitness can be restored after bottlenecks by migration and subsequent admixture of small numbers of bacteria from non-bottlenecked populations. We conclude that recent spread of African DNA has been driven by deleterious mutations accumulated during the original out-of-Africa bottleneck.
Collapse
Affiliation(s)
- Harry A Thorpe
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Elise Tourrette
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Filipa F Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Siqi Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Teresa Alarcon
- Department of Microbiology, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Tsachi-Tsadok Perets
- Gastroenterology Laboratory, Rabin Medical Center, Petah Tikva, Israel
- Department of Digital Medical Technologies, Holon Institute of Technology, Holon, Israel
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Medicine-Gastroenterology, Baylor College of Medicine, Houston, TX, USA
| | | | - Ioannis Karayiannis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | - Wael Elamin
- G42 Healthcare, Abu Dhabi, UAE
- Elrazi University, Khartoum, Sudan
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK
| | - Jukka Ronkainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Primary Health Care Center, Tornio, Finland
| | | | - Lars Engstrand
- Center for Translational Microbiome Research, Department for Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Agreus
- Division of Family Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Suerbaum
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
- DZIF German Center for Infection Research, Hannover-Braunschweig and Munich Partner Sites, Munich, Germany
| | - Kaisa Thorell
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Falush
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Zhang X, Ruan Z, Zheng M, Zhou J, Boccaletti S, Barzel B. Epidemic spreading under mutually independent intra- and inter-host pathogen evolution. Nat Commun 2022; 13:6218. [PMID: 36266285 PMCID: PMC9584276 DOI: 10.1038/s41467-022-34027-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
The dynamics of epidemic spreading is often reduced to the single control parameter R0 (reproduction-rate), whose value, above or below unity, determines the state of the contagion. If, however, the pathogen evolves as it spreads, R0 may change over time, potentially leading to a mutation-driven spread, in which an initially sub-pandemic pathogen undergoes a breakthrough mutation. To predict the boundaries of this pandemic phase, we introduce here a modeling framework to couple the inter-host network spreading patterns with the intra-host evolutionary dynamics. We find that even in the extreme case when these two process are driven by mutually independent selection forces, mutations can still fundamentally alter the pandemic phase-diagram. The pandemic transitions, we show, are now shaped, not just by R0, but also by the balance between the epidemic and the evolutionary timescales. If mutations are too slow, the pathogen prevalence decays prior to the appearance of a critical mutation. On the other hand, if mutations are too rapid, the pathogen evolution becomes volatile and, once again, it fails to spread. Between these two extremes, however, we identify a broad range of conditions in which an initially sub-pandemic pathogen can breakthrough to gain widespread prevalence.
Collapse
Affiliation(s)
- Xiyun Zhang
- Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhongyuan Ruan
- Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, China
| | - Muhua Zheng
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jie Zhou
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Stefano Boccaletti
- CNR - Institute of Complex Systems, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russian Federation
- Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Baruch Barzel
- Department of Mathematics, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Network Science Institute, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
14
|
van den Bosch T, Derks S, Miedema DM. Chromosomal Instability, Selection and Competition: Factors That Shape the Level of Karyotype Intra-Tumor Heterogeneity. Cancers (Basel) 2022; 14:4986. [PMID: 36291770 PMCID: PMC9600040 DOI: 10.3390/cancers14204986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 12/03/2022] Open
Abstract
Intra-tumor heterogeneity (ITH) is a pan-cancer predictor of survival, with high ITH being correlated to a dismal prognosis. The level of ITH is, hence, a clinically relevant characteristic of a malignancy. ITH of karyotypes is driven by chromosomal instability (CIN). However, not all new karyotypes generated by CIN are viable or competitive, which limits the amount of ITH. Here, we review the cellular processes and ecological properties that determine karyotype ITH. We propose a framework to understand karyotype ITH, in which cells with new karyotypes emerge through CIN, are selected by cell intrinsic and cell extrinsic selective pressures, and propagate through a cancer in competition with other malignant cells. We further discuss how CIN modulates the cell phenotype and immune microenvironment, and the implications this has for the subsequent selection of karyotypes. Together, we aim to provide a comprehensive overview of the biological processes that shape the level of karyotype heterogeneity.
Collapse
Affiliation(s)
- Tom van den Bosch
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers—Location AMC, 1105 AZ Amsterdam, The Netherlands
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Sarah Derks
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam University Medical Centers—Location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Daniël M. Miedema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers—Location AMC, 1105 AZ Amsterdam, The Netherlands
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Smith CE, Smith ANH, Cooper TF, Moore FBG. Fitness of evolving bacterial populations is contingent on deep and shallow history but only shallow history creates predictable patterns. Proc Biol Sci 2022; 289:20221292. [PMID: 36100026 PMCID: PMC9470251 DOI: 10.1098/rspb.2022.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-term evolution experiments have tested the importance of genetic and environmental factors in influencing evolutionary outcomes. Differences in phylogenetic history, recent adaptation to distinct environments and chance events, all influence the fitness of a population. However, the interplay of these factors on a population's evolutionary potential remains relatively unexplored. We tracked the outcome of 2000 generations of evolution of four natural isolates of Escherichia coli bacteria that were engineered to also create differences in shallow history by adding previously identified mutations selected in a separate long-term experiment. Replicate populations started from each progenitor evolved in four environments. We found that deep and shallow phylogenetic histories both contributed significantly to differences in evolved fitness, though by different amounts in different selection environments. With one exception, chance effects were not significant. Whereas the effect of deep history did not follow any detectable pattern, effects of shallow history followed a pattern of diminishing returns whereby fitter ancestors had smaller fitness increases. These results are consistent with adaptive evolution being contingent on the interaction of several evolutionary forces but demonstrate that the nature of these interactions is not fixed and may not be predictable even when the role of chance is small.
Collapse
Affiliation(s)
- Chelsea E Smith
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Adam N H Smith
- School of Mathematical and Computational Sciences, Massey University, Auckland 0634, New Zealand
| | - Tim F Cooper
- School of Natural Sciences, Massey University, Auckland 0634, New Zealand
| | - Francisco B-G Moore
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.,Department of Biology, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
16
|
Bao K, Melde RH, Sharp NP. Are mutations usually deleterious? A perspective on the fitness effects of mutation accumulation. Evol Ecol 2022; 36:753-766. [DOI: 10.1007/s10682-022-10187-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Gutiérrez Al‐Khudhairy OU, Rossberg AG. Evolution of prudent predation in complex food webs. Ecol Lett 2022; 25:1055-1074. [PMID: 35229972 PMCID: PMC9540554 DOI: 10.1111/ele.13979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 12/17/2021] [Indexed: 01/09/2023]
Abstract
Prudent predators catch sufficient prey to sustain their populations but not as much as to undermine their populations' survival. The idea that predators evolve to be prudent has been dismissed in the 1970s, but the arguments invoked then are untenable in the light of modern evolution theory. The evolution of prudent predation has repeatedly been demonstrated in two-species predator-prey metacommunity models. However, the vigorous population fluctuations that these models predict are not widely observed. Here we show that in complex model food webs prudent predation evolves as a result of consumer-mediated ('apparent') competitive exclusion of resources, which disadvantages aggressive consumers and does not generate such fluctuations. We make testable predictions for empirical signatures of this mechanism and its outcomes. Then we discuss how these predictions are borne out across freshwater, marine and terrestrial ecosystems. Demonstrating explanatory power of evolved prudent predation well beyond the question of predator-prey coexistence, the predicted signatures explain unexpected declines of invasive alien species, the shape of stock-recruitment relations of fish, and the clearance rates of pelagic consumers across the latitudinal gradient and 15 orders of magnitude in body mass. Specific research to further test this theory is proposed.
Collapse
Affiliation(s)
| | - Axel G. Rossberg
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
18
|
Fulgione A, Neto C, Elfarargi AF, Tergemina E, Ansari S, Göktay M, Dinis H, Döring N, Flood PJ, Rodriguez-Pacheco S, Walden N, Koch MA, Roux F, Hermisson J, Hancock AM. Parallel reduction in flowering time from de novo mutations enable evolutionary rescue in colonizing lineages. Nat Commun 2022; 13:1461. [PMID: 35304466 PMCID: PMC8933414 DOI: 10.1038/s41467-022-28800-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Understanding how populations adapt to abrupt environmental change is necessary to predict responses to future challenges, but identifying specific adaptive variants, quantifying their responses to selection and reconstructing their detailed histories is challenging in natural populations. Here, we use Arabidopsis from the Cape Verde Islands as a model to investigate the mechanisms of adaptation after a sudden shift to a more arid climate. We find genome-wide evidence of adaptation after a multivariate change in selection pressures. In particular, time to flowering is reduced in parallel across islands, substantially increasing fitness. This change is mediated by convergent de novo loss of function of two core flowering time genes: FRI on one island and FLC on the other. Evolutionary reconstructions reveal a case where expansion of the new populations coincided with the emergence and proliferation of these variants, consistent with models of rapid adaptation and evolutionary rescue. Detailing how populations adapted to environmental change is needed to predict future responses, but identifying adaptive variants and detailing their fitness effects is rare. Here, the authors show that parallel loss of FRI and FLC function reduces time to flowering and drives adaptation in a drought prone environment.
Collapse
Affiliation(s)
- Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Mathematics and Bioscience, Department of Mathematics and Max F. Perutz Labs, University of Vienna, Vienna, Austria.,Vienna Graduate School for Population Genetics, Vienna, Austria
| | - Célia Neto
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | - Shifa Ansari
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mehmet Göktay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Herculano Dinis
- Parque Natural do Fogo, Direção Nacional do Ambiente, Praia, Santiago, Cabo Verde.,Associação Projecto Vitó, São Filipe, Fogo, Cabo Verde
| | - Nina Döring
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pádraic J Flood
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Nora Walden
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany.,Biosystematics, Wageningen University, Wageningen, The Netherlands
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| | - Fabrice Roux
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Joachim Hermisson
- Mathematics and Bioscience, Department of Mathematics and Max F. Perutz Labs, University of Vienna, Vienna, Austria
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, Cologne, Germany. .,Mathematics and Bioscience, Department of Mathematics and Max F. Perutz Labs, University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Guo Y, Amir A. The effect of weak clonal interference on average fitness trajectories in the presence of macroscopic epistasis. Genetics 2022; 220:6529545. [PMID: 35171996 PMCID: PMC8982035 DOI: 10.1093/genetics/iyac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptation dynamics on fitness landscapes is often studied theoretically in the strong-selection, weak-mutation regime. However, in a large population, multiple beneficial mutants can emerge before any of them fixes in the population. Competition between mutants is known as clonal interference, and while it is known to slow down the rate of adaptation (when compared to the strong-selection, weak-mutation model with the same parameters), how it affects the shape of long-term fitness trajectories in the presence of epistasis is an open question. Here, by considering how changes in fixation probabilities arising from weak clonal interference affect the dynamics of adaptation on fitness-parameterized landscapes, we find that the change in the shape of fitness trajectory arises only through changes in the supply of beneficial mutations (or equivalently, the beneficial mutation rate). Furthermore, a depletion of beneficial mutations as a population climbs up the fitness landscape can speed up the rescaled fitness trajectory (where adaptation speed is measured relative to its value at the start of the experiment), while an enhancement of the beneficial mutation rate does the opposite of slowing it down. Our findings suggest that by carrying out evolution experiments in both regimes (with and without clonal interference), one could potentially distinguish the different sources of macroscopic epistasis (fitness effect of mutations vs change in fraction of beneficial mutations).
Collapse
Affiliation(s)
- Yipei Guo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA,Program in Biophysics, Harvard University, Boston, MA 02115, USA,Janelia Research Campus, Virginia, VA 20147, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA,Corresponding author: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
20
|
Shokri Bousjein N, Tierney SM, Gardner MG, Schwarz MP. Does effective population size affect rates of molecular evolution: Mitochondrial data for host/parasite species pairs in bees suggests not. Ecol Evol 2022; 12:e8562. [PMID: 35154650 PMCID: PMC8820120 DOI: 10.1002/ece3.8562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/08/2022] Open
Abstract
Adaptive evolutionary theory argues that organisms with larger effective population size (N e) should have higher rates of adaptive evolution and therefore greater capacity to win evolutionary arm races. However, in some certain cases, species with much smaller N e may be able to survive besides their opponents for an extensive evolutionary time. Neutral theory predicts that accelerated rates of molecular evolution in organisms with exceedingly small N e are due to the effects of genetic drift and fixation of slightly deleterious mutations. We test this prediction in two obligate social parasite species and their respective host species from the bee tribe Allodapini. The parasites (genus Inquilina) have been locked into tight coevolutionary arm races with their exclusive hosts (genus Exoneura) for ~15 million years, even though Inquilina exhibit N e that are an order of magnitude smaller than their host. In this study, we compared rates of molecular evolution between host and parasite using nonsynonymous to synonymous substitution rate ratios (dN/dS) of eleven mitochondrial protein-coding genes sequenced from transcriptomes. Tests of selection on mitochondrial genes indicated no significant differences between host and parasite dN/dS, with evidence for purifying selection acting on all mitochondrial genes of host and parasite species. Several potential factors which could weaken the inverse relationship between N e and rate of molecular evolution are discussed.
Collapse
Affiliation(s)
- Nahid Shokri Bousjein
- College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Simon M. Tierney
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Michael G. Gardner
- College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Evolutionary Biology Unit South Australian MuseumNorth Terrace AdelaideSouth AustraliaAustralia
| | - Michael P. Schwarz
- College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
21
|
Desbiez-Piat A, Le Rouzic A, Tenaillon MI, Dillmann C. Interplay between extreme drift and selection intensities favors the fixation of beneficial mutations in selfing maize populations. Genetics 2021; 219:6339583. [PMID: 34849881 DOI: 10.1093/genetics/iyab123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Population and quantitative genetic models provide useful approximations to predict long-term selection responses sustaining phenotypic shifts, and underlying multilocus adaptive dynamics. Valid across a broad range of parameters, their use for understanding the adaptive dynamics of small selfing populations undergoing strong selection intensity (thereafter High Drift-High selection regime, HDHS) remains to be explored. Saclay Divergent Selection Experiments (DSEs) on maize flowering time provide an interesting example of populations evolving under HDHS, with significant selection responses over 20 generations in two directions. We combined experimental data from Saclay DSEs, forward individual-based simulations, and theoretical predictions to dissect the evolutionary mechanisms at play in the observed selection responses. We asked two main questions: How do mutations arise, spread, and reach fixation in populations evolving under HDHS? How does the interplay between drift and selection influence observed phenotypic shifts? We showed that the long-lasting response to selection in small populations is due to the rapid fixation of mutations occurring during the generations of selection. Among fixed mutations, we also found a clear signal of enrichment for beneficial mutations revealing a limited cost of selection. Both environmental stochasticity and variation in selection coefficients likely contributed to exacerbate mutational effects, thereby facilitating selection grasp and fixation of small-effect mutations. Together our results highlight that despite a small number of polymorphic loci expected under HDHS, adaptive variation is continuously fueled by a vast mutational target. We discuss our results in the context of breeding and long-term survival of small selfing populations.
Collapse
Affiliation(s)
- Arnaud Desbiez-Piat
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91120 Gif-sur-Yvette, France
| | - Maud I Tenaillon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Christine Dillmann
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190 Gif-sur-Yvette, France
| |
Collapse
|
22
|
Abstract
RNA viruses, such as hepatitis C virus (HCV), influenza virus, and SARS-CoV-2, are notorious for their ability to evolve rapidly under selection in novel environments. It is known that the high mutation rate of RNA viruses can generate huge genetic diversity to facilitate viral adaptation. However, less attention has been paid to the underlying fitness landscape that represents the selection forces on viral genomes, especially under different selection conditions. Here, we systematically quantified the distribution of fitness effects of about 1,600 single amino acid substitutions in the drug-targeted region of NS5A protein of HCV. We found that the majority of nonsynonymous substitutions incur large fitness costs, suggesting that NS5A protein is highly optimized. The replication fitness of viruses is correlated with the pattern of sequence conservation in nature, and viral evolution is constrained by the need to maintain protein stability. We characterized the adaptive potential of HCV by subjecting the mutant viruses to selection by the antiviral drug daclatasvir at multiple concentrations. Both the relative fitness values and the number of beneficial mutations were found to increase with the increasing concentrations of daclatasvir. The changes in the spectrum of beneficial mutations in NS5A protein can be explained by a pharmacodynamics model describing viral fitness as a function of drug concentration. Overall, our results show that the distribution of fitness effects of mutations is modulated by both the constraints on the biophysical properties of proteins (i.e., selection pressure for protein stability) and the level of environmental stress (i.e., selection pressure for drug resistance). IMPORTANCE Many viruses adapt rapidly to novel selection pressures, such as antiviral drugs. Understanding how pathogens evolve under drug selection is critical for the success of antiviral therapy against human pathogens. By combining deep sequencing with selection experiments in cell culture, we have quantified the distribution of fitness effects of mutations in hepatitis C virus (HCV) NS5A protein. Our results indicate that the majority of single amino acid substitutions in NS5A protein incur large fitness costs. Simulation of protein stability suggests viral evolution is constrained by the need to maintain protein stability. By subjecting the mutant viruses to selection under an antiviral drug, we find that the adaptive potential of viral proteins in a novel environment is modulated by the level of environmental stress, which can be explained by a pharmacodynamics model. Our comprehensive characterization of the fitness landscapes of NS5A can potentially guide the design of effective strategies to limit viral evolution.
Collapse
|
23
|
Sarkar R, Mitra S, Chandra P, Saha P, Banerjee A, Dutta S, Chawla-Sarkar M. Comprehensive analysis of genomic diversity of SARS-CoV-2 in different geographic regions of India: an endeavour to classify Indian SARS-CoV-2 strains on the basis of co-existing mutations. Arch Virol 2021; 166:801-812. [PMID: 33464421 PMCID: PMC7814186 DOI: 10.1007/s00705-020-04911-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/21/2020] [Indexed: 01/24/2023]
Abstract
Accumulation of mutations within the genome is the primary driving force in viral evolution within an endemic setting. This inherent feature often leads to altered virulence, infectivity and transmissibility, and antigenic shifts to escape host immunity, which might compromise the efficacy of vaccines and antiviral drugs. Therefore, we carried out a genome-wide analysis of circulating SARS-CoV-2 strains to detect the emergence of novel co-existing mutations and trace their geographical distribution within India. Comprehensive analysis of whole genome sequences of 837 Indian SARS-CoV-2 strains revealed the occurrence of 33 different mutations, 18 of which were unique to India. Novel mutations were observed in the S glycoprotein (6/33), NSP3 (5/33), RdRp/NSP12 (4/33), NSP2 (2/33), and N (1/33). Non-synonymous mutations were found to be 3.07 times more prevalent than synonymous mutations. We classified the Indian isolates into 22 groups based on their co-existing mutations. Phylogenetic analysis revealed that the representative strains of each group were divided into various sub-clades within their respective clades, based on the presence of unique co-existing mutations. The A2a clade was found to be dominant in India (71.34%), followed by A3 (23.29%) and B (5.36%), but a heterogeneous distribution was observed among various geographical regions. The A2a clade was highly predominant in East India, Western India, and Central India, whereas the A2a and A3 clades were nearly equal in prevalence in South and North India. This study highlights the divergent evolution of SARS-CoV-2 strains and co-circulation of multiple clades in India. Monitoring of the emerging mutations will pave the way for vaccine formulation and the design of antiviral drugs.
Collapse
Affiliation(s)
- Rakesh Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Suvrotoa Mitra
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Pritam Chandra
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Priyanka Saha
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Anindita Banerjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Shanta Dutta
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India.
| |
Collapse
|
24
|
Phenotypic and Genotypic Adaptations in Pseudomonas aeruginosa Biofilms following Long-Term Exposure to an Alginate Oligomer Therapy. mSphere 2021; 6:6/1/e01216-20. [PMID: 33472983 PMCID: PMC7845618 DOI: 10.1128/msphere.01216-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) evolve to generate environmentally adapted biofilm communities, leading to increased patient morbidity and mortality. OligoG CF-5/20, a low-molecular-weight inhaled alginate oligomer therapy, is currently in phase IIb/III clinical trials in CF patients. Experimental evolution of P. aeruginosa in response to OligoG CF-5/20 was assessed using a bead biofilm model allowing continuous passage (45 days; ∼245 generations). Mutants isolated after OligoG CF-5/20 treatment typically had a reduced biofilm-forming ability and altered motility profile. Genotypically, OligoG CF-5/20 provided no selective pressure on genomic mutations within morphotypes. Chronic exposure to azithromycin, a commonly prescribed antibiotic in CF patients, with or without OligoG CF-5/20 in the biofilm evolution model also had no effect on rates of resistance acquisition. Interestingly, however, cross-resistance to other antibiotics (e.g., aztreonam) was reduced in the presence of OligoG CF-5/20. Collectively, these findings show no apparent adverse effects from long-term exposure to OligoG CF-5/20, instead resulting in both fewer colonies with multidrug resistance (MDR)-associated phenotypes and improved antibiotic susceptibility of P. aeruginosa IMPORTANCE The emergence of multidrug-resistant (MDR) pathogens within biofilms in the cystic fibrosis lung results in increased morbidity. An inhalation therapy derived from alginate, OligoG CF-5/20, is currently in clinical trials for cystic fibrosis patients. OligoG CF-5/20 has been shown to alter sputum viscoelasticity, disrupt mucin polymer networks, and disrupt MDR pseudomonal biofilms. Long-term exposure to inhaled therapeutics may induce selective evolutionary pressures on bacteria within the lung biofilm. Here, a bead biofilm model with repeated exposure of P. aeruginosa to OligoG CF-5/20 (alone and in combination with azithromycin) was conducted to study these long-term effects and characterize the phenotypic and genotypic adaptations which result. These findings, over 6 weeks, show that long-term use of OligoG CF-5/20 does not lead to extensive mutational changes and may potentially decrease the pathogenicity of the bacterial biofilm and improve the susceptibility of P. aeruginosa to other classes of antibiotics.
Collapse
|
25
|
Weng ML, Ågren J, Imbert E, Nottebrock H, Rutter MT, Fenster CB. Fitness effects of mutation in natural populations of Arabidopsis thaliana reveal a complex influence of local adaptation. Evolution 2020; 75:330-348. [PMID: 33340094 DOI: 10.1111/evo.14152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 12/22/2022]
Abstract
Little is empirically known about the contribution of mutations to fitness in natural environments. However, Fisher's Geometric Model (FGM) provides a conceptual foundation to consider the influence of the environment on mutational effects. To quantify mutational properties in the field, we established eight sets of MA lines (7-10 generations) derived from eight founders collected from natural populations of Arabidopsis thaliana from French and Swedish sites, representing the range margins of the species in Europe. We reciprocally planted the MA lines and their founders at French and Swedish sites, allowing us to test predictions of FGM under naturally occurring environmental conditions. The performance of the MA lines relative to each other and to their respective founders confirmed some and contradicted other predictions of the FGM: the contribution of mutation to fitness variance increased when the genotype was in an environment where its fitness was low, that is, in the away environment, but mutations were more likely to be beneficial when the genotype was in its home environment. Consequently, environmental context plays a large role in the contribution of mutations to the evolutionary process and local adaptation does not guarantee that a genotype is at or close to its optimum.
Collapse
Affiliation(s)
- Mao-Lun Weng
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Current address: Department of Biology, Westfield State University, Westfield, Massachusettes, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Eric Imbert
- Institut des Sciences de la Évolution, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Henning Nottebrock
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Current address: Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Matthew T Rutter
- Department of Biology, College of Charleston, South Carolina, USA
| | - Charles B Fenster
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Oak Lake Field Station, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
26
|
Lyons DM, Zou Z, Xu H, Zhang J. Idiosyncratic epistasis creates universals in mutational effects and evolutionary trajectories. Nat Ecol Evol 2020; 4:1685-1693. [PMID: 32895516 PMCID: PMC7710555 DOI: 10.1038/s41559-020-01286-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023]
Abstract
Patterns of epistasis and shapes of fitness landscapes are of wide interest because of their bearings on a number of evolutionary theories. The common phenomena of slowing fitness increases during adaptations and diminishing returns from beneficial mutations are believed to reflect a concave fitness landscape and a preponderance of negative epistasis. Paradoxically, fitness decreases tend to decelerate and harm from deleterious mutations shrinks during the accumulation of random mutations-patterns thought to indicate a convex fitness landscape and a predominance of positive epistasis. Current theories cannot resolve this apparent contradiction. Here, we show that the phenotypic effect of a mutation varies substantially depending on the specific genetic background and that this idiosyncrasy in epistasis creates all of the above trends without requiring a biased distribution of epistasis. The idiosyncratic epistasis theory explains the universalities in mutational effects and evolutionary trajectories as emerging from randomness due to biological complexity.
Collapse
Affiliation(s)
| | | | | | - Jianzhi Zhang
- Correspondence to Jianzhi Zhang, Department of Ecology and Evolutionary Biology, University of Michigan, 4018 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109, USA, Phone: 734-763-0527,
| |
Collapse
|
27
|
Zhang TH, Dai L, Barton JP, Du Y, Tan Y, Pang W, Chakraborty AK, Lloyd-Smith JO, Sun R. Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease. PLoS Genet 2020; 16:e1009009. [PMID: 33085662 PMCID: PMC7605711 DOI: 10.1371/journal.pgen.1009009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/02/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Drug-resistant mutations often have deleterious impacts on replication fitness, posing a fitness cost that can only be overcome by compensatory mutations. However, the role of fitness cost in the evolution of drug resistance has often been overlooked in clinical studies or in vitro selection experiments, as these observations only capture the outcome of drug selection. In this study, we systematically profile the fitness landscape of resistance-associated sites in HIV-1 protease using deep mutational scanning. We construct a mutant library covering combinations of mutations at 11 sites in HIV-1 protease, all of which are associated with resistance to protease inhibitors in clinic. Using deep sequencing, we quantify the fitness of thousands of HIV-1 protease mutants after multiple cycles of replication in human T cells. Although the majority of resistance-associated mutations have deleterious effects on viral replication, we find that epistasis among resistance-associated mutations is predominantly positive. Furthermore, our fitness data are consistent with genetic interactions inferred directly from HIV sequence data of patients. Fitness valleys formed by strong positive epistasis reduce the likelihood of reversal of drug resistance mutations. Overall, our results support the view that strong compensatory effects are involved in the emergence of clinically observed resistance mutations and provide insights to understanding fitness barriers in the evolution and reversion of drug resistance.
Collapse
Affiliation(s)
- Tian-hao Zhang
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - John P. Barton
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| | - Yushen Du
- School of Medicine, ZheJiang University, Hangzhou, 210000, China
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yuxiang Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenwen Pang
- Department of Public Health Laboratory Science, West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Arup K. Chakraborty
- Institute for Medical Engineering and Science, Departments of Chemical Engineering, Physics, & Chemistry, Massachusetts Institute of Technology, MA 21309, USA
- Ragon Institute of MGH, MIT, & Harvard, Cambridge, MA 21309, USA
| | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Ren Sun
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Yang J, Naik N, Patel JS, Wylie CS, Gu W, Huang J, Ytreberg FM, Naik MT, Weinreich DM, Rubenstein BM. Predicting the viability of beta-lactamase: How folding and binding free energies correlate with beta-lactamase fitness. PLoS One 2020; 15:e0233509. [PMID: 32470971 PMCID: PMC7259980 DOI: 10.1371/journal.pone.0233509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022] Open
Abstract
One of the long-standing holy grails of molecular evolution has been the ability to predict an organism's fitness directly from its genotype. With such predictive abilities in hand, researchers would be able to more accurately forecast how organisms will evolve and how proteins with novel functions could be engineered, leading to revolutionary advances in medicine and biotechnology. In this work, we assemble the largest reported set of experimental TEM-1 β-lactamase folding free energies and use this data in conjunction with previously acquired fitness data and computational free energy predictions to determine how much of the fitness of β-lactamase can be directly predicted by thermodynamic folding and binding free energies. We focus upon β-lactamase because of its long history as a model enzyme and its central role in antibiotic resistance. Based upon a set of 21 β-lactamase single and double mutants expressly designed to influence protein folding, we first demonstrate that modeling software designed to compute folding free energies such as FoldX and PyRosetta can meaningfully, although not perfectly, predict the experimental folding free energies of single mutants. Interestingly, while these techniques also yield sensible double mutant free energies, we show that they do so for the wrong physical reasons. We then go on to assess how well both experimental and computational folding free energies explain single mutant fitness. We find that folding free energies account for, at most, 24% of the variance in β-lactamase fitness values according to linear models and, somewhat surprisingly, complementing folding free energies with computationally-predicted binding free energies of residues near the active site only increases the folding-only figure by a few percent. This strongly suggests that the majority of β-lactamase's fitness is controlled by factors other than free energies. Overall, our results shed a bright light on to what extent the community is justified in using thermodynamic measures to infer protein fitness as well as how applicable modern computational techniques for predicting free energies will be to the large data sets of multiply-mutated proteins forthcoming.
Collapse
Affiliation(s)
- Jordan Yang
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Nandita Naik
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Christopher S. Wylie
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Wenze Gu
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Jessie Huang
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts, United States of America
| | - F. Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Mandar T. Naik
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Daniel M. Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Brenda M. Rubenstein
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
29
|
Bosshard L, Peischl S, Ackermann M, Excoffier L. Dissection of the mutation accumulation process during bacterial range expansions. BMC Genomics 2020; 21:253. [PMID: 32293258 PMCID: PMC7092555 DOI: 10.1186/s12864-020-6676-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recent experimental work has shown that the evolutionary dynamics of bacteria expanding across space can differ dramatically from what we expect under well-mixed conditions. During spatial expansion, deleterious mutations can accumulate due to inefficient selection on the expansion front, potentially interfering with and modifying adaptive evolutionary processes. RESULTS We used whole genome sequencing to follow the genomic evolution of 10 mutator Escherichia coli lines during 39 days ( ~ 1650 generations) of a spatial expansion, which allowed us to gain a temporal perspective on the interaction of adaptive and non-adaptive evolutionary processes during range expansions. We used elastic net regression to infer the positive or negative effects of mutations on colony growth. The colony size, measured after three day of growth, decreased at the end of the experiment in all 10 lines, and mutations accumulated at a nearly constant rate over the whole experiment. We find evidence that beneficial mutations accumulate primarily at an early stage of the experiment, leading to a non-linear change of colony size over time. Indeed, the rate of colony size expansion remains almost constant at the beginning of the experiment and then decreases after ~ 12 days of evolution. We also find that beneficial mutations are enriched in genes encoding transport proteins, and genes coding for the membrane structure, whereas deleterious mutations show no enrichment for any biological process. CONCLUSIONS Our experiment shows that beneficial mutations target specific biological functions mostly involved in inter or extra membrane processes, whereas deleterious mutations are randomly distributed over the whole genome. It thus appears that the interaction between genetic drift and the availability or depletion of beneficial mutations determines the change in fitness of bacterial populations during range expansion.
Collapse
Affiliation(s)
- Lars Bosshard
- CMPG, Institute of Ecology an Evolution, University of Berne, Baltzerstrasse 6, 3012, Berne, Switzerland. .,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Stephan Peischl
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.,Interfaculty Bioinformatics Unit, University of Berne, 3012, Berne, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zurich (ETH Zürich), 8092, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Laurent Excoffier
- CMPG, Institute of Ecology an Evolution, University of Berne, Baltzerstrasse 6, 3012, Berne, Switzerland. .,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
30
|
Domingo E. Virus population dynamics examined with experimental model systems. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153323 DOI: 10.1016/b978-0-12-816331-3.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimens. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
31
|
Castellano D, Macià MC, Tataru P, Bataillon T, Munch K. Comparison of the Full Distribution of Fitness Effects of New Amino Acid Mutations Across Great Apes. Genetics 2019; 213:953-966. [PMID: 31488516 PMCID: PMC6827385 DOI: 10.1534/genetics.119.302494] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
The distribution of fitness effects (DFE) is central to many questions in evolutionary biology. However, little is known about the differences in DFE between closely related species. We use >9000 coding genes orthologous one-to-one across great apes, gibbons, and macaques to assess the stability of the DFE across great apes. We use the unfolded site frequency spectrum of polymorphic mutations (n = 8 haploid chromosomes per population) to estimate the DFE. We find that the shape of the deleterious DFE is strikingly similar across great apes. We confirm that effective population size (Ne ) is a strong predictor of the strength of negative selection, consistent with the nearly neutral theory. However, we also find that the strength of negative selection varies more than expected given the differences in Ne between species. Across species, mean fitness effects of new deleterious mutations covaries with Ne , consistent with positive epistasis among deleterious mutations. We find that the strength of negative selection for the smallest populations, bonobos and western chimpanzees, is higher than expected given their Ne This may result from a more efficient purging of strongly deleterious recessive variants in these populations. Forward simulations confirm that these findings are not artifacts of the way we are inferring Ne and DFE parameters. All findings are replicated using only GC-conservative mutations, thereby confirming that GC-biased gene conversion is not affecting our conclusions.
Collapse
Affiliation(s)
- David Castellano
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Moisès Coll Macià
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Paula Tataru
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
32
|
Hodač L, Klatt S, Hojsgaard D, Sharbel TF, Hörandl E. A little bit of sex prevents mutation accumulation even in apomictic polyploid plants. BMC Evol Biol 2019; 19:170. [PMID: 31412772 PMCID: PMC6694583 DOI: 10.1186/s12862-019-1495-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/08/2019] [Indexed: 01/30/2023] Open
Abstract
Background In the absence of sex and recombination, genomes are expected to accumulate deleterious mutations via an irreversible process known as Muller’s ratchet, especially in the case of polyploidy. In contrast, no genome-wide mutation accumulation was detected in a transcriptome of facultative apomictic, hexaploid plants of the Ranunculus auricomus complex. We hypothesize that mutations cannot accumulate in flowering plants with facultative sexuality because sexual and asexual development concurrently occurs within the same generation. We assume a strong effect of purging selection on reduced gametophytes in the sexual developmental pathway because previously masked recessive deleterious mutations would be exposed to selection. Results We test this hypothesis by modeling mutation elimination using apomictic hexaploid plants of the R. auricomus complex. To estimate mean recombination rates, the mean number of recombinants per generation was calculated by genotyping three F1 progeny arrays with six microsatellite markers and character incompatibility analyses. We estimated the strength of purging selection in gametophytes by calculating abortion rates of sexual versus apomictic development at the female gametophyte, seed and offspring stage. Accordingly, we applied three selection coefficients by considering effects of purging selection against mutations on (1) male and female gametophytes in the sexual pathway (additive, s = 1.000), (2) female gametophytes only (s = 0.520), and (3) on adult plants only (sporophytes, s = 0.212). We implemented recombination rates into a mathematical model considering the three different selection coefficients, and a genomic mutation rate calculated from genome size of our plants and plant-specific mutation rates. We revealed a mean of 6.05% recombinants per generation. This recombination rate eliminates mutations after 138, 204 or 246 generations, depending on the respective selection coefficients (s = 1.000, 0.520, and 0.212). Conclusions Our results confirm that the empirically observed frequencies of facultative recombination suffice to prevent accumulation of deleterious mutations via Muller’s ratchet even in a polyploid genome. The efficiency of selection is in flowering plants strongly increased by acting on the haplontic (reduced) gametophyte stage. Electronic supplementary material The online version of this article (10.1186/s12862-019-1495-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Timothy F Sharbel
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
33
|
Wei X, Zhang J. Patterns and Mechanisms of Diminishing Returns from Beneficial Mutations. Mol Biol Evol 2019; 36:1008-1021. [PMID: 30903691 DOI: 10.1093/molbev/msz035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Diminishing returns epistasis causes the benefit of the same advantageous mutation smaller in fitter genotypes and is frequently observed in experimental evolution. However, its occurrence in other contexts, environment dependence, and mechanistic basis are unclear. Here, we address these questions using 1,005 sequenced segregants generated from a yeast cross. Under each of 47 examined environments, 66-92% of tested polymorphisms exhibit diminishing returns epistasis. Surprisingly, improving environment quality also reduces the benefits of advantageous mutations even when fitness is controlled for, indicating the necessity to revise the global epistasis hypothesis. We propose that diminishing returns originates from the modular organization of life where the contribution of each functional module to fitness is determined jointly by the genotype and environment and has an upper limit, and demonstrate that our model predictions match empirical observations. These findings broaden the concept of diminishing returns epistasis, reveal its generality and potential cause, and have important evolutionary implications.
Collapse
Affiliation(s)
- Xinzhu Wei
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
34
|
Bertels F, Leemann C, Metzner KJ, Regoes R. Parallel evolution of HIV-1 in a long-term experiment. Mol Biol Evol 2019; 36:2400-2414. [PMID: 31251344 PMCID: PMC6805227 DOI: 10.1093/molbev/msz155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/06/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most intriguing puzzles in biology is the degree to which evolution is repeatable. The repeatability of evolution, or parallel evolution, has been studied in a variety of model systems, but has rarely been investigated with clinically relevant viruses. To investigate parallel evolution of HIV-1, we passaged two replicate HIV-1 populations for almost 1 year in each of two human T-cell lines. For each of the four evolution lines, we determined the genetic composition of the viral population at nine time points by deep sequencing the entire genome. Mutations that were carried by the majority of the viral population accumulated continuously over 1 year in each evolution line. Many majority mutations appeared in more than one evolution line, that is, our experiments showed an extreme degree of parallel evolution. In one of the evolution lines, 62% of the majority mutations also occur in another line. The parallelism impairs our ability to reconstruct the evolutionary history by phylogenetic methods. We show that one can infer the correct phylogenetic topology by including minority mutations in our analysis. We also find that mutation diversity at the beginning of the experiment is predictive of the frequency of majority mutations at the end of the experiment.
Collapse
Affiliation(s)
- Frederic Bertels
- Department of Environmental Systems Sciences, ETH Zurich, Zurich.,Max-Planck-Institute for Evolutionary Biology, Department of Microbial Population Biology
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich.,Insitute of Medical Virology, University of Zurich, Zurich
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich.,Insitute of Medical Virology, University of Zurich, Zurich
| | - Roland Regoes
- Department of Environmental Systems Sciences, ETH Zurich, Zurich
| |
Collapse
|
35
|
Abstract
For nearly a century adaptive landscapes have provided overviews of the evolutionary process and yet they remain metaphors. We redefine adaptive landscapes in terms of biological processes rather than descriptive phenomenology. We focus on the underlying mechanisms that generate emergent properties such as epistasis, dominance, trade-offs and adaptive peaks. We illustrate the utility of landscapes in predicting the course of adaptation and the distribution of fitness effects. We abandon aged arguments concerning landscape ruggedness in favor of empirically determining landscape architecture. In so doing, we transform the landscape metaphor into a scientific framework within which causal hypotheses can be tested.
Collapse
Affiliation(s)
- Xiao Yi
- BioTechnology Institute, University of Minnesota, St. Paul, MN
| | - Antony M Dean
- BioTechnology Institute, University of Minnesota, St. Paul, MN
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| |
Collapse
|
36
|
Gauthier L, Di Franco R, Serohijos AWR. SodaPop: a forward simulation suite for the evolutionary dynamics of asexual populations on protein fitness landscapes. Bioinformatics 2019; 35:4053-4062. [DOI: 10.1093/bioinformatics/btz175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/21/2019] [Accepted: 03/12/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Protein evolution is determined by forces at multiple levels of biological organization. Random mutations have an immediate effect on the biophysical properties, structure and function of proteins. These same mutations also affect the fitness of the organism. However, the evolutionary fate of mutations, whether they succeed to fixation or are purged, also depends on population size and dynamics. There is an emerging interest, both theoretically and experimentally, to integrate these two factors in protein evolution. Although there are several tools available for simulating protein evolution, most of them focus on either the biophysical or the population-level determinants, but not both. Hence, there is a need for a publicly available computational tool to explore both the effects of protein biophysics and population dynamics on protein evolution.
Results
To address this need, we developed SodaPop, a computational suite to simulate protein evolution in the context of the population dynamics of asexual populations. SodaPop accepts as input several fitness landscapes based on protein biochemistry or other user-defined fitness functions. The user can also provide as input experimental fitness landscapes derived from deep mutational scanning approaches or theoretical landscapes derived from physical force field estimates. Here, we demonstrate the broad utility of SodaPop with different applications describing the interplay of selection for protein properties and population dynamics. SodaPop is designed such that population geneticists can explore the influence of protein biochemistry on patterns of genetic variation, and that biochemists and biophysicists can explore the role of population size and demography on protein evolution.
Availability and implementation
Source code and binaries are freely available at https://github.com/louisgt/SodaPop under the GNU GPLv3 license. The software is implemented in C++ and supported on Linux, Mac OS/X and Windows.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Louis Gauthier
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada
- Centre Robert-Cedergren en Bioinformatique et Génomique, Université de Montréal, Montréal, QC, Canada
| | - Rémicia Di Franco
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada
- Centre Robert-Cedergren en Bioinformatique et Génomique, Université de Montréal, Montréal, QC, Canada
- Enseirb-Matmeca, Bordeaux Institute of Technology, Talence, France
| | - Adrian W R Serohijos
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada
- Centre Robert-Cedergren en Bioinformatique et Génomique, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
37
|
Christy SF, Wernick RI, Lue MJ, Velasco G, Howe DK, Denver DR, Estes S. Adaptive Evolution under Extreme Genetic Drift in Oxidatively Stressed Caenorhabditis elegans. Genome Biol Evol 2018; 9:3008-3022. [PMID: 29069345 PMCID: PMC5714194 DOI: 10.1093/gbe/evx222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 12/30/2022] Open
Abstract
A mutation-accumulation (MA) experiment with Caenorhabditis elegans nematodes was conducted in which replicate, independently evolving lines were initiated from a low-fitness mitochondrial electron transport chain mutant, gas-1. The original intent of the study was to assess the effect of electron transport chain dysfunction involving elevated reactive oxygen species production on patterns of spontaneous germline mutation. In contrast to results of standard MA experiments, gas-1 MA lines evolved slightly higher mean fitness alongside reduced among-line genetic variance compared with their ancestor. Likewise, the gas-1 MA lines experienced partial recovery to wildtype reactive oxygen species levels. Whole-genome sequencing and analysis revealed that the molecular spectrum but not the overall rate of nuclear DNA mutation differed from wildtype patterns. Further analysis revealed an enrichment of mutations in loci that occur in a gas-1-centric region of the C. elegans interactome, and could be classified into a small number of functional-genomic categories. Characterization of a backcrossed four-mutation set isolated from one gas-1 MA line revealed this combination to be beneficial on both gas-1 mutant and wildtype genetic backgrounds. Our combined results suggest that selection favoring beneficial mutations can be powerful even under unfavorable population genetic conditions, and agree with fitness landscape theory predicting an inverse relationship between population fitness and the likelihood of adaptation.
Collapse
Affiliation(s)
| | | | | | | | - Dana K Howe
- Department of Integrative Biology, Oregon State University
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University
| | | |
Collapse
|
38
|
Van den Bergh B, Swings T, Fauvart M, Michiels J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol Mol Biol Rev 2018; 82:e00008-18. [PMID: 30045954 PMCID: PMC6094045 DOI: 10.1128/mmbr.00008-18] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In experimental evolution, laboratory-controlled conditions select for the adaptation of species, which can be monitored in real time. Despite the current popularity of such experiments, nature's most pervasive biological force was long believed to be observable only on time scales that transcend a researcher's life-span, and studying evolution by natural selection was therefore carried out solely by comparative means. Eventually, microorganisms' propensity for fast evolutionary changes proved us wrong, displaying strong evolutionary adaptations over a limited time, nowadays massively exploited in laboratory evolution experiments. Here, we formulate a guide to experimental evolution with microorganisms, explaining experimental design and discussing evolutionary dynamics and outcomes and how it is used to assess ecoevolutionary theories, improve industrially important traits, and untangle complex phenotypes. Specifically, we give a comprehensive overview of the setups used in experimental evolution. Additionally, we address population dynamics and genetic or phenotypic diversity during evolution experiments and expand upon contributing factors, such as epistasis and the consequences of (a)sexual reproduction. Dynamics and outcomes of evolution are most profoundly affected by the spatiotemporal nature of the selective environment, where changing environments might lead to generalists and structured environments could foster diversity, aided by, for example, clonal interference and negative frequency-dependent selection. We conclude with future perspectives, with an emphasis on possibilities offered by fast-paced technological progress. This work is meant to serve as an introduction to those new to the field of experimental evolution, as a guide to the budding experimentalist, and as a reference work to the seasoned expert.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- Douglas Lab, Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Toon Swings
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| | - Maarten Fauvart
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Jan Michiels
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
39
|
Cvijović I, Nguyen Ba AN, Desai MM. Experimental Studies of Evolutionary Dynamics in Microbes. Trends Genet 2018; 34:693-703. [PMID: 30025666 PMCID: PMC6467257 DOI: 10.1016/j.tig.2018.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
Evolutionary dynamics in laboratory microbial evolution experiments can be surprisingly complex. In the past two decades, observations of these dynamics have challenged simple models of adaptation and have shown that clonal interference, hitchhiking, ecological diversification, and contingency are widespread. In recent years, advances in high-throughput strain maintenance and phenotypic assays, the dramatically reduced cost of genome sequencing, and emerging methods for lineage barcoding have made it possible to observe evolutionary dynamics at unprecedented resolution. These new methods can now begin to provide detailed measurements of key aspects of fitness landscapes and of evolutionary outcomes across a range of systems. These measurements can highlight challenges to existing theoretical models and guide new theoretical work towards the complications that are most widely important.
Collapse
Affiliation(s)
- Ivana Cvijović
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
40
|
Luijckx P, Ho EKH, Stanić A, Agrawal AF. Mutation accumulation in populations of varying size: large effect mutations cause most mutational decline in the rotifer Brachionus calyciflorus under UV-C radiation. J Evol Biol 2018; 31:924-932. [PMID: 29672987 DOI: 10.1111/jeb.13282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/19/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Theory predicts that fitness decline via mutation accumulation will depend on population size, but there are only a few direct tests of this key idea. To gain a qualitative understanding of the fitness effect of new mutations, we performed a mutation accumulation experiment with the facultative sexual rotifer Brachionus calyciflorus at six different population sizes under UV-C radiation. Lifetime reproduction assays conducted after ten and sixteen UV-C radiations showed that while small populations lost fitness, fitness losses diminished rapidly with increasing population size. Populations kept as low as 10 individuals were able to maintain fitness close to the nonmutagenized populations throughout the experiment indicating that selection was able to remove the majority of large effect mutations in small populations. Although our results also seem to imply that small populations are effectively immune to mutational decay, we caution against this interpretation. Given sufficient time, populations of moderate to large size can experience declines in fitness from accumulating weakly deleterious mutations as demonstrated by fitness estimates from simulations and, tentatively, from a long-term experiment with populations of moderate size. There is mounting evidence to suggest that mutational distributions contain a heavier tail of large effects. Our results suggest that this is also true when the mutational spectrum is altered by UV radiation.
Collapse
Affiliation(s)
- Pepijn Luijckx
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Eddie K H Ho
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Andrijana Stanić
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Katju V, Packard LB, Keightley PD. Fitness decline under osmotic stress in
Caenorhabditis elegans
populations subjected to spontaneous mutation accumulation at varying population sizes. Evolution 2018. [DOI: 10.1111/evo.13463] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences Texas A&M University College Station Texas 77843
| | - Lucille B. Packard
- Department of Biology University of New Mexico Albuquerque New Mexico 87131
| | - Peter D. Keightley
- Institute of Evolutionary Biology University of Edinburgh Edinburgh EH9 3JT United Kingdom
| |
Collapse
|
42
|
Lundin E, Tang PC, Guy L, Näsvall J, Andersson DI. Experimental Determination and Prediction of the Fitness Effects of Random Point Mutations in the Biosynthetic Enzyme HisA. Mol Biol Evol 2018; 35:704-718. [PMID: 29294020 PMCID: PMC5850734 DOI: 10.1093/molbev/msx325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The distribution of fitness effects of mutations is a factor of fundamental importance in evolutionary biology. We determined the distribution of fitness effects of 510 mutants that each carried between 1 and 10 mutations (synonymous and nonsynonymous) in the hisA gene, encoding an essential enzyme in the l-histidine biosynthesis pathway of Salmonella enterica. For the full set of mutants, the distribution was bimodal with many apparently neutral mutations and many lethal mutations. For a subset of 81 single, nonsynonymous mutants most mutations appeared neutral at high expression levels, whereas at low expression levels only a few mutations were neutral. Furthermore, we examined how the magnitude of the observed fitness effects was correlated to several measures of biophysical properties and phylogenetic conservation.We conclude that for HisA: (i) The effect of mutations can be masked by high expression levels, such that mutations that are deleterious to the function of the protein can still be neutral with regard to organism fitness if the protein is expressed at a sufficiently high level; (ii) the shape of the fitness distribution is dependent on the extent to which the protein is rate-limiting for growth; (iii) negative epistatic interactions, on an average, amplified the combined effect of nonsynonymous mutations; and (iv) no single sequence-based predictor could confidently predict the fitness effects of mutations in HisA, but a combination of multiple predictors could predict the effect with a SD of 0.04 resulting in 80% of the mutations predicted within 12% of their observed selection coefficients.
Collapse
Affiliation(s)
- Erik Lundin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Po-Cheng Tang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
LaBar T, Adami C. Evolution of drift robustness in small populations. Nat Commun 2017; 8:1012. [PMID: 29044114 PMCID: PMC5647343 DOI: 10.1038/s41467-017-01003-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
Most mutations are deleterious and cause a reduction in population fitness known as the mutational load. In small populations, weakened selection against slightly-deleterious mutations results in an additional fitness reduction. Many studies have established that populations can evolve a reduced mutational load by evolving mutational robustness, but it is uncertain whether small populations can evolve a reduced susceptibility to drift-related fitness declines. Here, using mathematical modeling and digital experimental evolution, we show that small populations do evolve a reduced vulnerability to drift, or ‘drift robustness’. We find that, compared to genotypes from large populations, genotypes from small populations have a decreased likelihood of small-effect deleterious mutations, thus causing small-population genotypes to be drift-robust. We further show that drift robustness is not adaptive, but instead arises because small populations can only maintain fitness on drift-robust fitness peaks. These results have implications for genome evolution in organisms with small effective population sizes. Genetic drift can reduce fitness in small populations by counteracting selection against deleterious mutations. Here, LaBar and Adami demonstrate through a mathematical model and simulations that small populations tend to evolve to drift-robust fitness peaks, which have a low likelihood of slightly-deleterious mutations.
Collapse
Affiliation(s)
- Thomas LaBar
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Adami
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA. .,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA. .,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
44
|
Christie JR, Beekman M. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes. Mol Biol Evol 2017; 34:677-691. [PMID: 28025277 PMCID: PMC5896580 DOI: 10.1093/molbev/msw266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes-specifically their organization into host cells and their uniparental (maternal) inheritance-enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller's ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes-despite their asexual mode of reproduction-can readily undergo adaptive evolution.
Collapse
Affiliation(s)
- Joshua R Christie
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Madeleine Beekman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
45
|
Distributions of Mutational Effects and the Estimation of Directional Selection in Divergent Lineages of Arabidopsis thaliana. Genetics 2017; 206:2105-2117. [PMID: 28550014 DOI: 10.1534/genetics.116.199190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
Mutations are crucial to evolution, providing the ultimate source of variation on which natural selection acts. Due to their key role, the distribution of mutational effects on quantitative traits is a key component to any inference regarding historical selection on phenotypic traits. In this paper, we expand on a previously developed test for selection that could be conducted assuming a Gaussian mutation effect distribution by developing approaches to also incorporate any of a family of heavy-tailed Laplace distributions of mutational effects. We apply the test to detect directional natural selection on five traits along the divergence of Columbia and Landsberg lineages of Arabidopsis thaliana, constituting the first test for natural selection in any organism using quantitative trait locus and mutation accumulation data to quantify the intensity of directional selection on a phenotypic trait. We demonstrate that the results of the test for selection can depend on the mutation effect distribution specified. Using the distributions exhibiting the best fit to mutation accumulation data, we infer that natural directional selection caused divergence in the rosette diameter and trichome density traits of the Columbia and Landsberg lineages.
Collapse
|
46
|
Collective Infectious Units in Viruses. Trends Microbiol 2017; 25:402-412. [PMID: 28262512 DOI: 10.1016/j.tim.2017.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 01/15/2023]
Abstract
Increasing evidence indicates that viruses do not simply propagate as independent virions among cells, organs, and hosts. Instead, viral spread is often mediated by structures that simultaneously transport groups of viral genomes, such as polyploid virions, aggregates of virions, virion-containing proteinaceous structures, secreted lipid vesicles, and virus-induced cell-cell contacts. These structures increase the multiplicity of infection, independently of viral population density and transmission bottlenecks. Collective infectious units may contribute to the maintenance of viral genetic diversity, and could have implications for the evolution of social-like virus-virus interactions. These may include various forms of cooperation such as immunity evasion, genetic complementation, division of labor, and relaxation of fitness trade-offs, but also noncooperative interactions such as negative dominance and interference, potentially leading to conflict.
Collapse
|
47
|
Dynamics and Fate of Beneficial Mutations Under Lineage Contamination by Linked Deleterious Mutations. Genetics 2017; 205:1305-1318. [PMID: 28100591 DOI: 10.1534/genetics.116.194597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
Beneficial mutations drive adaptive evolution, yet their selective advantage does not ensure their fixation. Haldane's application of single-type branching process theory showed that genetic drift alone could cause the extinction of newly arising beneficial mutations with high probability. With linkage, deleterious mutations will affect the dynamics of beneficial mutations and might further increase their extinction probability. Here, we model the lineage dynamics of a newly arising beneficial mutation as a multitype branching process. Our approach accounts for the combined effects of drift and the stochastic accumulation of linked deleterious mutations, which we call lineage contamination We first study the lineage-contamination phenomenon in isolation, deriving dynamics and survival probabilities (the complement of extinction probabilities) of beneficial lineages. We find that survival probability is zero when [Formula: see text] where U is deleterious mutation rate and [Formula: see text] is the selective advantage of the beneficial mutation in question, and is otherwise depressed below classical predictions by a factor bounded from below by [Formula: see text] We then put the lineage contamination phenomenon into the context of an evolving population by incorporating the effects of background selection. We find that, under the combined effects of lineage contamination and background selection, ensemble survival probability is never zero but is depressed below classical predictions by a factor bounded from below by [Formula: see text] where [Formula: see text] is mean selective advantage of beneficial mutations, and [Formula: see text] This factor, and other bounds derived from it, are independent of the fitness effects of deleterious mutations. At high enough mutation rates, lineage contamination can depress fixation probabilities to values that approach zero. This fact suggests that high mutation rates can, perhaps paradoxically, (1) alleviate competition among beneficial mutations, or (2) potentially even shut down the adaptive process. We derive critical mutation rates above which these two events become likely.
Collapse
|
48
|
Karve SM, Tiwary K, Selveshwari S, Dey S. Environmental fluctuations do not select for increased variation or population-based resistance in Escherichia coli. J Biosci 2016; 41:39-49. [PMID: 26949086 DOI: 10.1007/s12038-016-9592-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Little is known about the mechanisms that enable organisms to cope with unpredictable environments. To address this issue, we used replicate populations of Escherichia coli selected under complex, randomly changing environments. Under four novel stresses that had no known correlation with the selection environments, individual cells of the selected populations had significantly lower lag and greater yield compared to the controls. More importantly, there were no outliers in terms of growth, thus ruling out the evolution of population-based resistance. We also assayed the standing phenotypic variation of the selected populations, in terms of their growth on 94 different substrates. Contrary to expectations, there was no increase in the standing variation of the selected populations, nor was there any significant divergence from the ancestors. This suggested that the greater fitness in novel environments is brought about by selection at the level of the individuals, which restricts the suite of traits that can potentially evolve through this mechanism. Given that day-to-day climatic variability of the world is rising, these results have potential public health implications. Our results also underline the need for a very different kind of theoretical approach to study the effects of fluctuating environments.
Collapse
Affiliation(s)
- Shraddha Madhav Karve
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Dr. Homi Bhabha Road, Pune 411 008, India
| | | | | | | |
Collapse
|
49
|
The Fitness Effects of Spontaneous Mutations Nearly Unseen by Selection in a Bacterium with Multiple Chromosomes. Genetics 2016; 204:1225-1238. [PMID: 27672096 DOI: 10.1534/genetics.116.193060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022] Open
Abstract
Mutation accumulation (MA) experiments employ the strategy of minimizing the population size of evolving lineages to greatly reduce effects of selection on newly arising mutations. Thus, most mutations fix within MA lines independently of their fitness effects. This approach, more recently combined with genome sequencing, has detailed the rates, spectra, and biases of different mutational processes. However, a quantitative understanding of the fitness effects of mutations virtually unseen by selection has remained an untapped opportunity. Here, we analyzed the fitness of 43 sequenced MA lines of the multi-chromosome bacterium Burkholderia cenocepacia that had each undergone 5554 generations of MA and accumulated an average of 6.73 spontaneous mutations. Most lineages exhibited either neutral or deleterious fitness in three different environments in comparison with their common ancestor. The only mutational class that was significantly overrepresented in lineages with reduced fitness was the loss of the plasmid, though nonsense mutations, missense mutations, and coding insertion-deletions were also overrepresented in MA lineages whose fitness had significantly declined. Although the overall distribution of fitness effects was similar between the three environments, the magnitude and even the sign of the fitness of a number of lineages changed with the environment, demonstrating that the fitness of some genotypes was environmentally dependent. These results present an unprecedented picture of the fitness effects of spontaneous mutations in a bacterium with multiple chromosomes and provide greater quantitative support for the theory that the vast majority of spontaneous mutations are neutral or deleterious.
Collapse
|
50
|
Arribas M, Cabanillas L, Kubota K, Lázaro E. Impact of increased mutagenesis on adaptation to high temperature in bacteriophage Qβ. Virology 2016; 497:163-170. [PMID: 27471955 DOI: 10.1016/j.virol.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 02/05/2023]
Abstract
RNA viruses replicate with very high error rates, which makes them more sensitive to additional increases in this parameter. This fact has inspired an antiviral strategy named lethal mutagenesis, which is based on the artificial increase of the error rate above a threshold incompatible with virus infectivity. A relevant issue concerning lethal mutagenesis is whether incomplete treatments might enhance the adaptive possibilities of viruses. We have addressed this question by subjecting an RNA virus, the bacteriophage Qβ, to different transmission regimes in the presence or the absence of sublethal concentrations of the mutagenic nucleoside analogue 5-azacytidine (AZC). Populations obtained were subsequently exposed to a non-optimal temperature and analyzed to determine their consensus sequences. Our results show that previously mutagenized populations rapidly fixed a specific set of mutations upon propagation at the new temperature, suggesting that the expansion of the mutant spectrum caused by AZC has an influence on later evolutionary behavior.
Collapse
Affiliation(s)
- María Arribas
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Laura Cabanillas
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Kirina Kubota
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Ester Lázaro
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| |
Collapse
|